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image. This is because of the difficulties to
perform an accurate spectral calibration and
to get reliable atmospheric data to convert re-
flectance values to the radiance spectra (BA-
NERJEE et al. 2006). Moreover, in many appli-
cations, the spectral signatures of the targets
are often unknown. Hence, the anomaly de-
tection (AD) approach can be used as an au-
tomatic TD system (WILSON 1998). AD al-
gorithms enable one to detect targets whose
signatures are spectrally distinct from their
environment with no a priori knowledge
other than that targets are rare, i.e. they have
a low probability of occurrence in an image

1 Introduction

Hyperspectral images in general consist of
hundreds of narrow and contiguous spectral
channels, from the visible to the shortwave
infrared region of the electromagnetic spec-
trum. Such data have great potential to detect
and identify earth surface objects and phe-
nomena in a remotely sensed scene. When the
signature of the target of interest is known, the
target detection (TD) approach can be used.
However, TD algorithms are dependent on the
degree of signal mismatch between the spec-
tral libraries and the spectra observed in an

Summary: Anomaly detection (AD) is an impor-
tant and challenging area in hyperspectral image
analysis. Based on different approaches, numerous
AD algorithms have been presented and developed
throughout the literature. This paper aims to com-
pare detection performances of contemporary AD
algorithms for detecting man-made objects in hy-
perspectral imagery. The algorithms used in this
study include the segmented based Reed-Xiaoli
(RX) algorithm, the principal component analysis
based RX (PCA-RX), the orthogonal subspace pro-
jection based anomaly detector (OSP-AD), the ker-
nel PCA-RX, and the kernel based one-class sup-
port vector machines. To evaluate the performance
of the algorithms, three real hyperspectral datasets
are employed. The performance comparison is then
carried out on the basis of the receiving operative
characteristics (ROC) curve and the average of
false alarm rate (AFAR). Experimental results sug-
gest that among the AD algorithms the OSP-AD is
the most promising detector for detecting man-
made targets.

Zusammenfassung: Vergleich der Leistungsfähig-
keit von modernen Anomaliedetektoren zur Erken-
nung von künstlichen Objekten in Hyperspektral-
bildern. Die Erkennung von Anomalien in der Ana-
lyse von Hyperspektralbildern ist eine wichtige und
anspruchsvolle Aufgabe. In der Literatur findet
man viele Algorithmen zur Anomaliedetektion.
Dieser Artikel vergleicht die modernen Detektoren
hinsichtlich ihrer Leistungsfähigkeit zur Erken-
nung von künstlichen Objekten. Die Studie berück-
sichtigt den „Segmented Based Reed-Xiaoli (RX)
Algorithmus”, den auf der Hauptachsenanalyse ba-
sierenden Reed-Xiaoli (RX) Algorithmus (PCA-
RX), den auf der „Orthogonal Subspace Projec-
tion“ basierenden Anomaliedetektor (OSP-AD),
den Kernel PCA-RX, and die „Kernel Based One-
Class Support Vector Machines“. Der Untersu-
chung lagen drei Hyperspektraldatensätze zu
Grunde. Als Kenngrößen wurden die „Receiving
Operative Characteristics (ROC) Curve” und die
„Average of False Alarm Rate (AFAR)“ gewählt.
Nach unseren Ergebnissen dürfte der OSP-AD für
die Erkennung von künstlichen Objekten am geeig-
netsten sein.
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ing conditions has been done. This study aims
to provide such a comparative analysis for the
detection of man-made objects. The detection
performance of the AD algorithms is general-
ly evaluated on either multipixel or sometimes
only on subpixel targets. In contrast, this re-
search attempts to provide a quantitative eval-
uation of the AD methods at both multipixel
and subpixel levels.
The rest of this paper is organized as fol-

lows. Section 2 provides an overview of the
AD approaches. Materials and methods are
given in section 3. Experimental results and
discussions are outlined and argued in sec-
tions 4 and 5, respectively. Finally, concluding
remarks are given in section 6.

2 The AD Approaches

The AD approaches can be categorized into
three major groups as follows.
1) Improved versions of the RX that use solu-
tions to improve the estimation of the co-
variance matrix. A possible solution is to
regularize the covariance matrix (HOFFBECK
& LANDGREBE 1996). Based on this solu-
tion, NASRABADI (2008) proposed the regu-
larized-RX that regularizes the covariance
matrix by adding a scaled identity matrix to
it. However, the most common solutions are
as follows:
● Clustering-based solution. This solution
models the background using a cluster-
ing of all image pixels. A well-known
AD algorithm that uses this solution is
the segmented based RX (Seg-RX) pro-
posed by CARLOTTO (2005). Based on a
hyperspectral dataset, MATTEOLI et al.
(2007) showed that the performance of
the Seg-RX is superior to the regular-
ized-RX.

● Dimension reduction (DR) solution. This
solution uses DR techniques to reduce
the dimension of hyperspectral data pri-
or to AD using RX. In fact, the principal
component analysis (PCA) is the com-
mon technique used in the DR literature.
Therefore, the PCA based RX (PCA-RX)
(BASENER & MESSINGER 2009) can be con-
sidered as the conventional DR-based de-
tector.

scene (REED & YU 1990, BANERJEE et al. 2006,
SCHWEIZER & MOURA 2001).
The kind of anomalies to be detected de-

pends on the specific application. They may
vary from crop stress identification in preci-
sion agriculture and infected trees in forestry
to rare minerals in geology and mining (MAT-
TEOLI et al. 2010). In particular, man-made ob-
jects are the most common type of anomalies
considered in the public safety domain, e.g.
search and rescue operations, and reconnais-
sance and surveillance applications. Man-
made objects are typically characterized by
a spectral signature different from the signa-
tures of their surroundings. Moreover, in con-
trast to natural anomalies, the sizes of man-
made anomalies are usually known. Also, de-
pending on the spatial resolution of the sensor,
the man-made targets may not be clearly re-
solved; therefore, they cover only a few pix-
els, i.e. multipixel targets, or even less than a
single pixel, i.e. subpixel targets (MATTEOLI et
al. 2010).
The Reed-Xiaoli (RX) (REED & YU 1990) is

a benchmark anomaly detector for hyperspec-
tral images. It is derived from the generalized
likelihood ratio test (GLRT) (KAY 1998). The
RX, along with its many modified versions
(CHANG 2002), requires that the covariance
matrix can be estimated from the neighbour-
hood pixels of the target pixel, i.e. the local
background. As a result, the detection per-
formance of RX is strongly affected by two
problems. The first problem is the small sam-
ple size. It requires the estimation of a local
background covariance matrix from a small
number of samples in the high-dimensional
space. Under this circumstance, the result is
a badly-conditioned and unstable estimation.
The second problem is the non-homogeneity
of the local background; if this occurs, the ef-
fectiveness of the covariance matrix estima-
tion is undetermined (MATTEOLI et al. 2009).
To overcome the problems with RX, nu-

merous algorithms based on different AD
approaches have been presented and devel-
oped in the literature. The main difference be-
tween the AD approaches lies in the manner in
which the background is characterized. In pre-
vious studies, no comparative analysis of the
contemporary AD algorithms performed on
the same dataset and also in identical operat-
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3 Materials and Methods

3.1 Data Description

There is a lack of shared hyperspectral data-
sets for detection purposes (MATTEOLI et al.
2010). Moreover, the available datasets con-
tain few target samples with known ground
truth target locations for valid tests. Hence,
most of previous works published, especially
those about the subpixel AD, have used simu-
lated data for evaluating the detection perfor-
mance of AD algorithms.
The only available dataset, which contains

several subpixel man-made objects, is the tar-
get detection blind test (TDBT) dataset (RIT
2012). Moreover, the FOI (Swedish Defense
Research Agency) has provided a hyperspec-
tral dataset containing some vehicles at mul-
tipixel level placed in a countryside where no
such objects are expected. This dataset is pub-
licly available at FOI (2012). In this study, we
also employ an AVIRIS (Airborne Visible and
InfraRed Imaging Spectrometer) dataset that
contains some multipixel helicopters.

TDBT dataset

The TDBT dataset includes two HyMap radi-
ance and reflectance images of Cooke City in
Montana, USA. The images were collected by
the airborne HyMap (Hyperspectral Mapper)
sensor, which has 126 spectral bands (SNYDER
et al. 2008). The ground resolution of the im-
agery data is approximately 3 m.
In the HyMap images twelve man-made

objects were deployed in an open grass re-
gion during the airborne image acquisition.
We chose ROI-1 with the size of 90 × 90 pix-
els in the HyMap radiance image which cov-
ers the entire open grass region (Fig. 1). Two

2) Linear subspace based methods. These
methods use the linear mixing model to
exploit the fact that target and background
signals can be reasonably assumed lying
in two distinct subspaces of the data space
(MATTEOLI et al. 2010). Two well-known
methods in this category are the signal
subspace processing AD (SSP-AD) (RAN-
NEY & SOUMEKH 2006) and the orthogo-
nal subspace projection based AD (OSP-
AD) (CHANG 2005). MATTEOLI et al. (2007)
showed that the OSP-AD outperforms the
SSP-AD algorithm based on a hyperspec-
tral image, in which several target panels
have been embedded.

3) Kernel-based methods. The basic principle
of these methods is that a nonlinear map-
ping is used to extend the input space to a
higher dimensional feature space, the so-
called Hilbert space (KWON & NASRABADI
2007). Kernel functions are used to im-
plicitly compute the dot products in Hil-
bert space without mapping the input vec-
tors into that space (SCHÖLKOPF et al. 2001).
The Gaussian kernel is commonly accept-
ed for kernel methods (TAX 2001) given by
k (xi, xj) = exp (−|xi−xj|2/σ2), where xi and xj
are two objects in the original feature, i.e.
spectral band, space, and σ denotes the
Gaussian kernel width.
The kernel-based AD methods can be
grouped into two sub-categories:
● Kernel-based versions of the RX that
adopt a Gaussian model in Hilbert fea-
ture space. The Kernel-RX (KWON &
NASRABADI 2005) and the Kernel PCA-
RX (KPCA-RX) (NASRABADI 2009) are
two known methods in this category.
NASRABADI (2009) showed that KPCA-
RX outperforms the Kernel-RX on the
HYDICE forest radiance dataset.

● Non-parametric methods such as the ker-
nel-based one-class support vector ma-
chines (K1SVM) (TAX & DUIN 1999). For
the first time, BANERJEE et al. (2006) used
theK1SVMforADinhyperspectral imag-
es. Based on the HYDICE forest radiance
dataset, theyalsoshowedthatthedetection
performance of the K1SVM is superior
to that of the Gaussian Markov random
field (GMRF) based detector proposed by
SCHWEIZER & MOURA (2001).

Fig. 1: True colour composite of the HyMap ra-
diance image. The box specifies the ROI-1 on
which the positions of self-test targets are su-
perimposed.
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width from 0.4 to 2.45 μm and with a ground
sampling distance of 3.5 m. The 20 atmos-
pheric water absorption bands (numbered
104–108, 150–163, and 220) were removed
from the original image. In addition, 11 noisy
bands with low signal-to-noise ratios (num-
bered 103, 109–112, 148–149, 164–165, and
217–219) were removed, resulting in a total of
189 bands. From this image, a subset consists
of 80 × 70 pixels is used, named ROI-2 (Fig. 2).
The ROI-2 contains six Sea Hawk helicopters
as multipixel targets. These targets have been
detected by the spectral angle mapper (SAM)
algorithm with an angle threshold of 0.05.

FOI dataset

This dataset was collected in an airborne
measurement over a countryside in Sweden.
It has 60 spectral bands in the visual and near
infrared range (390 nm–960 nm) with spec-
tral resolution about 10 nm (WADSTRÖMER et
al. 2010). The dataset includes the two scenes
1 and 2 which consist of 1024 × 4000 pixels
where for the scene 1 the ground truth of the
objects of interest is known. Moreover, each
scene was captured in four flights. From scene
1, we used four test subsets with the size of 45
× 45 pixels around four vehicles (Fig. 3).

of the twelve targets are at full pixel, i.e. re-
solved size; the other ten are at subpixel siz-
es. The targets include six fabric panels for
the self-test and six for the blind-test. Fig. 1
shows the locations of six self-test targets in
the ROI-1, while Tab. 1 briefly describes each
target in more detail. In Fig. 1, the positions of
blind-test targets are not known, because the
(ground truth) locations of these targets are
currently unavailable to users.

AVIRIS dataset

The data is an airborne hyperspectral image
of a naval air station in San Diego, Califor-
nia, collected by AVIRIS in 1998. The image
has 220 spectral bands with a 10 nm spectral

Tab. 1: Characteristics of the targets.

Self-test targets Blind-test targets

Name Size Type Name Size Type

F1 3 × 3 m Red Cotton F5a 2 × 2 m Maroon Nylon

F2 3 × 3 m Yello Nylon F5b 1 × 1 m Maroon Nylon

F3a 2 × 2 m Blue Cotton F6a 2 × 2 m Gray Nylon

F3b 1 × 1 m Blue Cotton F6b 1 × 1 m Gray Nylon

F4a 2 × 2 m Red Nylon F7a 2 × 2 m Green Cotton

F4b 1 × 1 m Red Nylon F7b 1 × 1 m Green Cotton

Fig. 2: (a) colour composite of the AVIRIS im-
age; (b) zoomed window of the ROI-2 where
the circles denote the helicopters.

Fig. 3: FOI dataset; left: colour composite of scene 1 (flight 4) with the test subsets around four
vehicles; right: picture of some of the vehicles in scene 1.
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cording to their magnitude of variance of the
original signal (JACKSON 1991).
By performing PCA, it can be expected

that a few PCs can explain most of the varia-
tion in the original data. A key question, that
arises here, is how the number of the first PCs
should be chosen. There are several methods
presented in the literature for determining
the optimal number of PCs. A simple but effi-
cient method is the eigenvalue ratio estimator
(ERE) algorithm (AHN & HORENSTEIN 2008).
It estimates the optimum number of first PCs
via maximizing the ratio of two adjacent ei-
genvalues (in decreasing order) of the data co-
variance matrix.

OSP-AD

The use of OSP for AD was proposed by
CHANG (2005). For target detection tasks, the
OSP detector is given by

# 0
1

( ) ( ) HT
H

OSP y d I WW y η≤
>

= − (2)

where d is a given spectral signature,
W # = (WTW)−1WT, and W is a matrix whose
columns are projection vectors. The product
WW # represents a subspace for characteriz-
ing the spectra that are used to generate the
projection vectors. The projection vectors are
defined as either endmembers or eigenvectors
obtained by the first components of the singu-
lar value decomposition (SVD) (MATTEOLI et
al. 2010). However, for AD tasks, the y can be
used directly to define the d. Moreover, for de-
tecting the multipixel targets which have dis-
tinct spectra from the local background pixels,
the mean spectrum of the local background
pixels is used as a projection vector for local
background pixels. In this regard, the result-
ing detector does not require determining the
projection vectors by SVD.

K1SVM

Two K1SVM algorithms have been presented
in the literature. The first one is called the v-
support vector classifier (ν-SVC) (SCHöLKOPF
et al. 1999) and aims at finding a hyperplane
that separates normal training data from the
origin with maximum margin. The second
one is the support vector domain description

3.2 Contemporary AD Algorithms
used

Seg-RX

The Seg-RX requires that an unsupervised
classification, i.e. segmentation, is performed
prior to perform the RX. After obtaining a
thematic map, the mean vector and the covari-
ance matrix are estimated over each cluster.
Finally, to assign an anomaly value to each
test pixel y, the well-known Mahalanobis dis-
tance is computed between the y and its spec-
trally nearest cluster j as follows (MATTEOLI et
al. 2009):

1 0
1

ˆˆ ˆ( ) ( ) ( ) HT
j j j H

SRX y y C yμ μ η≤−
>

= − − (1)

where μ̂j and Ĉj are the mean spectral vector
and the estimated covariance matrix for clus-
ter j, and η is a detection threshold. The spec-
trally nearest cluster is typically related to the
most common cluster in the local neighbour-
ing pixels around the target pixel. The test (1)
makes a decision between two competing hy-
potheses: H0 (target absent hypothesis) and H1
(target present hypothesis).
To segment the images, we employed the

well-known K-means algorithm. The main
problem of K-means is how to choose the op-
timal number of clusters. A good solution to
select the optimum number of clusters is to
apply the K-means algorithm with a different
number of desired clusters. Then, one can se-
lect the best solution among them by a validity
index such as the Davies-Bouldin index (DU-
RAN & PETROU 2007).

PCA-RX

The PCA-RX detector is performed by apply-
ing a forward PCA transform, setting the ap-
propriate value of the first PCs to be retained,
applying an inverse PCA, and then perform-
ing the RX on the resulting image (BASEN-
ER & MESSINGER 2009). The PCA is known
for its ability to map the data for finding the
most important or influencing components in
a dataset. These components are optimal and
can almost completely represent all data in a
reduced feature space. The principal compo-
nents (PCs) are uncorrelated and ordered ac-
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KPCA-RX

The KPCA (SCHöLKOPF et al. 1998) is an algo-
rithm for computing the PC vectors in Hilbert
feature space. However, the KPCA-RX (NAS-
RABADI 2009) is an improved version of the
Kernel-RX. This detector is compactly given
by the following test statistic:

0
ˆ ˆ

1
( ) ( ) ( ) HT T

y y H
KPCA y K K WW K Kμ μ η≤

>
= − −

(6)

where Ky is the centred k (y, Xb) which is a ker-
nel-based vector that uses local background
pixels Xb = [x1,x2,…,xn], K μ̂ is the centred
k (x̄,Xb) that uses x̄= 1/n∑xi as input, andW is a
matrix containing the most significant, i.e. the
first, eigenvectors of the centred kernel matrix
k (Xb,Xb). The number of first eigenvectors is
a configurable constant that can be estimated
using the ERE method.

3.3 Accuracy Assessment

The primary way used to analyse the ability of
AD algorithms is a two-dimensional display
of the detection maps. To obtain a fair visu-
al comparison between the AD algorithms,
each detection map should be normalized by
its maximum value. However, the detection
performance of AD methods is usually eval-
uated based on their experimental receiver
operating characteristic (ROC) curves (WIL-
SON 1998). The ROC curve represents the de-
tection rate versus the false alarm rate (FAR)
over a particular operating scenario. The de-
tection values for the entire data are, firstly,
normalized between zero and one. Then, the
detection threshold varies from one to zero
through a decrement rate, e.g. 0.001. For each
detection threshold, the number of target pix-
els correctly detected and the corresponding
number of false alarms, i.e. non-target pixels,
are computed based on the ground truth data
of the target pixels.
In this study, the experimental ROC curves

of the AD algorithms are plotted using a log-
scale on the FAR axis. Compared to the con-
ventional scale of the FAR axis, behaviours of
the detectors in a low FAR region are better
demonstrated using the log-scale. It is worth-

(SVDD) which is the most common K1SVM
algorithm. The SVDD seeks the minimum
hypersphere that encloses all normal train-
ing data (TAX & DUIN 1999). When using the
Gaussian kernel, the ν-SVC solution is equiv-
alent to that of the SVDD (TAX 2001). Given
n pixels {xi}ni=1 belonging to the local back-
ground and a Gaussian kernel k, the K1SVM
problem becomes the following:

( , )min
i

i j i j
i j

k x x
α

α α∑∑ (3)

with two constraints on Lagrange multipliers
(αi): ∑αi = 1 and 0 ≤ αi ≤ 1/(nν), where objects xi
with nonzero αi are called the support vectors
(SVs), and ν is called the rejection rate which
tackles the presence of outliers within the lo-
cal background for constructing an optimal
hypersphere.
The K1SVM test statistic defines a pixel y is

an anomaly when the Euclidean distance from
the y to the centre of the hypersphere is bigger
than the hypersphere radius (TAX 2001).

21 2 ( , ) ( , )i i i j i j
i i j

k x y k x x Rα α α− + >∑ ∑∑ (4)

where R can be determined by calculating the
distance from the centre of hypersphere to any
of the SVs on the boundary, i.e. objects xi with
0 < αi< 1/(nν). To improve the detection per-
formance of K1SVM in hyperspectral imag-
es, a normalized test statistic can be derived
through dividing the original test statistic by
the squared radius (BANERJEE et al. 2006).
The main problem of kernel-based AD

methods such as the K1SVM is the optimal
setting of σ. A straightforward method for
estimation of the σ is given by KHAZAI et al.
(2011):

maxˆ
ln( (1 ) 1)

d
n

σ
ν

=
− +

(5)

where dmax is the maximum Euclidean dis-
tance between training instances, i.e. sur-
rounding pixels of the target pixel, and the ν is
set experimentally by users. In this study, we
set ν to 0.1; this means that 10% of pixels in the
local background are allowed to be outliers.
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rates the local area around each pixel into two
regions, an inner window region (IWR) and an
outer window region (OWR). The IWR is used
to capture a target present, while the OWR is
employed to model the local background of
the target. For ROI-1, as the size of IWR is
always 1 × 1, the size of OWR should be set
only. Experimentally, a constant window size
of 5 × 5 is used to scan the image for all the
algorithms on subpixel targets. For ROI-2, the
sizes of IWR and OWR were experimentally
selected 5 × 5 (as the length of helicopters is
about 15 m) and 11 × 11 pixels, respectively.
Also, for FOI subsets, we used the size of IWR
and OWR to 15 × 15 as the length of vehicles
is 7 m and 31 m × 31 m, respectively.

4.1 Results for TDBT Dataset

Fig. 4 presents the normalized detection re-
sults obtained on the ROI-1, where the posi-
tions of the self-test target pixels are superim-
posed.
From Fig. 4, it can be observed that while

the OSP-AD provides the best background
suppression ability, the K1SVM results in the
worst background suppression in comparison
with the other algorithms.
Fig. 5 presents the experimental ROC

curves of the AD methods obtained on the
ROI-1. It shows that the OSP-AD and Seg-
RX result in better ROC curves compared to
the other algorithms in the low FAR region
considered. However, the AFAR values with
95% confidence intervals are 2% ± 1%, 4%
± 1%, 5% ± 1%, 6% ± 1%, and 7% ± 1% using

while to note that the low FAR region is the
actual operating region of interest for AD
methods (MATTEOLI et al. 2010). In this study,
we compare the performance of the AD algo-
rithms in the low FAR region ranging from 0
to 0.01.
Moreover, to get a quantitative evalua-

tion of the AD methods, the average of FAR
(AFAR) values (BAJORSKI et al. 2004) is used.
The AFAR is calculated by averaging the FAR
encountered for each detected target pixel i as
follows:

1

1 m

i
i

AFAR FAR
m =

= ∑ (7)

where m represents the number of target pix-
els. In this study, to alleviate the problem of
few target samples in the available datasets,
95% confidence intervals (assuming a Gauss-
ian trial) for AFAR values are computed given
by KEREKES (2008):

1,0.025(1 ) Na a
a

N
τ −−

± (8)

where a is the AFAR value, N represents the
number of image pixels within the ROI, and
τN−1,0.025 denotes the cut-off value of a Student t
distributed random variable with N−1 degrees
of freedom such that the probability that the
Student t random variable is greater than the
cut-off value is (1–0.95)/2, i.e. 0.025.

4 Experimental Results

For each dataset, all pixel vectors are first nor-
malized by a maximum spectral value in the
image, so that the entries of the normalized
pixel vectors fit into the interval of spectral
values between zero and one. The rescaling of
pixel vectors was mainly performed to effec-
tively utilize the dynamic range of Gaussian
kernel used for kernel-based methods (KWON
& NASRABADI 2005).
An important decision for the AD methods

is the way to choose the local background of
each pixel. Generally, the dual window tech-
nique is used on multipixel targets as the size
of targets of interest is bigger than the ground
resolution of the image. This technique sepa-

Fig. 4: 2D detection results in the ROI-2 using
the AD methods. The target pixels are denoted
by red circles.
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the other algorithms. Moreover, based on a
comparison of ROC curves, Fig. 7 illustrates
that the OSP-AD yields a superior detection
performance compared to the other detectors
in both the low and high FAR regions.
The AFAR values with 95% confidence in-

tervals are 0.05% ± 0.04%, 0.09% ± 0.07%,
0.4% ± 0.1%, 2.1% ± 1%, and 3.2% ± 1% using
the OSP-AD, PCA-RX, Seg-RX, KPCA-RX,
and K1SVM detectors. Thus, the OSP-AD de-
creases the AFAR value about 0.04%, 0.35%,
1.95%, 2.05%, and 3.15% compared to the
PCA-RX, Seg-RX, KPCA-RX, and K1SVM,
respectively. Moreover, the application of
PCA-RX results in similar AFAR values ex-
ceeding OSP-AD by only 0.04%.

4.3 Results for FOI Dataset

Fig. 8 depicts the normalized detection results
of the AD methods obtained on the FOI test
subsets. It highlights that for background sup-
pression, while the best results are obtained on
the test subset 4, the worst results are achieved
on the test subset 3.
Fig. 9 shows the average ROC curves of the

AD methods achieved on the four test sets.
From this figure, we can observe that the OSP-
AD performs the best out of all the AD algo-
rithms in both the low and high FAR regions.
In addition, it illustrates that the PCA-RX has
the lowest performance in the low FAR region.
Moreover, Figs. 8 and 9 indicate that among
the AD algorithms the kernel-based methods,

the PCA-RX, KPCA-RX, Seg-RX, OSP-AD,
and K1SVM detectors. Therefore, the PCA-
RX provides about 2%, 3%, 4%, and 5% less
AFAR compared to the KPCA-RX, Seg-RX,
OSP-AD, and K1SVM, respectively. Conse-
quently, the PCA-RX manages to detect all
subpixel targets with a lower AFAR to a great-
er degree than other algorithms.

4.2 Results for AVIRIS Dataset

Fig. 6 depicts the normalized detection results
obtained on the ROI-2, where the positions of
the target pixels are superimposed. Moreover,
Fig. 7 shows the experimental ROC curves ob-
tained by the AD methods.
As can be seen in Fig. 6, both the OSP-AD

and PCA-RX algorithms provide strong back-
ground suppression ability in comparison with

Fig. 5: Experimental ROC curves of the algo-
rithms obtained on the ROI-1.

Fig. 6: 2D detection results of the AD methods
obtained on the ROI-2. The target pixels are
denoted by yellow circles.

Fig. 7: Experimental ROC curves of the algo-
rithms obtained in the ROI-2.
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5 Discussion

Based on the experimental results obtained
using the contemporary AD algorithms, two
important points are presented and discussed
here:

5.1 The Effect of Background
Complexity on Detection
Performance

In general, when the local background consists
of multiple data classes, AD algorithms suffer
from low performance. A solution to evaluate
the complexity level of the background is esti-
mating the intrinsic dimensionality (ID) of the
data. A simple method for estimating the ID
in a given dataset is to estimate the number of
first PCs to be retained (MARTINEZ et al. 2010).
Based on the ERE method, Tab. 2 shows the
number of ID obtained over each dataset.
From Tab. 2, we can observe that the TDBT

and AVIRIS datasets have a low complexity
level of background. In contrast, the complex-
ity level of the background for the FOI test
subsets is very high. However, comparing the
results obtained from the AVIRIS and FOI

i.e. K1SVM and KPCA-RX, provide the worst
results on the examined test subsets.
The results also show that the AFAR values

of the methods with their 95% confidence in-
tervals are 3.2% ± 1%, 3.7% ± 1%, 4.3% ± 1%,
7.9% ± 1%, and 12% ± 2% using the OSP-AD,
PCA-RX, Seg-RX, KPCA-RX, and K1SVM
algorithms, respectively. Thus, for the FOI
test subsets, the OSP-AD performs the best
out of all the AD algorithms considered. Com-
parative analysis also reveals that the PCA-
RX provides only a 0.5% smaller AFAR value
than the OSP-AD.

Fig. 8: FOI test subsets around each target with detection maps obtained by AD methods.

Fig. 9: Average ROC curves of the algorithms
obtained on the four FOI test subsets.

Tab. 2: ID and range of AFAR values obtained on the datasets used.

Dataset→ TDBT
(ROI-1)

AVIRIS
(ROI-2)

FOI
(test subsets)

1 2 3 4

ID 2 1 34 30 29 8

The AFAR values 2%–7% 0.05%–3% 3.2%–12%
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6 Conclusion

The experiments in question suggest some
conclusions about the capabilities of five con-
temporary anomaly detectors Seg-RX, PCA-
RX, OSP-AD, KPCA-RX, and K1SVM in de-
tecting man-made anomalies. Based on the
three examined datasets, the results showed
that the OSP-AD achieves the best perfor-
mance for detecting multipixel man-made tar-
gets. Moreover, to detect the subpixel targets,
while the PCA-RX is overall the best AD al-
gorithm, the OSP-AD and Seg-RX provide
the best performance in the low FAR region,
which is in fact the operating region of interest
for AD methods. Consequently, the OSP-AD
is the most promising AD algorithm for de-
tecting man-made objects. This research also
found that the kernel-based methods applied
to the data in the original space are not suit-
able for detecting man-made objects. Howev-
er, we point out that the use of more hyper-
spectral datasets can provide more reliable as-
sessments. In addition, all results are depend-
ent on the IWR and OWR parameter settings,
signal-to-noise level, and the free parameters
involved. The impact of these factors on the
detection performance along with the compu-
tational complexity of the algorithms will be
investigated in future work.
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subsets, it can be concluded that the poor per-
formance of the detectors on FOI test subsets
is due to the high complexity level of the back-
ground. Clearly, when the value of estimated
ID is not significant, AD algorithms can pro-
vide appropriate results. This can be demon-
strated on the TDBT and AVIRIS datasets as
the AFAR values of the methods is very low
compared to the FOI test subsets.

5.2 Comparison with other Results

Based on the HYDICE forest radiance dataset,
the results obtained by NASRABADI (2009) and
BANERJEE et al. (2006) show that the KPCA-
RX and K1SVM can detect man-made objects
well. Nonetheless, our experiments demon-
strate that these kernel-based AD algorithms
result in poor performance compared to the
OSP-AD and PCA-RX algorithms. This re-
sult implies that using the kernel-based AD
methods, it may not be possible to detect man-
made anomalies in the original feature space.
EVANGELISTA et al. (2006) also indicated that
the kernel-based AD methods suffer from the
so-called curse of dimensionality. As a result,
the kernel-based AD methods may provide a
high detection performance in combination
with DR techniques (as a preprocessing step).
On the other hand, in a study for the pur-

pose of detecting multipixel man-made tar-
gets in hyperspectral images, BORGHYS et al.
(2011) compared the detection performance
of the OSP-AD and Seg-RX algorithms. They
reported that the OSP-AD gives better re-
sults than the Seg-RX using three HyMap im-
age scenes, Oberpfaffenhofen, Hartheim, and
Camargue. Moreover, MATTEOLI et al. (2007)
analysed an image dataset acquired by the
SIM-GA sensor, and showed that the OSP-AD
has superior performance compared to the
Seg-RX algorithm. This study also confirms
the superiority of the OSP-AD over the Seg-
RX algorithm based on the experimental re-
sults obtained from the AVIRIS and FOI data-
sets.
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