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terpretation. Consequently, research in crowd
analysis has been intensiied in the last deca

des in order to support human surveillance
operators. In addition to purely image based
crowd analysis techniques, crowd models
from psychology, physics or from the nature
have to be incorporated into more sophisti-
cated surveillance systems (Zhan et al. 2008,
Butenuth et al. 2011). Aerial imagery pro-

1 Introduction

The main objective of this work is event detec-
tion in crowds by robustly analyzing a pedes-
trian interaction graph using Hidden Markov
Models in which the edges represent motion
interaction patterns between pedestrians.
The huge amount of surveillance data re-

quires automatic or at least semi-automatic in-

Summary: In this paper, we present an improved

approach for the analysis of pedestrian interaction

in crowded and cluttered scenes from aerial image

sequences. Related work is limited to the detection

of an undeclared abnormal event with regard to the

common behaviour or to the detection of speciic

simple events incorporating only up to two trajec-

tories. In our approach, event detection in pedes-

trian groups is done by detecting universal motion

interaction patterns between pairs of pedestrians in

a graph-based framework. Event detection is per-

formed by analyzing the temporal behaviour of the

motion interaction, which is represented by edges

in the graph, by means of hidden Markov models

(HMM). Temporarily disappearing edges in the

graph can be compensated by an HMM buffer

which internally continues the HMM analysis even

if the corresponding pedestrians depart from each

other awhile. Experimental results show the poten-

tial of our graph-based approach for event detec-

tion. The used datasets contain UAV image se-

quences in which an instructed pedestrian group

simulates meaningful group behaviour and an aeri-

al image sequence in which pedestrians approach a

soccer stadium.

Zusammenfassung: Graphenbasierte Ereignisde-

tektion von Fußgängerinteraktion mittels Hidden

Markov Modellen. In diesem Beitrag wird eine ver-

besserte Methode für die Detektion von Fußgän-

ger-Interaktion in dichten und unstrukturierten

Szenen aus Luftbildsequenzen vorgestellt. Bislang

bestehende Arbeiten beschränken sich auf die Er-

kennung von unnormalen Ereignissen im Allge-

meinen oder auf die Erkennung von einfachen Er-

eignissen, welche nur von bis zu zwei Personen

durchgeführt werden. In der hier vorgestellten Me-

thode wird Ereignisdetektion in Personengruppen

vollzogen, wofür die Bewegungsinteraktion zwi-

schen benachbarten Personenpaaren in einem gra-

phenbasierenden System analysiert wird. Das zeit-

liche Verhalten der Bewegungsinteraktion wird

mittels Hidden Markov Modellen (HMM) ausge-

wertet. Zeitlich unbeständige Kanten im Graph

werden mit Hilfe eines HMM-Puffers abgefangen,

welcher die Auswertung intern weiterführt, wenn

sich das einer Kante zugehörige Personenpaar

kurzzeitig voneinander entfernt. Es werden Ergeb-

nisse präsentiert, welche das Potential der vorge-

stellten Methode zur Ereignisdetektion aufzeigen.

Die verwendeten Datensätze beinhalten UAV-Se-

quenzen, welche Gruppenbewegungen eingewiese-

ner Testpersonen beinhalten, und Luftbildsequen-

zen, welche Fußgänger vor einem Fußballstadion

zeigen.
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about usual events is available beforehand. To
this end, the scene has to provide speciic con-
ditions which can be followed by the major-
ity of the observed objects, like entrance doors
for pedestrians or driving lanes for vehicles.
We overcome the limitations of the related

work. We use manually generated trajectories
in order to be able to draw signiicant infor-
mation about individuals’ motion behaviour.
The analysis of the entire scene is achieved by
modelling all pedestrians in a graph at each
frame. We calculate four extended motion
features adapted from Burkert & Butenuth
(2011) to deduce six universal motion patterns
for each pair of trajectories. The motion pat-
terns which describe the motion interaction of
a pair of pedestrians correspond to the edges
in the graph. The sequential behaviour of the
motion patterns is analyzed by HMM. We fo-
cus on the detection of simple and universal
motion patterns which allows us to interpret
resulting large scale clusters of motion pat-
terns but also individual events in the scene.
At this level, indings from social and trafic

sciences such as the social force model (SFM)
helBing & Molnár (1995) can be used. We
show experimental results for our event detec-
tion system based on a dataset acquired by an
unmanned aerial vehicle (UAV) in which an
instructed group of pedestrians fulills mean-
ingful scenarios of group behaviour. Another
real-world dataset contains an airborne im-
age sequence in which pedestrians approach
a soccer stadium.
The outline of this paper is as follows: In

section 2 we introduce the terminology of
HMM we use in this paper. Section 3 de-
scribes our system for robust, graph-based
event detection. In section 4 we show experi-
mental results and in section 5 we conclude
and discuss future work.

2 Terminology of Hidden Markov
Models (HMM)

A hidden Markov model (HMM) is a proba-
bilistic model which is represented by a direct-
ed acyclic graph. A HMM shows the simplest
form of a dynamic Bayesian network. The sys-
tem underlying the HMM is a Markov chain
of hidden states. At each time step, an observ-

vides a wide overview over a scene and can,
therefore, ideally be used to extract trajecto-
ries of pedestrians which can then be used for
event detection.
Numerous publications indicate the impor-

tance of crowd analysis. Zhan et al. (2008)
present a survey which recapitulates contri-
butions to object detection, tracking and event
detection. The main input data for event de-
tection are either trajectories or optical low.

Event detection systems using optical low are

able to detect abnormal events in high den-
sity crowds after observing the common be-
haviour for some time (adaM et al. 2008, an-
drade et al. 2006, Mehran et al. 2009). How-
ever, individual behaviour cannot be inferred
by optical low and no classiication of the

type of the unusual event is made besides of
lowspeciic characteristics. In scattered and

medium-dense scenes, the analysis of discrete
trajectories is preferred because of the visibil-
ity of individuals. For the analysis of discrete
trajectories, hidden Markov models (HMM)
(raBiner 1989) have often been applied in the
past, which have originally been developed
for speech recognition. Several specialisations
of HMM have been developed and utilized
for event detection, such as coupled HMM
(CHMM) (oliver et al. 2000) or switched dy-
namical HMM (SD-HMM) (nasciMento et
al. 2010). nasciMento et al. (2010) classify re-
curring human trajectories in busy scenes by
concatenating a given set of low level mod-
els using switched dynamical hidden Markov
models (SD-HMM). Human trajectory min-
ing is performed in the work of calderara &
cucchiara (2010) by clustering frequent be-
haviours of pedestrians using different simi-
larity measures. kuettel et al. (2010) auto-
matically learn spatio-temporal dependencies
of moving agents and show experimental re-
sults from trafic scenes. However, by classi-
fying or mining recurring trajectories, only a
very stringent model containing some trajec-
tory clusters can be built which is not lexible

enough to cope with individual and spontane-
ous motion patterns in cluttered scenes that do
not match recurring paths. Learning of recur-
ring trajectories can also be used for the detec-
tion of unusual events (Basharat et al. 2008,
hu et al. 2006, Porikli & haga 2004). Unusu-
al events can only be detected if enough data
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terminated sequence of observations is avail-
able. For our problem of event detection in re-
al-time, which operates as the image sequence
is acquired, iltering has to be used instead

of the Viterbi algorithm. Filtering is used for
computing the probability distribution over
the hidden states {s

1
,s
2
,…,s

N
} at a certain time

step t, given the sequence of observations up
to this time step {o

1
,o
2
,…,o

t-1
,o
t
}. Filtering can

eficiently be solved by the forward algorithm

(raBiner 1989). The forward algorithm is ap-
propriate for our task because it does not de-
pend on an already terminated sequence and,
thus, can be iteratively applied at every new
frame of the image sequence.
The forward algorithm employs forward

variables α
t
(s
i
),1≤i≤N which are calculated at

each time step t for every hidden state s
i
. Thus,

the forward variables are deined as

1 2( ) ( , ,..., , )t i t t is P o o o q sα λ= = . (7)

α
t
(s
i
) is the probability to produce the ob-

servation sequence up to t and to reach state s
i

at time t, given the HMM λ. At the irst time

step t = 1, the initialization of the forward al-
gorithm is realized by

1 1( ) ( )
i i i
s b oα π= . (8)

The initialization of the forward variables
depends on the initial probabilities π

i
and the

irst observation o
1
. At further time steps t,

2≤t≤T, the recursion of the forward algorithm
is performed by

1( ) ( ) ( )t j j t t i ij

i

s b o s aα α −= ∑ . (9)

The recursion step depends on the obser-
vation o

t
and on all forward variables of the

previous time step α
t-1
(s
i
), multiplied by their

probabilities of transition to state s
j
.

3 Graph-Based Event Detection

In order to analyze motion interaction pat-
terns in crowds we create a pedestrian interac-
tion graph which contains all pedestrians of a
scene. The analysis is done for existing edges
in the graph by HMM-based event detection
which is robust to luctuant and partially de-
parting pedestrians.

able output of the model is generated which
only depends on the current hidden state.

2.1 Parameters of an HMM

An HMM provides clear Bayesian semantics
and is deined by the following set of param-
eters (raBiner 1989):

● A set of N possible hidden states
{s
1
, s
2
,…, s

N
}, the state at time t is denoted

as q
t
.

● A set of M possible observations
{v
1
, v
2
,…, v

M
}, the observation at time t is

denoted as o
t
.

● The transition probability matrix A with its
elements a

ij
denoting the transition proba-

bilities from s
i
to s

j

1( )ij t j t ia P q s q s−= = = (1)

1 , 0
ij ij
a i a= ∀ ≥∑ (2)

● The observation probability distribution
b
j
(v
k
) for an observation v

k

( ) ( )j k t k t jb v P o v q s= = = (3)

( ) 1 , ( ) 0k j k jb v i b k∑ = ∀ ≥ (4)

● The initial probabilities π
i
that s

i
is the ini-

tial state

1( )i iP q sπ = = (5)

1 , 0
i i i
π π∑ = ≥ (6)

From this set of parameters the transition
probability matrix A, the observation proba-
bilities b

j
(v
k
) and the initial probabilities π

i
can

be subsumed under a parameter λ which char-
acterizes an HMM.

2.2 Inference in HMM

The inference in HMM to ind the most prob-
able sequence of hidden states {q

1
,q
2
,…,q

T
} is

performed by using the corresponding given
sequence of observations {o

1
,o
2
,…,o

T
}, where

T is the length of the sequence. This problem
can be solved by the Viterbi algorithm (ra-
Biner 1989) which is used if a complete and
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calculated by the inverse of the area of the cor-
responding cell in a Voronoi diagram, which
is constructed from the pedestrian locations
at each frame (steffen & seyfried 2010). By
using a Voronoi diagram, the local pedestri-
an density can be calculated instead of using a
ixed area in which the number of pedestrians

is counted. Only for those pedestrians which
are located at the border of groups, the densi-
ty is calculated by counting the number of pe-
destrians within a speciied radius r and relat-
ing it to the area. The reason for this exception
is that Voronoi cells at the border of a point
cluster will receive very large or ininite area

(Fig.1, right). We further introduce a fourth
motion feature which is the normalized scalar
product s of both motion direction vectors. s
receives values up to 1 for pedestrians walk-
ing in parallel (Fig. 1, left), values of about 0
for orthogonal vectors, and up to -1 for pedes-
trians walking in opposite directions. Thus, s
complements the feature ∆d by describing the
type of the distance variation. ∆d only gives
the absolute variation of the distance between
two pedestrians but does not specify the direc-
tions, in which the distance variation is ful-
illed. In summary, the feature vector is [v

i
+v

j
,

∆d, μ(ρ
i
+ρ

j
), s].

Motion Patterns

We deine six motion patterns which oc-
cur when pedestrians are close to each other,
namely Standing, Queueing, Walking, Run-
ning, Diverging and Converging. These sim-
ple and universal motion patterns are the basis
for our event detection system and deine the

type of the motion interaction between neigh-
bouring pedestrians. The speed of pedestrians

3.1 Pedestrian Motion Model for
Pedestrian Interaction

The motion model consists of four motion
features which are reined and extended ver-
sions of those deined in Burkert& Butenuth
(2011). The motion features are the observa-
tions for the HMM because they can ideally
be used to infer six universal motion patterns.
The motion patterns are treated as the events
which have to be detected and are then used to
interpret a crowd’s behaviour.

Motion Features

We use four motion features which are calcu-
lated from trajectory pairs at every time step.
A pair of trajectories is deined by two pedes-
trians i and j which are suficiently close to
each other such that a signiicant motion in-
teraction takes place. The method to specify
signiicant motion interaction is described in

section 3.2. The four motion features for two
pedestrians i and j are the sum of the veloci-
ties v

i
+v

j
, the variation of the distance ∆d, the

average pedestrian density μ(ρ
i
+ρ

j
) and the

normalized scalar product of both motion di-
rection vectors s. The motion features serve
as the observations in the HMM. Fig. 1 (left)
depicts two trajectories illustrating the motion
features v

i
+v

j
, ∆d and μ(ρ

i
+ρ

j
). The velocity v

i

of a pedestrian is calculated at each time step
using the frame rate and the covered distance
since the last time step. The variability of the
distance is deined as ∆d=d

t
/ d

t-1
, with d

t-1
be-

ing the distance at time step t-1 and d
t
being

the distance at time step t. Thus, ∆d > 1 for an
increasing distance and ∆d < 1 for a decreas-
ing distance. The local pedestrian density ρ

i
is

Fig. 1: Motion features derived from trajectories; left: v
it
is the velocity of trajectory i at time t, d

t
is

the distance at frame t and r is the radius in which the pedestrian density at a group boundary is
computed; right: Voronoi diagram of pedestrian locations, pedestrian density is deined as the in-
verse cell size.



F. Burkert & R. Bamler, Graph-Based Analysis 705

grid-based ML estimation is used. The initial
probabilities π

i
are assumed to be uniformly

distributed. The transition probabilities a
ij
are

set manually in a way to relect the fact that

human motion is very variable, so there is no
regular scheme if a pedestrian might stop, turn
left or turn right after walking straight. The
values used for the transition probabilities a

ij

are thus nearly identical, with deviations from
a uniform distribution in the range of 0.05 to
0.10. For example, these deviations model that
after Standing, Running is less probable than
Walking. By setting the transition probabili-
ties a

ij
in the way just described, we overcome

the limitation that there exists no real world or
synthethic training data which represents re-
alistic transition probabilities between the mo-
tion patterns in our approach.

3.2 Analysis of a Pedestrian
Interaction Graph

Event detection in a scene is performed based
on a pedestrian interaction graph in which
nodes represent pedestrians and edges repre-
sent motion interaction between pairs of pe-
destrians. The motion interaction is modelled
as pairwise motion patterns which are ana-
lyzed using HMM. The graph is capable of ro-
bustly changing its topology because it is dy-
namically updated at every frame.

Edge Weight for Graph Simplification

The number of edges and the computational
cost for the analysis of the graph is N·(N-1)/2
for a number of N pedestrians. To overcome
this high computational cost, we introduce
edge weights based on a Gaussian function in-
cluding the pedestrian density to signiicant-
ly reduce the number of edges in the graph.
Thus, only edges representing signiicant mo-
tion interactions between directly adjacent
pedestrians are considered in the graph. The
weight function w

ij
(d,ρ) with 0 ≤ w

ij
≤ 1 be-

tween two nodes i and j is deined as
2

exp 1

2

ij

ij

d

w

ρ

 
− =   

 

. (10)

can be variable at the motion patterns Con-
verging and Diverging and is at most 0.1, 0.3,
2.0 and 4.5 m/s for the motion patterns Stand-
ing, Queueing, Walking, Running, respective-
ly. The variability of distance explicitly leads
to a statement if two pedestrians approach or
depart from each other, independent of the
motion direction. Therefore, the variability of
distance is about 1 for Standing and the par-
allel motion patterns Queueing, Walking and
Running. Consequently, ∆d > 1 for Diverging
and ∆d < 1 for Converging. The pedestrian
density is variable but rather low when pedes-
trians are standing or moving naturally and
can reach high values up to 5 pedestrians per
m2 in dense queuing areas. The normalized
scalar product of the motion direction vectors
is variable for standing pedestrians because a
slight motion into a random direction always
occurs and no pedestrian will stand complete-
ly still. The motion patterns Queueing, Walk-
ing and Running are characterized by pedes-
trians walking in parallel, so the scalar prod-
uct is close to 1. The scalar product emphasiz-
es parallel scenarios in which the variability of
distance might misleadingly suggest diverg-
ing or converging motion patterns because of
different velocities.
Usually, training data from the real world

surveillance scenes is used to learn HMM off-
line. However, we do not use data from sur-
veillance cameras to learn the HMM for event
detection because we focus on cluttered scenes
which occur at big events. Learning from real
world data always relies on frequently recur-
ring motion paths within the scene of interest,
which we cannot assume to be available for
any place where a big event may take place.
Instead, we use synthetic data representing
the motion patterns to learn the HMM. The
training data are generated by moving agents
which follow rules of motion depending on the
description above. The training data consist of
900–1200 feature vectors per motion pattern
which were calculated from normally distrib-
uted simulated trajectories. From these fea-
ture vectors, the mean values are used to de-
rive the feature vector of each motion pattern.
Based on the central limit theorem, the fea-
ture vectors are approximately normally dis-
tributed. For the estimation of the hidden state
q
t
which corresponds to the motion pattern, a
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that an edge existing in the previous time step
will further exist, such that the correspond-
ing interaction analysis can be continued. The
second case is that two pedestrians are con-
verging and the weight w

ij
exceeds the thresh-

old. In this case, a new edge is generated and
the analysis of this interaction is started. The
third case is that two pedestrians diverge and
the weight w

ij
falls below the threshold. In this

case, the corresponding edge is removed from
the pedestrian interaction graph.

Robust Event Detection

The interaction analysis between a pair of
pedestrians is performed by HMM. The for-
ward algorithm is used to derive the type of
motion pattern for each pair of pedestrians,
for which a common edge in the graph ex-
ists. When applying the forward algorithm,
the motion features serve as observations and
the motion patterns serve as the hidden states
of the HMM. Edges in the graph can arise or
disappear during the sequence because of the
dynamic behaviour of the crowd described in
the previous section. Pedestrians do not move
in a linear way but tend to slightly deviate to
the left or right while walking. Therefore, the
interaction analysis bears the risk of being in-
terrupted for some frames if pedestrians de-
part from each other for a short time only. To
overcome this risk and to achieve a robust se-
quential analysis of the motion interaction, an
HMM buffer is used when analyzing the pe-
destrian interaction graph. The HMM buffer
is internally activated for a speciic interaction

when the weight of the corresponding edge de-
creases below the threshold. At this point, the
recursion of the forward algorithm would be
terminated if no HMM buffer was used. How-
ever, the recursion is internally continued for
a userdeined maximal number of frames in

the HMM buffer. In the case that the two cor-

The weight w
ij
depends on the distance

d
ij
between the pedestrians representing the

nodes i and j and on the density ρ which is giv-
en by pedestrians per m2. The weight function
is a Gaussian function with height 1, μ=0 and

( )1 / 2σ ρ= ⋅ . Thus, the weight w
ij
receives

high values for directely adjacent pedestrians
i and j where a signiicant motion interaction
is supposed to take place. At high pedestrian
densities the weight w

ij
is only high between

pedestrians that have a distance of a few deci-
meters, whereas at low densities the weight w

ij

can be high even if adjacent pedestrians have
an offset of several meters. We introduce a
threshold which is applied to the weights in or-
der to determine which edges in the graph are
to be constructed and which edges are omit-
ted.

Framewise Graph Updating

Our graph-based approach for event detection
in crowds represents dynamic behaviour of
pedestrians. To this end, the pedestrian inter-
action graph is capable of changing its topol-
ogy at every frame depending on the new ar-
rangement of pedestrians in the scene. Fig. 2
shows an example of four pedestrians and
their trajectories. Particular time steps are
represented by dotted lines in between the tra-
jectories. Figs. 2 a), 2 b) and 2 c) show the cor-
responding graph with four nodes. The topol-
ogy changes by inserting a new edge between
nodes 2 and 3 because of the decreased dis-
tance between the corresponding pedestrians.
The density is supposed to be constant. The
width of the edge connecting nodes 2 and 3
increases in Fig. 2 c) as a consequence of the
increased weight w

23
.

There are three preconditions of how our
system deals with the sequential interaction
analysis, depending on the coniguration of

the graph in the previous step. The irst case is

Fig. 2: Left: graph updating for four synthetic trajectories 1–4; right: three representative graphs
showing the topology at particular frames (a, b, c) related to the dotted lines.
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cer stadium where thousands of people are ap-
proaching the gates.
For the experimental results we use pedes-

trian trajectories which were generated man-
ually from the image sequences because we
focus on realistic trajectories and the poten-
tial of our graph-based event detection system
for realistic pedestrian behaviour. However,
our event detection system is able to deal with
possibly incomplete automatically generated
tracklets because the pedestrian interaction
graph can deal with changing topology in a
straightforward way.

4.2 Event Detection Results

The event detection results for the UAV data-
set are shown in Figs. 3 and 4, including a col-
ourbar which depicts the colour labels for the
edges corresponding to the motion patterns. In
Fig. 3, a group of pedestrians passes a narrow
bottleneck (frames 3, 6, 9 and 12 are shown).
Our event detection system successfully de-
tects the typical motion interaction charac-
teristics. Neighbouring pedestrians Converge
and Walk towards the bottleneck, which is il-
lustrated by orange and blue edges in frames
3 and 6. Pedestrians who have passed the gap
Diverge and Walk ahead, whereas the pedes-
trians at the back of the group have to Queue
for a while in frame 9. In Fig. 4, a corridor sce-
nario of two walking groups walking in op-
posite directions is successfully detected. This
scenario is characterized by two approaching
and internally Converging groups in which
the backmost pedestrians again have to Queue
because of the narrowness of the corridor. The
formation of lanes, which has already been in-
vestigated in helBing et al. (2001), can be con-
irmed by the linearly arranged motion pattern

Walking and the oppositely arranged motion
patterns Converging and Diverging (frames 8
and 11).
The results for the soccer stadium sequence

are presented in Figs. 5 and 6. Our event detec-
tion system is robust in the case that interact-
ing pedestrians depart from each other for a
short time by applying the HMM buffer. This
robustness is exempliied in Fig. 5: the top row

contains three consecutive frames of a pedes-
trian interaction graph where edges between

responding pedestrians approach each other
and the weight increases again, the consistent-
ly and eternally analysed motion interaction
is loaded from the HMM buffer and the re-
sult is subsequently added to the correspond-
ing interaction analysis. Hence, the temporar-
ily omitted corresponding edge of the graph is
subsequently constructed. Thus, no fragments
of the corresponding pedestrian interaction
can arise. If the weight does not increase again
after the deined number of frames, the cor-
responding interaction analysis is terminated
and the edge is inally deleted.

4 Experimental Results

We present experimental results for robust pe-
destrian interaction analysis using two data-
sets with different camera platforms and dif-
ferent scenes. The datasets are described in
the next section. Afterwards the results show
signiicant scenes and demonstrate the robust-
ness of our approach.

4.1 Datasets

The irst dataset used contains image sequenc-
es captured from a UAV octocopter platform.
The images were taken from a lying height

of 85 m with a Panasonic DMC-LX3 camera,
resulting in a ground resolution of 1.5 cm. The
frame rate of the image sequences is 1 Hz. The
captured scenes contain more than 10 differ-
ent scenarios of pedestrian group behaviour
in different complexity levels. The pedestri-
ans were instructed about the scenarios in ad-
vance; however, the information was reduced
to a minimum in order to preserve natural be-
haviour. The captured scenes contain simple
scenarios such as commonly walking pedes-
trians but also complex scenes like a bottle-
neck, crossing pedestrian groups at different
velocities or an escaping situation. The second
dataset is an image sequence taken by an air-
borne camera platform of the German Aero-
space Center (DLR). The image sequence con-
tains 16 frames taken at a frame rate of 2 Hz.
The ground resolution is 0.15 m at a lying

height of 1000 m. The area of interest is a soc-
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and 7 can be performed. In Fig. 6, Queueing
pedestrians are successfully detected, which
is displayed by the yellow edges during the
whole sequence. Some pedestrians are pass-
ing the queue and perform multiple interac-
tions due to freedom of motion. During the se-
quence, the density in the narrow area between

node 7 and nodes 5 and 6 are not present in the
middle frame. This graph was produced with-
out the HMM buffer. The bottom row shows
the graph which was produced with the HMM
buffer. Here, the corresponding edges exist
such that a continuous and robust analysis of
the interaction between the pedestrians 5, 6

Fig. 3: Event detection result (frames 3, 6, 9 and 12) for the UAV dataset showing a bottleneck
scenario in the upwards walking pedestrian group.

Fig. 4: Event detection result (frames 2, 5, 8, 11 and 14) for the UAV dataset showing a corridor
scenario between two antiparallel walking pedestrian groups.



F. Burkert & R. Bamler, Graph-Based Analysis 709

5 Conclusions

In this paper, we present a new approach for
the analysis of pedestrian interaction and
events in crowded scenes. We construct a pe-
destrian interaction graph in which nodes rep-
resent all pedestrians in a scene and edges
represent motion interaction between neigh-
bouring pedestrians. The graph can change
its topology during the sequence and is robust
against luctuating and partly departing pe-
destrians. A set of six universal motion pat-
terns is deined, describing the type of inter-
action which is then detected by HMM. We
extend the motion features of previous work
by the scalar product of motion directions and
a reined density calculation, serving as ob-
servations for the HMM. We use a new UAV
dataset for the evaluation of our event detec-
tion system, as well as an aerial dataset of a
soccer stadium. The promising results show
the potential of our approach to interpret pe-

the queue and the wall on the right rises and
the velocity decreases, which is illustrated by
more and more Queueing patterns in this area.
The results demonstrate the potential of our

system for graph based event detection by an-
alyzing motion interaction in groups of pedes-
trians. Using HMM, the sequential behaviour
of motion interaction between two pedestrians
can reliably be analyzed. The six motion pat-
terns we have deined represent human motion

behaviour in a simple manner, such that areas
of homogeneous behaviour as well as speciic

behaviour of only a few pedestrians can be in-
ferred. In some frames outliers of the predom-
inant motion pattern for a continuous pedes-
trian interaction arise. This is caused by the
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interaction in crowded scenes have to be ex-
pected. The low frame rate of the UAV dataset
is suficient to derive motion features which

are used for event detection.

Fig. 5: Top: pedestrian interaction graph without HMM buffer; bottom: graph with HMM buffer.

Fig. 6: Event detection result (frames 2, 6, 10, 14 and 16) for the soccer stadium dataset showing
pedestrians passing a queue in a narrow area by a wall.
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destrian motion behaviour. Future work aims
at a higher level analysis of the graph for an
automatic and probabilistic detection of com-
plex events in pedestrian groups.
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