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man-made structures is a valuable source of
information in order to make decisions. Satel-
lite and airborne remote sensing sensors have
proven to be particularly useful in addressing
change detection applications related to envi-
ronmental monitoring, agricultural surveys,
urban studies, and forest monitoring (BAZI et
al. 2005). In remote sensing earth monitor-
ing, unlike optical sensors, SAR sensors can

1 Introduction

Detection of the changes occurring on the
Earth’s surface by means of multi-temporal
remote sensing images is one of the most im-
portant applications of remote sensing tech-
nology. It depends on the fact that, for many
public and private institutions, the knowledge
of the dynamics of either natural resources or

Summary: Change detection for land use/cover is
very important in the application of remote sensing.
This paper proposes a new fractal measure for au-
tomatic change detection in synthetic aperture ra-
dar (SAR) images. The proposed measure is com-
puted based on the fractal dimension and intensity
information. The fractal dimension is calculated
using the wavelet multi-resolution analysis based
on the concept of fractional Brownian motion. In
the next stage, a binary decision is made at each
pixel location to determine whether it is a change or
not, by applying a threshold on the image derived
from the proposed measure. The threshold is com-
puted from the distribution of the proposed fractal
measure using the well-known Otsu method. The
proposed change indicator is compared to the clas-
sical log-ratio detector as well as two other statisti-
cal similarity measures, namely Gaussian Kull-
back-Leibler and cumulant-based Kullback-Leibler
detectors. Experiments on simulated and real data
show that the proposed approach achieves better
results than the other detectors.

Zusammenfassung: Unüberwachte Detektion von
Veränderungen in SAR-Bildern mit einem neuen
Fraktal-basierten Veränderungsmaß. Die Detek-
tion von Veränderungen der Landnutzung bzw. der
Bodenbedeckung ist eine wichtige Anwendung der
Fernerkundung. In diesem Beitrag wird ein neues
Maß für die automatische Erkennung von Ände-
rungen in Radarbildern mit synthetischer Apertur
(SAR) auf Basis von Fraktalen vorgeschlagen. Die-
ses Maß wird aus der fraktalen Dimension und der
Intensität der SAR-Bilder bestimmt. Die fraktale
Dimension wird auf Basis einer Analyse mit mehr-
skaligen Wavelets berechnet und beruht auf dem
Konzept der fraktalen Brownschen Bewegung. An-
schließend wird in jedem Pixel eine binäre Ent-
scheidung dahingehend getroffen, ob eine Verän-
derung vorliegt oder nicht, indem ein Schwellwert
auf das Veränderungsmaß angewandt wird. Dieser
Schwellwert wird aus der Verteilung des Verände-
rungsmaßes mit Hilfe der Otsu-Methode abgeleitet.
Der vorgeschlagene Veränderungsindikator wird
mit dem klassischen log-Verhältnis-Detektor sowie
mit zwei anderen statistisch motivierten Ähnlich-
keitsmaßen verglichen, nämlich mit dem Gauß-
schen Kullback-Leibler- und dem kumulierenden
Kullback-Leibler-Detektor. Untersuchungen mit
simulierten und realen Daten zeigen, dass der vor-
gestellte Ansatz bessere Ergebnisse liefert als an-
dere verwendete Detektoren.
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works of ERTEN et al. (2012), BOVOLO & BRUZ-
ZONE (2008) and SHIYONG et al. (2011).
The main problems of change detection in

SAR images are as follows: 1) generating a
change measure or a change indicator, 2) sup-
pression of the speckle effect and 3) thresh-
olding the change measure to produce a bi-
nary change map. The overall performance of
the detection system will depend on both the
quality of the change measure and the qual-
ity of thresholding plus the speckle effect. In
order to deal with the speckle and the change
measure problem, a new fractal measure is
proposed. It combines the fractal dimension,
which is computed by the wavelet multi-res-
olution analysis based on the concept of the
fractional Brownian motion, with the intensi-
ty information provided by the original SAR
images. Finally using a threshold, a binary de-
cision is automatically taken at each pixel lo-
cation to determine whether there is a change
or not. This threshold is determined from the
distribution of the fractal measures employing
the well-known Otsu method (OTSU 1979). The
main contribution of this paper is to propose
a new fractal measure which utilizes both the
original SAR image information and fractal
dimensions simultaneously in an unsuper-
vised change detection process.
Fractal geometry is able to describe com-

plex forms and find out their underlying or-
der. The concept of fractals was introduced
byMANDELBROT (1982). It can be defined as an
entity for which the Hausdorff-Besicovitch di-
mension exceeds the topological dimension.
Simply speaking, the fractal dimension of a
phenomenon is a measure of randomness or
variability. This dimension is different from
the traditional dimensions of Euclidian geom-
etry. Another characteristic of fractals is self-
similarity, which means that fractal dimen-
sion will be the same regardless of the meas-
urement scale. Since 1989, fractals have been
extensively adopted in satellite image process-
ing (COLA 1989, RAMSTIEN & RAFFY 1989), and
fractal models have been used in a variety of
image processing and pattern recognition ap-
plications. For example, several researchers
have applied fractal techniques to describe
image textures, data fusion, and classification
(DE JONG & BURROUGH 1995,MYINT 2003, SUN
et al. 2005).

acquire data day and night regardless of the
cloud cover. Furthermore, in comparison with
the optical sensors, data obtained by SAR sen-
sors show great potentials for monitoring ap-
plications in some cloudy regions. Moreover,
SAR images contain additional information
like image coherence by acquiring interfero-
metric images while considering critical base-
line length, which could be a nice feature for
change detection. In remote sensing applica-
tions, change detection is the process of iden-
tifying the differences in the state of a land
cover or land use by analyzing a pair of im-
ages acquired in the same geographical areas
at different times (SINGH 1989).
Change detection between two optical im-

ages can easily be addressed by using dif-
ference-based indices. However, this task is
much more difficult when it comes to SAR im-
ages due to the speckle effect. It is worth men-
tioning that speckle can be modelled in spa-
tial chaotic systems and characterized by its
fractal dimension (TZENG et al. 2007). In the
case of SAR acquisitions, the standard detec-
tor is based on the ratio of images. BUJOR et al.
(2004) did a very interesting job by analyzing
the higher order statistics for change detection
in SAR images. They concluded that the ratio
was useful for step changes and that the sec-
ond and third order log-cumulants were ben-
eficial for progressive changes appearing in
consecutive images of multi-temporal series.
INGLADA & MERCIER (2007) presented a simi-
larity measure for automatic change detection
in multi-temporal SAR images. This measure
was based on the evolution of the local statis-
tics for the images between two epochs. The
local statistics were estimated using a cumu-
lant-based series expansion which approxi-
mates the possible density functions in the vi-
cinity of each pixel in the image. The evolution
degree of the local statistics was measured us-
ing the Kullback-Leibler divergence. When
only a Gamma distributed texture is consid-
ered, the first moment gave the complete evo-
lution of the texture (MERCIER et al. 2008).
Unfortunately, texture in medium resolution
SAR images does not always follow a Gamma
distribution. Hence, using an improper model
might result in poor performance. For inter-
esting approaches related to the change meas-
ures in SAR images, the reader can refer to the
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Many researchers have already shown that
the SAR signal is chaotic and follows fBm
(MCDONALD et al. 2002, GOODMAN 1976). Ac-
cording to TZENG et al. (2007), the SAR sig-
nals can be modelled by a nonlinear dynamic
system and are characterized by their fractal
dimension.
To find the changes between two SAR im-

ages that have been registered to each other, a
new fractal change measureMfractal is calculat-
ed from the normalized log-ratio of the inten-
sities of two SAR images and the normalized
difference of two fractal images (3).
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In (3), | . | is the absolute value, I2 and I1 are
the original SAR intensity images at two dis-
tinct times, andDI2 andDI1 are the correspond-
ing fractal images. In addition to the intensi-
ty information, the proposed fractal measure
considers the self-similarity character of SAR
images via the fractal images. The fractal im-
ages provide information about the texture of
the image, which means that the fractal meas-
ure is sensitive to texture changes.
To compute a fractal image for each pixel of

the original SAR image, the fractal dimension
D is estimated using the information inside a
local window. Thus, the fractal dimension of
each pixel depends on its neighbourhood. In
this paper, a window of 7 × 7 pixels is used
to measure D locally. Calculating the fractal
dimension (or H) of remotely-sensed images
with different methods gives different dimen-
sion values, because remotely-sensed images
are not strictly self-similar and may, instead,
be at most only statistically self-similar over a
limited range of pixel sizes (SUN et al. 2006).
It has been shown that the wavelet analy-

sis technique gives very accurate estimations
of H in comparison to other classical methods
(STEWART et al. 1993). The present method is
derived from the peculiar form of the power
spectrum of fBm. Since fBm is not a station-
ary process, fractional Brownian motion does
not have a power spectrum defined in its clas-
sical sense. Nevertheless, fBm, being an iso-
tropic random field, can be characterized by a
random phase Fourier description that follows

The rest of the paper is organized as fol-
lows: Section 2 introduces the proposed frac-
tal measure and the OTSU method, section 3
presents the experimental results of applying
the fractal measure to both simulated and real
data, and section 4 concludes the paper, pro-
posing some directions for future works.

2 Proposed Fractal Measure

As mentioned above, the main problems of
change detection in SAR images are generat-
ing a change measure or some change indica-
tors and thresholding the change measure so
that a binary change map is produced. A new
fractal measure is proposed to address the
former and the speckle effect while the well-
known Otsu method is adopted to deal with
the latter. It is known that many natural sur-
faces show fractal behaviour within a cer-
tain range of scales. Such behaviour is sum-
marized by the concept of fractal dimension,
which can be related to the intuitive concept of
surface roughness (PENTLAND 1984). Fraction-
al Brownian motion (fBm) is the most suita-
ble mathematical model for the random fractal
found in nature. Specifically, a fBm surface
function VH(x,y) is described by a random field
having zero-mean Gaussian increments and
satisfying the relation (BETTI et al. 1997):
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In (1), E[.] is the expected value, || . || is the
Euclidean norm, and H is he Hurst index, or
persistence factor, controlling the roughness
of the surface, with 0 < H < 1. H = 1 corre-
sponds to a smooth surface and H = 0, to a
very rough texture; for H = 0.5 the ordinary
Brownian motion is obtained. The fractal di-
mension D and the Hurst index H are related
by (2.1), in which E is the Euclidean dimen-
sion. The Euclidean dimension for an image
is 2 (E = 2), so the (2.1) can be written in the
form of (2.2) (PEITGEN & SAUPE 1987):

D = E + 1 – H (2.1)

D = 3 – H (2.2)
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3. Measure the energy of the detailed signal
at each resolution by summing up all of its
elements (6).

4. Calculate fractal dimension related to the
window using (7) and (2).

After computing the measure Mfractal using
(3), a binary decision is automatically made at
each pixel location using a threshold derived
from the histogram of Mfractal using Otsu’s
method. Considering the fact that the change
measure is presented by the intensity function
f(x,y) and the values of themeasure are normal-
ized between 0–255, the pixels on the measure
can be divided into two classes C1 = {0,1,…,T}
and C2 = {T+1, T+2,…,255} where the classes
correspond to the foreground (objects of inter-
est) and the background, respectively, and T is
the desired decision threshold. The probabili-
ties of the two classes are:
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In (8), wb and wf are the probabilities of
background and foreground clusters, respec-
tively, ni is the number of pixels with the in-
tensity i and n is total number of pixels in the
given change measure image. Using discrimi-
nating analysis, OTSU (1979) showed that the
optimal threshold T can be determined by
minimizing the within-class variance (σ2within).
This parameter is difficult to minimize, but it
has been shown that the minimization of with-
in-class variances is tantamount to the maxi-
mization of between-class variance (σ2between).
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In (9), σ2 is the variance of all image ele-
ments, which is constant (and not related to T),
and μb and μf are the mean intensity values of
background and foreground clusters, respec-
tively. One should select the threshold T so
that the between-class variance is maximized.
Evaluating (9) for all possible values of T, the
value that maximizes σ2between is chosen as the
final threshold.

a generalized power density of the form (PAR-
RA et al. 2003):

2
1 2( , ) ( )S w w FFT Window= . (4)

In (4), w1 and w2 are the two axes in the fre-
quency domain, S is the power spectrum and
FFT is the fast Fourier transformation of the
selected window. By filtering the frequency
domain signal (S) with a wavelet filter, the re-
sulting spectrum at a specific resolution j is
(MALLAT 1989):
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In (5), ψ2j3(w1,w2) = ψ2j(w1) ψ2j(w2) corre-
sponds to the 2-D wavelet associated to the di-
agonal details filter, and ψ2j(w1) andψ2j(w2) are
the one dimensional wavelet functions associ-
ated with the scaling functions ϕ(w1) and ϕ(w2)
respectively (MALLAT 1989). The subscript 2j
represents the specific resolution at which the
wavelet filter is applied to the signal. The en-
ergy of the detailed signal (σ2j) at a specific
resolution j can be calculated by its summa-
tion in the support of ψ2j3(w1, w2) of the chosen
wavelet filter:
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The ratio of the energies corresponding to
the detail signals at successive resolutions pro-
vides a solution for the computation of H as:

( )+1
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In this work, H is computed using the en-
ergy of the detailed signal at the first two reso-
lution levels ( j = 1 and j = 2). After computing
the Hurst index H according to (7), the local
fractal dimension can be obtained by (2).
To sum up, the procedure for computing the

fractal image is as follows.
In each location of the moving window:

1. Compute the power spectral density of the
window according to (4).

2. Filter the computed power spectrum with a
wavelet filter at two successive resolutions.
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tor or change measure can also be useful by
itself. Indeed, the end-user of a change map
often does not only want the binary informa-
tion (changed vs. unchanged) but also an in-
dicator for the intensity of change and even-
tually a confidence level. In this paper, the
so-called receiver operating characteristics
(ROC) curve is used to evaluate the quality
of a change measure. The ROC plot shows the
detection probability Pdet as a function of the
false alarm probability Pfa using different val-
ues of the threshold value T. The area under
the ROC curve (AUC) is frequently used as
a summary measure. The perfect ROC curve
has an AUC of 1.
To evaluate the performance of change

measures, different levels of speckle noise
were artificially added to the SAR images to
imitate the natural speckle in SAR images.
The speckle noise was added using the multi-
plicative noise equation J = I + ξ·I, where ξ is
uniformly distributed random noise with mean
0 and variance v and J and I are the noisy and
original images, respectively. In this work, the
proposed fractal measure, log-ratio detector,
Gaussian and cumulant-based KLD are com-
puted from the TerraSAR-X images with noise
added to them at three different levels corre-
sponding to three values of v (0.01, 0.03, 0.05).
Then the corresponding ROC curves are plot-
ted in Fig. 2.
According to Figs. 2(a) to 2(c), the proposed

fractal measure presents the best performance
and the pixel-wise log-ratio detector shows the
worst performance in all cases because, unlike

3 Experimental Results

The proposed measure was compared to the
classical log-ratio detector in order to evaluate
its performance. Two other change measures,
namely Gaussian Kullback-Leibler detector
(Gaussian KLD) and cumulant-based Kull-
back-Leibler detector (cumulant-based KLD),
introduced in (INGLADA & MERCIER 2007), are
also compared. It should be noted that both
Gaussian and cumulant-based KLD are com-
puted using a 7 × 7 moving window. Experi-
ments were carried out on both simulated and
real data.

3.1 Experiments with Artificial
Change Image

Simulations were performed to understand the
behaviour of the detectors for a given type of
change in a better way. As shown in Fig. 1(a), a
HH polarized TerraSAR-X scene of Barcelona
(Spain) (size: 400 × 400 pixels), taken on May
15, 2011 with 3 m spatial resolution was used.
The images are publicly available at ASTRIUM
(2012). Three areas were changed by pasting
values copied from some other area into the
original image. This type of change can oc-
cur when there is a land-use change, anthro-
pogenic activities, etc. (INGLADA & MERCIER

2007). The simulated change image is shown
in Fig. 1(b). Changes in urban, agriculture,
and water areas were simulated in the regions
highlighted in Fig. 1(c). The change indica-

Fig. 1: Simulation of changes on TerraSAR-X image.
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fractal measure, log-ratio detector, Gaussian
and cumulant-based KLD are computed from
the real dataset and a visual comparison of all
measures is shown in Fig. 4. No speckle re-
duction was carried out, so that the resulting
change measures are still affected by speck-
le. The quantitative comparison is made us-
ing the red and blue pixels, which are marked
on the images showing the change measures
(Fig. 4). The red and blue pixels represent the
reference for change and unchanged regions,
respectively. The reference regions for the
change pixels (768 pixels) were selected in
pier and residential areas, which were con-
structed in Anzali between 1992 and 1997,
whereas the unchanged pixels (964 pixels in
total) were obtained by manually analyzing
the SAR images.
After determining the change measures,

we derived a threshold according to the Otsu
method for each measure (section 2), and we
apply the thresholds to generate binary im-
ages showing at each pixel whether there is a

the other measures, the log-ratio image does
not involve a window operation. The perfor-
mance of each detector in different noise lev-
els is quantitatively compared in Fig. 2 using
AUC. Considering Fig. 2, it is clear that the
fractal measure outperforms the others in dif-
ferent noise levels. Compared to other change
detectors, the proposed fractal measure re-
sults in an improvement of up to 10% in AUC
(0.63 vs. 0.69 in Fig. 2(c)).

3.2 Experiments with Real Data

Two examples of applying the proposed meth-
od to real cases are presented in this subsec-
tion. The first study area is located in the
north of Iran near the city of Bandar-e-An-
zali. A pair of HH polarized JERS-1 images
acquired in November 18, 1992 and April 4,
1997 with 18 m spatial resolution is shown in
Figs. 3(a) and 3(b), respectively. The size of
the images is 700 × 480 pixels. The proposed

Fig. 2: ROC plot comparison of the four detectors for a simulated change in different speckle noise
levels (ROC = receiver operating characteristics).

Fig. 3: Original JERS-1 images related to the first study area (Bandar-e-Anzali).
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As it can be seen in Figs. 4(a) and 5(a), the
quality of the log-ratio detector is very poor
and its result is unacceptable because it is se-
riously affected by the speckle. On the other
hand, as demonstrated in Figs. 4(d), 5(d) and
Tab. 1, the quality of the proposed fractal
measure is more satisfactory than the other
implemented methods. Apparently, speckle
is modelled properly by the proposed fractal
measure, and as a result its effect on the results
is reduced. The change measure and change

change according to the respective measure or
not. Subsequently, all the resultant binary im-
ages are refined using a median filter with the
size of 3 × 3 to remove single change pixels.
The smoothed binary images are change maps
in which changed and unchanged pixels are
represented in white and black, respectively
(Fig. 5). To compare the change detection per-
formance quantitatively, user’s and producer’s
as well as the overall accuracy of the change
map are presented in Tab. 1.

Tab. 1: Quantitative comparison of the change maps in the first real dataset (Bandar-e-Anzali)
(KLD = Kullback-Leibler Divergence).

ChangeUnchanged

MethodProducer’s
Accuracy (%)

User’s
Accuracy (%)

Producer’s
Accuracy (%)

User’s
Accuracy (%)

Overall
Accuracy (%)

Log-Ratio94.763.256.193.073.2

Gaussian KLD75.485.389.682.183.3

Cumulant KLD69.981.287.178.479.5

Fractal measure79.496.797.885.789.7

Fig. 4: Comparison of change measures. Red and blue pixels are reference regions for changed
and unchange regions, respectively.
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employing an improper model might result in
poor detection performance. The proposed
fractal measure yields better performance in
distinguishing changed and unchanged are-
as compared to the Gaussian and cumulant-
based KLD measures. It should be noted that
the Gaussian and cumulant-based KLD and

map of the Gaussian KLD are shown in Figs.
4(b) and 5(b), whereas the change measure
and change map of the cumulant-based KLD
are displayed in Figs. 4(c) and 5(c), respec-
tively. The drawback of the Gaussian and cu-
mulant-based KLD is that the SAR intensity
statistics are not distributed normally and that

Fig. 5: Comparison of change maps obtained from different change measures for the change and
unchange regions, respectively (KLD = Kullback-Leibler Divergence).

Fig. 6: Original ASAR alternative polarization mode (HV) images related to the second study area
(Tuku).
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The second real dataset consists of a pair
of ASAR images acquired in alternative po-
larization mode (HV) on-board ENVISAT in
the area of Tuku (Taiwan). The original im-
ages were refined using enhanced Lee filter
(LOPES et al. 1990) with a window size of 5 × 5
pixels. Fig. 6 displays the images of April 8,
2004 and September 30, 2004. The images
have 30 m spatial resolution, and their size is
512 × 512 pixels. There are land cover changes
due to both seasonal effects and agricultural
practices. More than twenty survey sites lo-
cated around a plantation field were identified

also the proposed fractal measure are com-
puted using the same window size (7×7). The
high quality of the proposed fractal measure
reveals that it can trace the changes regardless
of the distribution model of the change inten-
sity and gives satisfactory results in the pres-
ence of the speckle noise.
A quantitative comparison of the change

detection algorithms is given Tab. 1, which
is based on the reference regions in Fig. 4.
The overall accuracy of the fractal measure
(89.7%) is better than the one achieved by the
other implemented methods.

Tab. 2: Quantitative comparison of the change maps in the second real dataset (Tuku) (KLD =
Kullback-Leibler Divergence).

ChangeUnchanged

MethodProducer’s
Accuracy (%)

User’s
Accuracy (%)

Producer’s
Accuracy (%)

User’s
Accuracy (%)

Overall
Accuracy (%)

Log-Ratio86.376.794.296.992.8

Gaussian KLD85.397.599.596.997.0

Cumulant KLD82.299.399.996.296.7

Fractal measure87.599.399.997.397.6

Fig. 7: Comparison of change maps obtained from different change measures.
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Otsu method. The proposed approach is com-
pared to the classical log-ratio detector and
other statistical similarity measures. Experi-
ments have been carried out on both simulated
and real data using different SAR images. Ex-
perimental results confirm the effectiveness
of the proposed fractal measure. In particular,
as expected, the proposed fractal measure is
shown to be more suitable than the Gaussian
and cumulant-based Kullback-Leibler detec-
tors in distinguishing changed and unchanged
areas. From the experimental results, it can be
concluded that the main advantages of the pro-
posed fractal measure are 1) that it uses both
the fractal information and the intensity 2)
that it is able to detect the change regardless
of the distribution model of the change inten-
sity, and 3) that it has high efficiency in change
detection in various areas such as agriculture
and water-bodies.
However, determining an optimal window

size for fractal image computation is a ques-
tion which still remains unanswered. Apply-
ing different window sizes may result in a dif-
ferent fractal dimension. It is more appropriate
to use a smaller window in rough areas and a
larger window for the smooth ones. Also, hav-
ing the SAR images, the additional informa-
tion like image coherence could be employed
as a third index in the proposed measure. Such
aspects will be studied as a future develop-
ment of this work.
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for ground truth collections, aided by a land
use map, an aerial photo, and SPOT images. In
this test site, a total of seven land cover types
were identified. They are: banana trees, grass,
bare fields, rice fields, corn fields and rose
fields. As these land cover types have changed
frequently, the ground survey had to be con-
ducted in accordance with the times the im-
ages were taken. There are 640 changed and
unchanged pixels in the ground truth map
(Fig. 6c), where white and black pixels corre-
spond to the changed and unchanged areas, re-
spectively. Each box contains 64 pixels.
Fig. 7 shows the change maps of the second

test site using different change measures. As
can be seen in Fig. 7 (a), the log-ratio gives
many false detections. Comparing the results
of Gaussian and cumulant-based KLD with
the results of the fractal measure shows that
the river and some landscape changes (in the
right side of the image) were properly detected
by the proposed measure because, unlike the
statistical measure, the fractal measure can
trace the changes regardless of a distribution
model. A quantitative evaluation of the results
is given in Tab. 2. The overall accuracy for
the proposed method is 97.6%. This value is
slightly better than those achieved by the two
KLD-based methods. The results of the evalu-
ation based on the ground truth map shows the
proposed measure’s efficiency in comparison
to the similarity measures and the classical
log-ratio image.

4 Discussions and Conclusion

This paper proposed a new fractal measure
for land use/cover change detection of SAR
images. The proposed fractal measure is cal-
culated by the combination of fractal and in-
tensity information of original SAR images.
Fractal dimension can be regarded as a statis-
tical measure of the overall geometric com-
plexity of image textures. So, the proposed
fractal measure is sensitive to the texture
changes. Applying a threshold to the proposed
fractal measure, one can automatically take a
binary decision at each pixel location to deter-
mine whether it is a change pixel or not. The
threshold is computed from the distribution
of the fractal measure using the well-known
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