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plications in many fields. Because such pro-
cessing tasks are extremely laborious and dif-
ficult when carried out manually, it is of the
utmost importance that they benefit from
the support – or even be entirely performed

1 Introduction

Object detection, recognition and reconstruc-
tion from digitized data, typically images and
point clouds, are important tasks that find ap-

Summary: Due to the increasing availability of
large unstructured point clouds obtained from laser
scanning and/or photogrammetric data, there is a
growing demand for automatic processing meth-
ods. Given the complexity of the underlying prob-
lems, several new methods try to use semantic
knowledge in particular for supporting object de-
tection and classification. In this paper, we present
a novel approach which makes use of advanced al-
gorithms to benefit from intelligent knowledge
management strategies for the processing of 3D
point clouds and for object classification in scanned
scenes. In particular, our method extends the use of
semantic knowledge to all stages of the processing,
including the guidance of the 3D processing algo-
rithms. The complete solution consists of a multi-
stage iterative concept based on three factors: the
modelled knowledge, the package of algorithms,
and the classification engine. Two case studies il-
lustrating our approach are presented in this paper.
The studies were carried out on scans of the waiting
area of an airport and along the tracks of a railway.
In both cases the goal was to detect and identify
objects within a defined area. With our results we
demonstrate the applicability of our approach.

Zusammenfassung: Automatische Detektion und
Klassifikation von Objekten in Punktwolken unter
Nutzung mehrschichtiger Semantik. Infolge der zu-
nehmenden Verfügbarkeit großer unstrukturierter
Punktwolken aus Laserscanning und Photogram-
metrie entsteht wachsender Bedarf für automati-
sierte Auswerteverfahren. Angesichts der häufig
hohen Komplexität der in den Punktwolken enthal-
tenen Objekte stoßen rein datengetriebene Ansätze
an ihre Grenzen. Es entstehen vermehrt Konzepte,
die auf verschiedene Weise auch Gebrauch von der
Semantik machen. Semantik und Algorithmik sind
dabei oft eng miteinander verwoben und führen zu
Limitationen in Art und Umfang der nutzbaren Se-
mantik. Mit der vorgestellten Lösung werden Algo-
rithmik und Semantik klar getrennt und mit den
exakt auf diese Domänen zugeschnittenen Werk-
zeugen behandelt. Deren prozedurale Verknüpfung
führt dann zu einem neuen Verarbeitungskonzept,
das eine nach unserem Kenntnisstand bislang nicht
erreichte Flexibilität und Vielseitigkeit in der Nut-
zung unterschiedlichster Semantiken besitzt und
auch die Steuerung der Algorithmen integriert. Die
iterative Gesamtlösung fußt auf drei Säulen, näm-
lich dem modellierten Wissen, dem Pool der Algo-
rithmen und dem Identifikationsprozess. Erreich-
bare Resultate werden an zwei Beispielen doku-
mentiert. Ein Beispiel befasst sich mit der Analyse
von Punktwolken aus dem Bereich der Lichtraum-
vermessung an Bahntrassen, das zweite mit Räum-
lichkeiten in einem Flughafen. In beiden Fällen
müssen bestimmte Objektarten aufgefunden und
klassifiziert werden.
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the analysis of the results and the object classi-
fication. Knowledge is also used to support the
choice among different algorithms, the com-
bination of these, and the adopted strategies.
Our main contribution is a comprehensive
set-up to model and use knowledge from vari-
ous domains and to let it interact and contrib-
ute to all steps of an object detection process.
This starts with inferring steps controlling
algorithms based on object and scene related
knowledge in order to select adapted algorith-
mic strategies and ends with a knowledge-
based object classification and simultaneous
extension and updating of the knowledge base
(KB).
Our paper is structured as follows. An over-

view of the relevant literature on the topic is
presented in section 2. Our proposed solution
is outlined in section 3. Knowledge building
and knowledge management are discussed in
section 4. Section 5 is dedicated to our knowl-
edge-based strategy for object detection and
classification. This is followed by two case-
studies involving real-world examples in sec-
tion 6. Our conclusion and future work are
given in section 7.

2 State of the Art

Early 3D processing techniques were either
data-driven or model-driven and often based
on statistical approaches. Many such methods,
generally based on fitting techniques employ-
ing local or global optimization and statisti-
cal regression, often in conjunction with the
random sampling consensus (RANSAC) algo-
rithm for robustness, have attracted and con-
tinue to attract significant attention (NURUN-
NABI et al. 2012). However, many data-driven
methods, in particular those relying on the
segmentation of data into primitive shapes,
are known to be highly sensitive to noise as
well as to local deformations (TARSHA-KURDI
et al. 2007). Model-driven approaches, while
less sentitive to local irregularities, require re-
liable geometrical models which are often dif-
ficult to obtain especially when dealing with
complex scenes (HUANG et al. 2011). Howev-
er, despite of the robustness and efficiency of
many such processing algorithms, they cannot
resolve ambiguities when assigning semantic

through – numerical algorithms. Most exist-
ing algorithms are data-driven and rely both
on extracting discriminating features from the
dataset, and also on numerical models char-
acterizing either geometric, e.g. flatness and
roughness, or physical, e.g. colour and tex-
ture, properties of the sought objects. The nu-
merical model and the extracted features are
combined to form a decision. These methods
are generally affected by the nature of dataset
and the behaviour of the algorithms. Instead,
it is up to the user to decide, often subjective-
ly but generally based on one’s experience,
which algorithms are better suited for any par-
ticular kind of objects and/or the datasets. It
goes without saying that the success of these
approaches is significantly compromised by
the increasing complexity of the objects and
the decreasing quality of the data. Further-
more, relying on only a restricted set of fea-
tures and individual algorithms to process the
data might lead to unreliable results. One way
to overcome the drawbacks of the data-driven
approaches is to resort to the use of additional
knowledge. For instance, knowledge charac-
terizing the objects to be detected with respect
to the data at hand or their relationships to
other objects may generally be derived before-
hand. Such knowledge not only allows for a
systematic characterization and parameteriza-
tion of the objects but also supports the quan-
tification of the effectiveness of the algorithms
to be used.
The work presented in this paper precise-

ly aims at efficiently exploiting additional
knowledge in the processing of point clouds.
In particular, our work bridges semantic mod-
elling and numerical processing strategies
in order to benefit from knowledge in any or
all parts of an automatic processing chain.
Our approach is based on structuring various
knowledge components into ontology contain-
ing a variety of elements taken from multiple
sources such as digital maps and geographical
information systems. However, we do not only
rely on information about objects potentially
present in the scene, i.e. their characteristics,
a hierarchal description of their sub-compo-
nents, and spatial relationships, but also on the
characteristics of the processing algorithms at
hand. During processing, the modelled knowl-
edge guides the algorithms and supports both
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jects. HEDAU et al. (2010) located objects of a
specific geometry in an indoor scene. The de-
tector computes the 3D location of an object
along with its orientation using the geometry
and the mutual arrangement of the object and
the scene as well as a single image. Although
quite useful for scene understanding, such an
approach is limited to dealing with the case of
a single object in the scene.
Localizing multiple objects in a scene has

proved to be a difficult and challenging prob-
lem that often requires considering spatial
and/or semantic relationships between objects.
One way to address such problem is to resort
to the use of semantic knowledge. The ability
to exploit semantic knowledge is limited when
the number of objects becomes large as it re-
quires an adequate way of structuring prop-
erties of objects and relationships between
them. In some approaches, this is carried out
through a hierarchical description of the at-
tributes of each object and those of the scene.
For instance, TEBOUL et al. (2010) segmented
building facades using a derivation tree rep-
resenting the procedural geometry, and con-
nected knowledge representation by gram-
mars with machine learning. Furthermore,
this approach proposed a dynamic way of per-
forming a search through a perturbation mod-
el. RIPPERDA & BRENNER (2006) also extracted
building facades using a structural description
and used reversible jump Monte Carlo Mar-
kov chains (GREEN 1995) to guide the applica-
tion of derivation steps during the building of
the tree. Another application of using knowl-
edge is to infer the missing parts with detected
parts. For example, PU & VOSSELMAN (2009)
reconstructed building facades from terrestri-
al laser scanning data. Knowledge about size,
position, orientation and topology is used to
recognize features, e.g. walls, doors and win-
dows, and also to hypothesize the occluded
parts. In a similar work (SCHOLZE et al. 2002), a
model-based reconstruction method was pro-
posed. In this method, semantic knowledge
is also used to infer missing parts of the roof
and to adjust the overall roof topology. These
approaches use knowledge to evaluate results
of numerical processes, but do not integrate it
into the processing as such.
Since the use of knowledge is also useful

within the processing chain, other works have

labels to objects in a scene. Such ambiguities
can be efficiently dealt with when integrating
semantic knowledge with data processing (see
for instance BUSCH et al. 2005, HELMHOLZ et
al. 2012).
As far as feature-based object recognition is

concerned, some of the approaches have been
used both in 2D images and in 3D data. For
instance, VOSSELMAN & DIJKMAN (2001) made
use of higher level 3D features such as simple
roof shapes, i.e. flat roofs, gable roofs and hip
roofs, which are generally present in building
structures. The authors relied on the use of
the 3D Hough transform to detect planar roof
faces in point clouds, and hence reconstructed
the scene in a higher level of abstraction. Their
segmentation strategy was based on detecting
intersecting lines and “height jump edges” be-
tween planar faces. PU & VOSSELMAN (2006)
used segmentation and feature extraction al-
gorithms to recognize building components
such as doors, walls, windows from point
clouds. Based on constraints on these compo-
nents, they were able to determine the catego-
ries to which each extracted feature belonged.
However, the results were not satisfactory if
the data did not clearly describe an object due
to either the presence of noise or occlusions.
An important processing approach, which

partly solves some limitations of data-driven
methods, makes use of artificial intelligence
techniques to enforce the robustness of the
processing and to allow for the recognition of
more complex objects. A typical work in this
category is the one presented by ANGUELOV et
al. (2005) in which object segmentation and
classification are obtained by a learning pro-
cedure employing Markov random fields and
quadratic programming. Such methods gener-
ally require a large number of training data-
sets in order to obtain good results.
Building on the above results, significant

improvements have been achieved in 3D
data processing by additionally incorporat-
ing semantic aspects. The method proposed
by CANTZLER et al. (2002) relies on a seman-
tic network defining the relationships be-
tween objects in a scene such as walls being
perpendicular to the floor and rules which the
extracted features must obey. However, prob-
lems arise when dealing with complex indoor
scenes possibly including many types of ob-
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changes in the environment. The method uses
expert knowledge that is explicitly formulat-
ed by rules. Depending on a given task, the
system selects a sequence of relevant image
processing tools and adjusts their parameters
to obtain results with some predefined qual-
ity goals. Results on object contour detection,
carried out in various conditions, show the
benefit of taking into account expert knowl-
edge for adjusting the parameters of various
image processing operators. However, knowl-
edge in these approaches has not been fully
exploited: other capabilities, such as process-
ing guidance, have not been explored.
Knowledge-based methods have the abil-

ity to not only manage and exploit geometric
and/or topological relations between objects,
but also to embed scene structures into se-
mantic frameworks. Such knowledge is often
translated into geometric constraints that can
be used to improve object detection. Various
kinds of knowledge-based methods have ap-
peared for applications in object detection,
demonstrating a clear and increasing interest
for such approaches. This expresses a certain
expectation about the role of semantics in fu-
ture processing solutions. A step forward to-
wards benefiting from the use of knowledge in
such solutions would be a comprehensive ap-
proach that exploits knowledge in all process-
es, i.e. in guiding the numerical processing,
evaluating, and classifying detected objects.
Such an approach is proposed in this paper.

3 System Overview

When attempting to build an integrated ap-
proach with knowledge directing all parts of
the process, several aspects have to be consid-
ered. At first, the whole process needs to be
incorporated into a knowledge management
tool. Therefore, it is necessary to have a pro-
cess guiding all individual steps, leading from
an initial situation to the final result. Inside
this overall process, one part has to cover the
numerical processing and another part has to
handle the processing results. This latter part
has to evaluate the results, draw conclusions
about what has been found, and also what this
means for further processing. This includes
the need to update the content of the database

focused on knowledge management within
computation. For example, MAILLOT & THON-
NAT (2008) used a visual concept ontology
composed of visible features such as spatial
and relationships, colour and texture to recog-
nize objects by matching numerical features
and visual concepts.DURAND et al. (2007) pro-
posed a recognition method based on an on-
tology which has been developed by experts
of the domain; the authors also developed a
matching process between objects and the
concepts of ontology to provide objects with
a semantic meaning. Interest also grows in de-
veloping knowledge-based system for various
data processing tasks such as data segmen-
tation and registration but also for scene un-
derstanding and interpretation. For instance,
TRINDER et al. (1998) proposed a knowledge-
based method which automatically extracts
roads from aerial images. The description of
roads includes radiometric, geometric prop-
erties and spatial relationships between road
segments, all formulated as rules in PROLOG.
The knowledge base stores structures of roads
and relationships between them extracted
from images. By using topological informa-
tion of road networks, the method is able to
predict missing road segments. However, the
used semantic model is limited to one type of
objects (roads). GROWE & TONJES (1997) pre-
sented a knowledge-based approach for the
automatic registration of remotely sensed im-
ages. Knowledge is explicitly represented us-
ing semantic nets and rules. Prior knowledge
about scene objects and a geographic informa-
tion system (GIS) are used to select and match
the best set of features. MATSUYAMA (1987)
proposed a method for automatic interpreta-
tion of remotely sensed images. The approach
emphasises the use of knowledge management
and control structures in aerial image under-
standing systems: a blackboard model for in-
tegrating diverse object detection modules, a
symbolic model representation for 3D object
recognition, and integration of bottom-up and
top-down analyses. Two kinds of knowledge
are considered in their expert system: knowl-
edge about objects and knowledge about anal-
ysis tools, e.g. image processing techniques.
ROST & MÜNKEL (1998) proposed a knowl-
edge-based system that is able to automati-
cally adapt image processing algorithms to
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or updating already existing elements before
running the next stage of processing. The pro-
cess ends either when all objects are detect-
ed and classified or in absence of any change
in the annotation process for a predetermined
number of iterations (whose values remain at
the discretion of the user).
Objects are represented by a point cloud or

possibly data from other sources. Such data
depend on many factors such as the type of
the sensing system and the measuring/captur-
ing conditions. This representation has to be
handled by algorithms which also depend on
many additional factors, e.g. noise, other data
characteristics, and already existing objects.
Strong interrelationships among these fac-
tors have a direct influence on the efficiency
of the detection and classification processes.
The more flexibly these factors and interac-
tions are controlled, the better results are to be
expected. For these reasons, knowledge from
different domains is required and the quality
of these various knowledge sets has signifi-
cant impact on the results (BEN HMIDA et al.
2011). Our solution relies on four main knowl-
edge categories to construct the core of the
KB: the scene knowledge, the spatial knowl-
edge, the data knowledge and the algorithm
knowledge. Each field of knowledge is rep-
resented by circles in Fig. 1, and relationships
between these concepts are represented by di-
rected edges. The scene knowledge contains
information related to the content of the scene
to be processed, important characteristics of
objects, e.g. geometric features, appearance

with the objects that have been found. This da-
tabase has to be managed in a way that every
detected object is transferred from some ini-
tial state to a final one within the framework
of a rule-based system.
The main components of our system are il-

lustrated in Fig. 1. The adopted strategy is ap-
plied to the analysis of 3D point clouds, but
can also be extended to other data sources. It
is based on explicitly formulating prior knowl-
edge of the scene, on spatial relations of ob-
jects and on processing algorithms. It is a mul-
ti-stage concept based on three components:
the modelled knowledge (Fig. 1 left), the pack-
age of algorithms (Fig. 1 top-right) and the
classification engine (Fig. 1 bottom-right). In
the initial stage, the available knowledge is
transferred into a KB. Starting from this in-
itial stage, an update process, which invokes
the algorithms and the classification engine, is
launched. Here, the algorithm selection mod-
ule (ASM) guides the processing via selecting
a set of processing algorithms based on the na-
ture of the target objects, and produces new
elements which can be identified. These ele-
ments are passed on to the classification en-
gine, which, based on the existing knowledge
expressed in the ontology, attempts to apply
Semantic Web Rule Language (SWRL) (HOR-
ROCKS et al. 2004) rules and description logic
(DL) constraints in order to identify the nature
or object category of the elements. This clas-
sification handles the output obtained from the
algorithms. The result of the classification step
updates the KB by inserting newly classified

Fig. 1: System architecture.
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As an additional technology, SWRL is
available. It is a program which infers logic
from the KB to derive a conclusion based on
observations and hypotheses. For instance, the
following rule (2) asserts that a detected ele-
ment of class Geometry which has a distance
from DistanceSignal of 1000 m, has a height
equal to or greater than 4 m, and which has
a linear structure, will be inferred as a Main-
Signal.

Geometry(?x) ^ hasLine(?x, ?l)
^ line(?l) ^ DistanceSignal (?y)
^ DistanceFrom(?x, ?y, ?dis)
^ swrlb:GreaterThan (?dis,1000)
^ hasHeight(?x, ?h) ^ swrlb:GreaterThan
(?h, 4) → MainSignal(?x) (2)

Variables are indicated by the standard
convention in which they are prefixed by a
question mark symbol (e.g. ?x). An impor-
tant SWRL feature is its ability to allow user-
defined built-ins, i.e. user-defined predicates,
such as, swrlb:equal and swrlb:lessThan, that
can be used in SWRL rules, which help in the
interoperation of SWRL with other formal-
isms and provide an extensible infrastructure
for knowledge-based applications.
The techniques mentioned above serve as

tools to formalize the identified and acquired
knowledge. As explained, the actual solu-
tion handles four separate domains: the scene
knowledge, the spatial knowledge, the data
knowledge and finally the algorithm knowl-
edge. All these knowledge domains have their
representations in the domain ontology and
participate in the whole processing cycle. The
graphical structure of the top-level concepts of
the ontology is given in Fig. 2, where we find
four main concepts, called Classes in the next
paragraphs. In order to proceed, these classes
have to describe the different actors used dur-
ing the detection and the classification process
in a structured hierarchical way. The main
factors that have to be modeled are: processing
algorithms, point cloud data or image resourc-
es, and target objects with their geometry and
characteristics. The class DomainConcept
represents the different objects found in the
target scene and can be considered the main
class in this ontology. This class is further spe-
cialized into classes representing the different

and texture, and the geometry that compos-
es its structure. Such knowledge is not only
important for identification and classification
processes but also supports the selection and
guidance of the algorithms. The spatial knowl-
edge models the relationships between objects
in the scene. It is an important factor for the
classification process because it supports an
object’s state disambiguation based on its re-
lationship with the common environment. The
data knowledge expresses important charac-
teristics of the data itself. Finally, algorithm
knowledge characterizes the behaviour of al-
gorithms and determines which purpose they
fulfil, which input is expected, which output is
generated, and which geometries they are de-
signed for. Based on this knowledge, a dynam-
ic algorithm selection is possible allowing for
a dynamic adaptation to processing situations
given from other domains (Fig. 1).

4 Building Knowledge

The concept requires efficient methods for
knowledge representation, management and
interaction with algorithms. Efficient knowl-
edge representation tools are available from
the semantic web framework, which express-
es knowledge through the web ontology lan-
guage (OWL) (BECHHOFER et al. 2004). The en-
capsulation of semantics within OWL through
description logics (DLs) axioms has made it
an ideal technology for representing knowl-
edge from almost any discipline. We use the
OWL to represent expert knowledge about
the scene of interest and for algorithmic pro-
cessing. With OWL ontology, we are able to
describe complex semantics of a scene. For
instance, the statement “A railway track is a
linear feature with two linear structures run-
ning parallel to each other within a certain
distance” can be expressed through logical
statements. Likewise, we define the semantics
of algorithmic processing within OWL. For
example, the CheckParallel algorithm is de-
signed for detecting a Signal, which contains
parallel linear structures.

CheckParallel $ isDesignedFor.Signal 
Signal.hasParallel.{true} (1)
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a height above ground between 4 m and 6 m; it
comprises a vertical structure that connects to
a cube on the ground; at the top, there are two
parallel linear structures; and along the tracks,
the distance from an electric pole (type 2) to a
signal column is 1000 m within the bounds of
a predefined tolerance, for example ± 0.5 m,
depending on the quality of data, measure-
ment uncertainty and noise.
Knowledge about 3D spatial relationships is

used to enhance the classification process. In-
formation about how objects are scattered in a
3D scene makes the detection and classifica-
tion easier. For instance, given the detection
of a wall, the probability of detecting doors or
windows is higher. 3D spatial knowledge in-
cludes standards like the 3D topologic knowl-
edge, 3D metric knowledge and 3D process-
ing knowledge. Spatial knowledge contains
relationships such as disjoint, contain, inside,
cover, equal, overlap. The terms represent the
geometric relations between components of an
object or between objects. Each of the men-
tioned types of spatial knowledge contains a
variety of relations modelled in the ontology
structure. The top level ontology is designed
to include the topological relationships. This
is used to enrich an existing KB to make it
possible to define topological relationships be-

detected objects. The other classes are used to
either describe the object geometry through
the Geometry class by defining its geometric
component or to describe its characteristics
through the Characteristics class. Ultimately,
the system selects algorithms for the process-
ing chain based on their compatibility with the
object geometry and characteristics read from
the Algorithm class.
Knowledge of different domains is acquired

from the relevant sources. Domain experts are
the most reliable knowledge sources. How-
ever, information sources such as CAD, GIS
data, or other available documents in the case
of detailed input can also be used to extract
knowledge. In our case, the algorithm knowl-
edge is acquired by experts in numerical pro-
cessing and the scene knowledge is acquired
from existing digital documents as a CAD
drawing or GIS dataset.
The scene knowledge is described in the

schema of ontology and includes semantics
of the objects such as properties, restrictions,
relationships between objects and geometries.
The more information about an object is cre-
ated and used, the more accurate the detection
and classification process is. An example of
defining a semantic object is the following: an
electric pole (type 2) along a railway track has

Fig. 2: General ontology schema overview.

Fig. 3: Metric rules.
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the same quality in other settings, it is impor-
tant to assess the risk-benefit factors of every
algorithm with various possible settings. The
class RiskBenefits includes all identified risks
and benefits. The class contains the four in-
stances Distinct, Illusive, Noise, and Detec-
tionError. The instances are the risks or the
benefits with some influence on the algorithms
or at least on the parameters of the algorithms.
Note that the classes above form an ontology,
which can also be used for other domains,
such as creation of semantic annotated maps
by a mobile robot, mobile mapping of street
furniture or forests, and semantic place label-
ling from airborne laser data.
Knowledge modelling and human interac-

tion: The process of modelling knowledge re-
quires the user to collect “information” from
related domains. This process is currently car-
ried out manually. “Collecting information”
can imply extracting knowledge from various
sources or filling the ontology with objects
corresponding to specific classes, object prop-
erties, algorithms, algorithmic properties, etc.
Some of these tasks such as data extraction
from technical documents have the potential
to be done automatically using specialized
processing tools borrowed from the document
analysis community (TANG et al. 1996). De-
pending on the available tools and target ap-
plication including its related domains, the
knowledge modelling process may take a sin-
gle person from one to several days of work
(data extraction and ontology modelling) in-
cluding interaction with domain experts and
modelling all relationships. Examples for the
length of this process and the amount of hu-
man interaction are given in section 6. How-
ever, although such figures may seem signifi-
cant, one has to keep in mind that knowledge
modelling for a given application is done only
once and used for processing numerous point
clouds with virtually very little or no chang-
es to the ontology. Other approaches such as
those based on machine learning would also
require a significant amount of preparation to
extract training data and carry out annotations
generally from large amounts of scans, which
may require at least as much time as model-
ling an ontology. This is especially true when
dealing with special environments such as
railways or industrial plants, which are often

tween objects in a specific case. Metric knowl-
edge presents important information, because
the different elements fulfil very strict metric
rules which can also be used for the detection
and classification process. In the example of
scenes specific for railways, Fig. 3 shows an
ontological structure supported by the SWRL
rules which can automatically specify that an
object with certain characteristics that has a
distance of 1000 ± 0.5 m from Distance sig-
nal, can be a Main signal.
Regarding the numerical processing algo-

rithms, effectiveness depends on the quality of
the data (resolution, noise), the characteristics
of the object that needs to be detected, or oth-
er factors depending on a specific case. Algo-
rithms are modelled under specialized class-
es of algorithms, sharing certain taxonomi-
cal and relational behaviour. The hierarchical
representation of the algorithms is addressed
by dividing the algorithms according to the
context in which they are executed. Classes,
including GeometryDetection, Appearance-
Detection, ImageProcessing and NoiseReduc-
tion, follow such a hierarchal structure. Like-
wise, relational semantics are represented by
properties. In broader terms, there are two
types of relationships: one which applies to
the geometry that an object in Domain Con-
cept possesses, and one which relates distinct
objects. The first category of relationships
is used for detecting geometries. The object
property isDesignedFor maps algorithms to
the respective geometries. For example: Line-
Detection1 isDesignedFor lines. The second
set of algorithm properties hasInput/hasOut-
put are inter-relational properties to connect
algorithms based on the compatibility of out-
put from an algorithm to the inputs of others.
It is necessary to adapt the processing pa-

rameters depending on data, scene and char-
acteristics of objects to enable a well focussed
detection and classification. The concept al-
lows for these interactions, as it is able to au-
tomatically change the strategy based on a
compromise between quality and risks. A part
of the KB is dedicated to risk-benefit factors
that have an influence on the algorithms. This
was derived from “trial and error” simulations
with every individual algorithm. Since an al-
gorithm may perform best with some given
parameters in one setting, and fail to deliver
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es. At the beginning of each iteration, the con-
tent of the KB is used to detect new features,
may it be a new object or a component of it.
These new geometric features are passed on
to the KB in order to extend the KB for the
following classification. This classification is
guided by the content and the structure of the
KB, which has reasoning capabilities based on
property restrictions or rule languages (such
as SWRL) and refines the actual content. This
refined content is used in the next iteration.
The process is repeated until all entities have
been completely annotated and meet the fol-
lowing convergence conditions: (1) All objects
defined on the KB are detected and annotat-
ed (simple change detection). (2) A predefined
number of iterations without refinement for
any entity has been reached.

5.2 Usage of Algorithms guided by
Knowledge

Object related knowledge does not influence
classification only, but also algorithmic pro-
cessing. Different algorithms are designed for
different contexts. The differences can be ad-
dressed and properly modelled. The KB holds
the algorithm knowledge in the class Algo-
rithm. This class is related to other classes in-
side the KB, such as objects. This allows for
the modification of the role of algorithms, e.g.
parameter, sequences, corresponding to the
KB details. The interrelationships among dif-
ferent algorithms are mapped through com-
patibility of their input and output character-
istics (Fig. 4). Fig. 4 illustrates that more than
one path from an initial algorithm to a desired
one exist. We use the well-known Djikstra’s
algorithm (DJIKSTRA 1959) for finding the
shortest path in the graph leading to the de-
sired algorithm. This approach has the advan-

subject to regulations, which require a certain
level of expertise.

5 Knowledge Guidance for the
Object Detection and
Classification Process

5.1 Knowledge-driven Strategy

The knowledge formalization is based on
the understanding of the underlying seman-
tics and processes it using technologies such
as OWL. The top-level ontology presents the
main knowledge framework and holds generic
semantics for all addressed domains. Regard-
ing the case studies, this framework contains
the scene, object geometries, spatial relations
and algorithms and originates from existing
knowledge sources, such as information sys-
tems, or guidelines of the Deutsche Bahn (DB,
German Railways), and an extensive study of
the sample scenarios. Obviously, quality and
completeness of such formalized knowledge
strongly influence the quality of the results,
and have to be adapted to the individual ap-
plication. In the general case, such a frame-
work only contains the abstract and general
knowledge of object categories, the structure
of a scene, geometric relations between ob-
jects, the structure of data, the nature of algo-
rithms and the potential relationships between
these components. In a simpler scenario with
specific information about potentially exist-
ing objects, for example known through CAD
or Industry Foundation Class (IFC) files, the
detection strategy can be guided more easi-
ly and may be reduced to a change detection
problem.
Starting from the initial situation, the pro-

cess iteratively updates the KB at certain stag-

Fig. 4: Algorithm sequences extracted from the graph.
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The use of spatial relations (Metric, Topo-
logic, and Directional) between the detected
entities is one possible extension of such sim-
ple geometry (BEN HMIDA et al. 2012). It only
requires the appropriate algorithms and then
provides the result for the topological op-
eration. ZLATANOVA et al. (2002) gives a sur-
vey of different 3D models and relations. The
spatial operators available for a spatial query
language consist of 3D topological operators
(BORRMANN & RANK 2008), 3D metric oper-
ators (BORRMANN et al. 2009), 3D directional
operators (BORRMANN & RANK 2009) and fi-
nally 3D Boolean operators (BORRMANN et al.
2006). In a simplified example, the following
rule specifies that a “Building” that overlaps a
“Railway” (both defined in the ontology), is a
“RailwayStation”.

Building(?b) ^ Railway(?r) ^ topo:
overlaps(?b, ?r) → RailwayStation(?b) (4)

Fig. 5 shows our process guided by various
knowledge domains in object detection and
classification. In this figure, object classes are
referred to as A, B, C, D, and E. We recall here
that the process iterates until convergence, i.e.
all objects are labelled, or stopping conditions,
i.e. maximum number of iterations without re-
finement, are met.

6 Case Study

Two case studies illustrating our approach are
presented in this section: Deutsche Bahn (DB)
and Frankfurt Airport (Fraport). The goal in
both cases was to detect and check relevant
objects inside a defined work area.

tage of preventing the sequence of algorithms
to form an endless loop and allows for finding
an appropriate sequence.
At any given iteration, each entity in the KB

may be assigned a new label: identified, un-
known or ambiguous. This label may change in
the course of an iteration. Based on this infor-
mation, the ASM chooses the best algorithm
for generating new characteristics, which will
help in the next classification step. This selec-
tion also integrates the choice of an optimal
sequence out of several possible ones (routes)
of algorithms (or nodes). Various knowledge
components can have an impact here, e.g. data
(noise, point density, point of view), object
(size, shape, orientation), and scene (possible
objects, neighbourhood).

5.3 Classification Step

As discussed in section 4, the ontology sche-
ma holds the semantics of the objects such as
its geometries and other spatial characteris-
tics. This information supports identifying
detected entities and is used in the inference
process. The complexity of the required rules
directly depends upon the complexity of the
processed situation. In simple cases, even very
simple rules are sufficient to produce a cor-
rect result. However, this concept also allows
to handle more complex situations. A simple
classification of an entity (Geometry) based on
a SWRL rule annotates an electric pole (type
2), as found along railway tracks:

Geometry (?x) ^ hasHeight(?x,
?ht) ^ swrlb:greaterThan(?ht, 4) ^
swrlb:lessThan(?ht, 6)
→ ElectricPole2(?x) (3)

Fig. 5: Knowledge-driven method for object detection and classification process.
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these will require more iterations and addi-
tional rules in order to achieve a stable clas-
sification.
The aspect of quality can also be incorpo-

rated into the concept. This may either be re-
alized by thresholds modelling data noise or
by changing the strategy of selecting a path
through the graph. The latter case handles
situations in which features are sensitive to
noise and corresponding algorithms might
fail. For instance, an electric pole (type 2)
is represented by parallel vertical supports.
ASM searches and selects the relevant algo-
rithm – CheckParallel – from the algorithmic
library. This library is described by a graph
(see Fig. 6) representing all allowed connec-
tions, based on input and output between al-
gorithms. Based on some data quality thresh-
olds, the sequence may or may not include
pre-processing algorithms (e.g. NoiseReduc-
tion). On the path from the starting algorithm
(in this case, PositionDetection) to the desired
algorithm (CheckParallel), ASM infers and
invokes all concerned algorithms based on the
hasInput/hasOutput property. Segmentation,
NoiseReduction and LineDetection1 are the
selected ones. Afterwards, ASM links them
together to create a proper sequence: it then
looks as follows (result illustrated in Fig. 7c):
PositionDetection → Segmentation →

NoiseReduction→ LineDetection1 → Check-
Parallel.
The execution of this sequence provides a

list of recognized object entities, which then

6.1 Object Classification in the
Railway System (DB)

In the DB example, we used scans in the vi-
cinity of the tracks. Data were captured from
LIMEZ III, a surveying train equipped with
a laser scanner mounted at its front-end. Two
non-domain experts worked for approximate-
ly 20 days to build the DB example ontology.
They were supported by experts of the Ger-
man railway (DB). The available knowledge is
used to classify the entities as:
• Identified: as soon as a feature value is in
the range of a class. This annotation has to
be supported by subsequent classifications
and remains valid as long as no conflict is
detected.

• Ambiguous: as soon as a feature value satis-
fies more than one class. Both annotations
are stored and have to be separated by sub-
sequent classifications and remain doubtful
as long as no separation is possible.

• Unknown: indicates that a feature value
does not match any existing class. Further
processing requires the ASM to select other
properties in order to continue the process.

Although a simple example, this neverthe-
less shows the general logic, which can then
be further extended with other considerations
among entities. Success is directly related to
the ability to detect entities and the signifi-
cance of the feature values chosen. Less char-
acteristic features can also be used. However,

Fig. 6: Graph of possible algorithmic paths generated by ASM and used for detecting objects in
both DB and Fraport cases.
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tialization step shown in (Fig. 7b). All entities
include possible objects in the scene but also
noise and objects of no interest. The true num-
ber of railway objects was 13 (Tab. 2). With
the second iteration, the process tries to refine
the results and classify the objects. At the end,
10 out of 13 real railway objects were correct-
ly classified, 50 entities which represent non-
railway objects were classified as unknown,
and 3 railway objects could not be unambig-
uously classified with the rules implemented.
The results in Fig. 7d were obtained by our
software system. Computation took about 10
minutes on an Intel Xeon 2.4 GHz with 12G
RAM. Note that our software is a prototype
and has not been optimized for performance.
In our experiments, we used the “shortest
path” criterion from starting the algorithm to
the desired algorithm in order to find the opti-
mal algorithm sequence. Our system assumes
equal weights for all edges in the algorithms
graph, i.e. factors that are intrinsic to algo-
rithms such as time and memory requirements
are not taken into account at this stage. Re-
sults can be improved by applying more com-
plex rules, possibly using additional geomet-
ric constraints such as line or plane orienta-
tion, angle between lines or number of lines
expressed in the rule (5):

Geometry(?x) ^ hasLine(?x, ?l) ^ line(?l) ^
DistanceSignal (?y) ^ DistanceFrom(?x, ?y,
?dis) ^ swrlb:GreaterThan (?dis,1000) ^
hasHeight(?x, ?h) ^ swrlb:GreaterThan
(?h, 4) ^ hasVerticalLineNumber(?x, ?vn)
^ swrlb:lessThanOrEqual(?vn, 2) ^
hasObliqueLineNumber(?x, ?on) ^
swrlb:equal(?on, 0) → MainSignal(?x) (5)

In order to relate the classification to hu-
man interpretation the point cloud was pre-
sented to test persons. They identified 8 of
13 railway objects based on a visual inspec-
tion of the cloud and without taking into ac-
count topological or descriptive knowledge.
This just shows the limited representation of
objects inside such types of point clouds. One
major reason for the poor quality of the point
cloud is the fact that only the side of the object
facing the tracks is captured due to the scan-
ner on the train. However, this also shows the
usefulness of additional knowledge.

are classified. Further sequences are used to
improve the quality and to reduce the ambigu-
ity within the results (Fig. 7d). Iterations are
repeated until a complete annotation for all
entities is performed. The convergence con-
ditions are applied to terminate the detection
process for entities.
We have processed a 500 m section along

the railway. Out of 12 algorithms modelled in
the KB (Fig. 6), the following ones were used
by the system to classify objects (Tab. 1): Posi-
tionDetection, Segmentation (cropping points
surrounding a given position), Dimension-
Approximation, NoiseReduction, LineDetec-
tion1 (using RANSAC) and AngleCalculation.
Knowledge was collected carefully in order to
provide a reliable KB related to objects, scene,
the nature of the data, algorithms and relation-
ships between them. The base was progres-
sively extended with new knowledge gained
either from the analysis of the detected geom-
etries or from classification results. Initially,
17 classes were defined as subclasses of the 5
classes in Tab. 1. These classes represent dif-
ferent types of signals and electric poles that
can be found along the tracks and are of in-
terest to our study. A total of approximately
500 geometries such as 3D line segments, an-
gles and points of interest were recognized, 10
SWRL rules are used and 63 entities (possible
object positions) were identified after the ini-

Tab. 1: Classes and properties used in DB sce-
nario.

Class Object properties

Electric pole
(type 1)

Vertical structure, height,
perpendicular lines

Electric pole
(type 2)

Vertical structure, height,
parallel lines

Electric pole
(type 3)

Vertical structure, height,
oblique line

Main signal
(mechanical)

Vertical structure, height,
perpendicular lines, parallel
line, number of lines

Main signal
(light)

Vertical structure, height,
perpendicular lines, parallel
line, oblique line, number of
lines
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6.2 Object Detection inside Airport
Building (Fraport’s Waiting Area)

In the second case, we used scans from an en-
vironment inside the airport buildings, typi-
cally a waiting area. Changes in the techni-
cal infrastructure were of main interest. Data
were obtained from classical terrestrial laser
scanning. The Fraport scenario is different
from the DB test example because a data base
of expected objects in the scene exists and
can be used as a-priori knowledge. Two per-
sons worked for about 10 days to fill the on-
tology with knowledge such as properties of

Results obtained after the processing along
the tracks are shown in Tab. 2. Remarkable
to see that the only failures using knowledge
were Main Signals (light) that could also not
be recognized by visual inspection. This is
mainly caused by the poor quality of the data,
especially in terms of point density, which
made such structures hardly visible and undis-
tinguishable. Some objects, the type 2 electric
poles, were successfully identified using the
automated detection and classification where-
as visual inspection failed.

Fig. 7: (a) Point cloud representation of a section of a railway; (b) Results after executing the ini-
tialization step, projecting the point cloud to the ground plane, rectangles denote possible object
positions; (c) Results from detecting 3D lines of a signal and electric pole (type 3) along the rail-
way; (d) Positions of objects and annotation results after the first iteration.

Tab. 2: Experiment in a section of DB railway, comparison result between two approaches: Visual
inspection using the standard software tool of DB, and knowledge-based data processing.

Object Visual inspection Knowledge-based data processing

Electric pole (type 1) 1/1* 1/1

Electric pole (type 2) 2/4 4/4

Electric pole (type 3) 1/1 1/1

Main signal (mechanical) 2/4 2/4

Main signal (light) 2/3 2/3

Total 8/13 (61.53 %) 10/13 (76.92 %)

(*) Number of detected objects over number of ground-truth objects.
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tical planes (Fig. 8a, b). This was possible by
a vertical projection of the point cloud fol-
lowed by Hough Line detection to locate the
static objects’ position on the ground plane.
VerticalProjection and HoughLineDetection
are included in PositionDetection algorithm.
Points with a vertical projection in the vicin-
ity of these lines were used to define segments
corresponding to vertical planes. The follow-
ing step was used to verify walls, separation
panels or advertising panels defined in the
data base based on their particular length and
height (Fig. 8e). However, there are also many
moveable objects like chairs, tables, counters,
or trash bins, which also need to be detected
to update the KB. All objects already available
from the first validation phase gave a geomet-
ric and semantic frame helping to support the
detection of unknown moveable objects. For
example, chairs were searched for in a specific
area defined within a certain distance from the
wall (5 m in our experiments) and 0.7 m above
the floor. Note that the reference frame of our
point cloud is attached to the floor such that
the latter is simply determined by fitting a hor-
izontal plane (initialized at height Z = 0) using
the PlaneDetection algorithm. We focussed
on detecting walls in the border region of the
check-in area. The static structures obtained

objects, scene, nature of data and characteris-
tics of buildings. The data sources were CAD
plans, related documents from the experts and
observations from the real scene. The pro-
cess first attempted to validate the presence
of static objects such as walls, and separation
or advertising panels in the point cloud that
were supposed to exist according to the data
base (Tab. 3). After that, moveable objects like
chairs, trash bins, were detected and also fed
into the KB. The initialization was different
from the DB case because of more complex
objects and the prominent role of many ver-
tical planes. Therefore, we first detected ver-

Tab. 3: Classes and properties used in the Fra-
port scenario.

Class Object properties

Wall Vertical plane, length,
height

Separation panel Vertical plane, length,
height

Advertising panel Vertical plane, length,
height, number of planes

Chair Horizontal plane, leaning
plane, angle between
planes, length of chair

Fig. 8: Fraport scenario: (a) 3D scan of a check-in area, (b) detected walls, (c) point cloud exhibit-
ing chairs, (d) detection results of a chair set, (e) annotated static objects, (f) identification results
obtained on 12 chair sets in a waiting area (failures 1–2, partial detection 3–7, successful identifi-
cation 8–12).
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fully identified, the five chair sets 3–7 were
only partly detected and the two chair sets “1”
and ”2” could not be identified due to missing
points. In the next stage of processing, objects
were verified using topological constraints,
such as a distance-based identification from
the identified objects. Finally, 10 out of 12
chair sets could be correctly classified even
in an insufficient dataset. The results reported
here were obtained with an ontology that had
been filled with approximately 350 detected
geometries (planes, line segments…) and used
4 SWRL rules. The process took about 7 min-
utes on an Intel Xeon 2.4 GHz with 12G RAM
when using our prototype software. The full
process of detecting chair sets including wall
identification is depicted in Fig. 9.

7 Conclusion

This paper presents a knowledge-driven ap-
proach to detect objects in point clouds. It is
based on the semantics of different associated
domains which assist in detecting and clas-
sifying objects. Knowledge supports all pro-
cessing steps including the arrangement of
the data processing. This allows inter-relating
the characteristics of algorithms with those of
the objects in the domain of the application.
Our system also provides the flexibility to in-
fer the strategy from existing knowledge, and
to adapt the processing to the application-spe-
cific requirements. The permanent interaction
between the algorithms and the KB allows for
a smooth and gradual construction of the KB
which contains at the end of the process all
entities which can be detected and identified.
Admittedly, it takes time to collect the knowl-
edge at the beginning. However, it has only to
be collected once and is later always available

from the point cloud are shown in Fig. 8e.
Only two walls exist in the scene and the re-
maining larger static structures are either sep-
aration or advertising panels, which are eas-
ily distinguishable from walls by their height.
Both walls were successfully identified.
After the walls were detected, ASM gen-

erated, based on the properties of a chair, i.e.
chair’s length, horizontal plane, leaning plane,
angle between two planes, an appropriate se-
quence of algorithms to invoke:
PositionDetection → Segmentation →

PlaneDetection → DimensionApproximation
→ AngleCalculation → FitChair
FitChair is used to combine the detected

geometries of a chair as depicted in Fig. 8d, f.
A rule is also applied to classify chairs:

Geometry(?x) ^ hasCorrespondingGeo(?x, ?l)
^ LeaningPlane(?l) ^
hasCorrespondingGeo(?x, ?s)
^ HorizontalPlane(?s) ^
hasAngle(?x, 120) ^ hasLength(?x, ?len)
^ swrlb:greaterThan(?len, 370) ^
swrlb:lessThan(?len, 380) → Chair(?x) (6)

Chair sets are arranged parallel to the walls
and represented by very sparse point clouds
(Fig. 8c). Nevertheless, it is possible to detect,
model and identify chair sets based on a se-
quence of algorithms making use of topologi-
cal and geometrical constraints arising from
previously detected elements. Six algorithms
were used (out of the 12 in Fig. 6) such as: Po-
sitionDetection, Segmentation, Dimension-
Approximation, PlaneDetection (based on
RANSAC), AngleCalculation and FitChair
(which verifies a chair by two connected
planes in an angle of 120°).
The results obtained are shown in Fig. 8f in

which the five chair sets 8-12 were success-

Fig. 9: Chair set detection process.
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Monte Carlo computation and Bayesian model
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approach to automatic image registration. – In-
ternational Conference on Image Processing 3:
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when needed. In addition, the KB can be itera-
tively extended by the operator at many practi-
cal waypoints. The quality of results depends
on the robustness of the implemented algo-
rithms, the selected strategy and the amount of
knowledge integrated. In practice, the solution
is oriented towards the requirements of a spe-
cific application. Further development is need-
ed to make algorithms more robust to quality
variations in the data, and to segment more
complex objects. Furthermore, the knowledge
sources (data features, object properties and
scene characteristics) have to be extended in
order to enhance the classification processing,
especially regarding ambiguous cases. Lastly,
both an expansion of the ontology and further
implementation and testing of rules are cur-
rently considered and subject to investigation.
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