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of reference. The use of moving sensors per-
mits the acquisition of environments for which
one builds or updates maps. Furthermore, the
sensors enable the determination of ego-mo-
tion in 3D by establishing correspondences
between consecutively captured datasets. The
latter is of special interest when external refer-
ences such as landmarks with known coordi-
nates or reference signals such as GPS-signals
are not available. In this situation, dead reck-
oning has to be applied, which is subject to in-
evitable drift due to measurement noise and

1 Introduction

1.1 Motivation

Today, navigation, image mosaicking, and the
exploration of unknown environments by si-
multaneous localization andmapping (SLAM)
are common tasks in robotics, computer vision
and photogrammetry. Exteroceptive sensors,
such as cameras or laser scanners, measure
the proximity of objects to the sensor’s frame
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bildern.
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ered separately for the rotational component
(spherical linear interpolation) and the trans-
lational component. Results for experiments
with thousands of involved transformations
are shown. When deriving constraints from a
network of observations, the resulting set of
equations may not necessarily be consistent.
When the network is represented as a graph,
this leads to a need for so-called fundamental
cycle bases (Unnikrishnan & kelly 2002b).
The work closest to ours is that of estra-

da et al. (2005), which covers loop detection
and adjustment for the 2D SLAM case. The
squared Mahalanobis distance is calculat-
ed for hypothesis testing and nonlinear con-
strained least-squares optimization by se-
quential quadratic programming is used to
impose multiple loop constraints simultane-
ously. However, this work does not address the
need for inding a consistent set of independ-
ent constraints.

1.3 Contribution

Essentially, we extend the approach of estra-
da et al. (2005) to the 3D case. We propose
an eficient method to build large and global-
ly consistent mosaics and sensor trajectories
within the same framework. As proposed by
Meidow (2011) in the context of video mosai-
cking, this is achieved by exploiting the pow-
er of algebraic projective geometry, by using
minimal representations without singularities
(strasdat et al. 2010), and by compiling con-
sistent sets of loop constraints (Unnikrishnan
& kelly 2002b). For the latter we exploit the
natural order of the datasets (video images
or laser scans) captured by a moving sensor.
The approach allows the simultaneous adjust-
ment of multiple loops in a batch process af-
ter solving the place recognition task. By con-
sidering image-to-image transformations or
pose changes as observations, we chose an
adjustment model with constraints for these
transformations parameters only, which leads
to small equation systems to be solved. The
stochastic model involved in these tasks rig-
orously incorporates the uncertainties of the
transformation parameters.
For the image alignment task, this approach

assumes planar scenes or a ixed projection

remaining systematic errors. The same holds
for the mosaicking of video streams: Assum-
ing planar scenes, the chaining of consecutive
image pairs suffers from accumulation of ran-
dom feature-tracking errors and systematic
errors due to imperfect calibration. This be-
comes evident when loops are present: drift
appears in discrepancies or gaps at the joints.
Conceptually, loop closing is one of the

most important strategies to compensate for
drift and to obtain more precise, globally con-
sistent results. Whenever a system recognizes
places already visited, the discrepancies that
occur should be distributed over the covered
path and the scene reconstruction.

1.2 Related Work

Contributions to loop adjustment are manifold
and can be found in the robotics, photogram-
metry, and computer vision literature. The for-
mulation and solution of optimization or inter-
polation tasks, the use of appropriate param-
eterizations and the construction of consistent
sets of constraints are all topics in which loop
adjustment has been considered.
For single loops, the parameter corrections

sought can be determined by distributing the
updates proportionally over the loop trajecto-
ry. In 3D, this can be accomplished by con-
sidering the so-called minimal-length trajec-
tory between two poses, which is given by
a straight line in the corresponding tangent
space. This interpolation can be controlled us-
ing scalar weights reasonably chosen propor-
tional to the uncertainties at hand and leads to
a minimal bending of the trajectory (dUbbel-
Man et al. 2010). In the context of video mosai-
cking, an optimization procedure is proposed
by Caballero et al. (2007) for instance. Ap-
plying an extendend Kalman ilter, an optimi-
zation procedure is employed for updating the
loop homographies. Within each step of the
ilter update a normalization of the homogra-
phy matrices is necessary to ix the scale of the

homogeneous representation.
A solution to reduce the errors in a 3D net-

work of observed transformations is provid-
ed in Grisetti et al. (2007). The optimiza-
tion is performed using a variant of gradient
descent. In doing so, the updates are consid-
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represented by a non-singular 3×3 matrix H =
(H

ij
), cf. (hartley & ZisserMan 2004):
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or, more briely, x′ = H x. This transformation
is unique up to scale and has therefore eight
degrees of freedom. It can be written in inho-
mogeneous form as
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with x = [x, y, 1]T and x′ = [x’, y’, 1]T.
A rigid-body transform in ℝ3 can be ex-

pressed by a 4×4 transformation matrix ap-
plied to homogeneous 4-vectors:

1

 
 
 

=H
0

R t
T

with R ∈ SO(3) and t ∈ ℝ3 , (5)

where SO(3) is the Lie group of rotation ma-
trices. The motion matrices (5) form a smooth
manifold and, therefore, the Special Euclidean
group SE(3). Its operator is matrix multiplica-
tion.
In homogeneous coordinates, all transfor-

mations are realized by multiplication. Thus,
linearization in a multiplicative manner is
straightforward (Förstner 2010). With a mul-
tiplicative expansion, a nonlinear update reads

H = ΔH ∙ H
0

(6)

with an approximate homography H
0
and the

update ∆H within the iteration sequence.
The power series for the matrix exponen-

tial (1) relates Euclidean updates to represen-
tations in the tangent space. For 2D homogra-
phies, this is the zero-trace matrix

1 4 7

2D 2 5 8

3 6 1 5

( ) ,

k k k

k k k

k k k k

 
 =  
 − − 

K q (7)

centre. We assume uncalibrated cameras with,
however, straight-line preserving optics, i.e.,
we assume the lens distortion to be negligible.

2 Theoretical Background

2.1 Notation and Preliminaries

Homogeneous entities are denoted by upright
boldface letters, e.g. x or H, Euclidean vec-
tors and matrices with italic boldface letters,
e.g. l or R. For homogeneous coordinates “=”
means an assignment or an equivalence up to
a common scale factor λ ≠ 0.

For the minimal parameterizations of a 2D
homography or 3D motion, we exploit the
power series

2

0

1 1
exp( )= = + + + ,

! 2
K K K K

k

k

I
k

∞

=
∑  (1)

which is the power series for square matrices
analogous to the power series for the scalar ex-
ponential function. For the analytical compu-
tation of Jacobians, we will frequently use the
rule

( )vec( )= vec( )⊗ABC C A B
T

(2)

and its specializations. Here, the vec operator
stacks all columns of a matrix and ⊗ denotes
the Kronecker product. The skew-symmetric
matrix S(a) built from a 3-vector a induces a
cross-product.

2.2 Parameterizations

We use homogeneous coordinates to represent
homographies in 2D and motion in 3D. In do-
ing so, 3D motion can be considered as a spe-
cial homography in 3D, which paves the way
to a common framework to treat 2D and 3D
tasks in the same way. Homographies form a
group. Thus, one can “undo” a transformation
by computing and applying the inverse trans-
formation (matrix inversion). The concatena-
tion or chaining of two or more transforma-
tions is carried out by matrix multiplication.
A planar projective transformation is a lin-

ear transformation on homogeneous 3-vectors
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in analogy to cumulative sums and cumulative
products. They start with the very irst hom-
ography 2H

1
of each sequence and result from

the kinematic chains. The concatenation of
motions is represented by multiplication from
the left.
Cross links can be established whenever a

system recognizes an already visited place or
by visual inspection. Here, the search for cor-
respondences is much more challenging and
sophisticated methods such as SIFT (scale in-
variant feature transform) for images (lowe
2004) or ICP (iterative closest point) for point
clouds (besl & MCkay 1992) are needed to
cope with changed sensor aspects.

3 Multiple Loop Adjustment

After the detection of loop closure events by
place recognition and the determination of the
corresponding cross link parameters, the mo-
saic loops or motion involved in these events
need to be adjusted. Taking all uncertainties
of the transformation parameters into account,
we pursue a statistically rigorous and optimal
approach (section 3.2). The approach is subop-
timal compared to the joint estimation of all
transformations together with the common 2D
and 3D points, e.g. sZeliski (2006), triGGs et
al. (2000), but enables the eficient treatment

of large datasets. For multiple loop adjust-
ment, the selection of a proper and consistent
set of constraints is crucial (section 3.1).

3.1 Choice of Cycle Basis

The set of constraints used within the adjust-
ment must not be redundant, i.e., the equations
must be independent. This can be realized by
considering a topological graph as a descrip-
tion of the links given by chained motions or
image transforms. Fig. 1 shows an example
for a sensor path with three established cross
links. The vertices of the graph denote locally
captured data elements, i.e., images or point
clouds, and the edges denote transformations.
Additional cross links have been marked by
arrows. In this graph, it is possible to establish
six different cycles (loops) that do not form
an independent set. A complete cover of the

which depends linearly on the eight correc-
tion parameters q

2D
= [k

1
,…, k

8
]T (beGelFor &

werMan 2005). Requiring all matrices to have
determinant one, thus constituting a Lie group
SL(3), leads to an easy linearization scheme
(Förstner 2012). For 3D motion, the relation
is given by the so-called twist representation

3D

( )
( )

0

∆ 
=  

 0

S r t
K q

T
(8)

with the six motion parameters q
3D

=
[rT, ΔtT]T comprising three rotation parame-
ters r and a translational update Δt (breGler
&Malik 1998).
During the iterative estimation we do not

update the homography parameters or the mo-
tion parameters in tangent space, but rather
the approximate transformations H

0
by map-

ping the updates onto the manifold SL(3) or
SE(3), respectively

( )( 1) ( )

0 0exp ( ) ,ν ν+ = ⋅H HK q (9)

where ν denotes the iteration step. Thus, we
end up with the estimates Ĥ = H

0
, q̂ = 0, and

Σ
q̂q̂
for the covariance matrix of the estimat-

ed transformation parameters q
2D
and q

3D
, re-

spectively.

2.3 Sequential Links, Cross Links
and Cumulative Transformations

For establishing loops, we consider two dif-
ferent types of image alignment and motion:
sequential links and cross links (tUrkbeyler
& harris 2010). Sequential links are given
by the chaining of consecutive, i.e., temporal-
ly adjacent, sensor data. For mosaicking and
visual SLAM, these transformations are usu-
ally determined by tracking or matching cor-
responding image features and, for laser scan-
ning data, by the registration of point clouds.
For the eficient computation of Jacobians

within the adjustment process, we will fre-
quently use cumulative transforms of sequen-
tial links

1
1 3 2

1 1 2 1,
k

k l k

l k

l 1

−
+

−
=

= = ⋅ ⋅ ⋅∏H H H H H

k = 2,…, n (10)
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and 6 constitute the smallest-size cycle basis,
whereas the loops 1, 2 and 3 are loops estab-
lished immediately whenever the sensor revis-
its a place.

3.2 Imposing Loop Constraints

The proposed loop adjustments are performed
by solving a standard least squares problem.
A solution to this problem is obtained by an
adaption of sequential quadratic program-
ming (triGGs et al. 2000). Considering the
transformation parameters to be given but un-
certain observations, the solution is equivalent
to the adjustment with constraints for observa-
tions only (koCh 1999, MCGlone et al. 2004).
For the sake of completeness, we briely sum-
marize here the adjustment model used and its
corresponding procedure. Then the loop con-
straints and the corresponding Jacobians are
presented.
With the given block-diagonal covariance

matrix Σ
pp
of the unconstrained (observed) pa-

rameters [2q
1
T, 3q

2
T,… nq

n-1
T]T (set of sequential

graph is given, for instance, by loops 1, 2 and
6. In graph theory, such an independent and
complete cycle cover is called a fundamental
cycle basis (Unnikrishnan & kelly 2002b).
The solution of the least squares problem

proposed in section 3.2 does not depend on the
choice of the cycle basis, since the linearized
equations corresponding to any cycle basis
form an independent set in the space of con-
straints provided the approximate values are
the same. Choosing the cycle basis with the
smallest size reduces the computational costs
since the Jacobians involved are sparser. Here
“smallest size” refers to the number of edges
to be traversed in total (shortest loop lengths).
However, the problem of inding a cycle ba-
sis of smallest size has been proven to be NP-
hard for an arbitrary graph (thoMassen 1997).
Therefore and for the sake of simplicity, we
establish loops along the sensor path immedi-
ately whenever they occur, i.e., each loop con-
tains exactly one cross link. This approach is
simple and easy and exploits the natural tem-
poral and spatial order of the data provided by
the acquisition process. In Fig. 1 the loops 1, 2

Fig. 1: Six possible loops for a given sensor path with three cross links marked by arrows. Loops
1, 2 and 6 constitute the smallest-size basis, whereas the loops 1, 2 and 3 form the proposed set
of loops established along the sensor’s path with one cross link each.
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process we update the approximate homogra-
phies according to (9). Thus, the approximate
values for the parameters p are simply zeros
and we can expand the constraints with the
corresponding multiplicative updates ∆H =
exp(K(q)) = I. For the vectorization of the con-
straints (16), we consider this for the cross link
(i, j) and a sequential link (k, k+1)

( )1 1

1

j j j k k k

i i k k k i'
+ +

+′∆ ⋅ − ∆ ⋅ =H H H H H H O

(18)

With Δh = vec(∆H) and the rule (2), the
vectorization of (18) yields nine equations for
2D homographies and 16 equations for 3Dmo-
tion respectively:

( ) ( )1 1

1

j j k j k

i i i k k

+ +
+′ ′= ⊗ ∆ − ⊗ ⋅ ∆

=

H h H H h

0

c I
T T

(19)

The parameters q of a single transformation
are related to the corresponding homography
H by ΔH = exp(K(q)) ≈ I + K for small values
q. Thus, the linearization is

( )vec( ) vec ( ) vec( )∆ ≈ + = +h I K q I Gq (20)

with the constant transformation matrixG. For
2D homographies, G is simply the 9×8 matrix

8

2D
1,0,0,0, 1,0,0,0

 
=  − − 

I
G (21)

(Meidow 2011). For 3D pose changes, we ap-
ply a 16×6 transformation matrix G

3D
com-

posed of ones, zeros and minus ones.

The constraints (19) are linearily dependent
and a reduction to a set of six and eight con-
straints, respectively, is necessary. This can be
achieved by deleting equations or by comput-
ing a linear combination. Applying the pseu-
do inverses of the matrices G, yields reduced
constraints c̄ = G+c.

The Jacobians are then

( )( ) ˆ ˆ( ) ( )

ˆ ˆ

c j

i

+′ ′ ′∂ ∂ ∂∆ ′= = = ⊗
′ ′ ′∂ ∂∆ ∂

h
H

h

c q c q
C G I G

q q

T

(22)

w.r.t. the parameters of the cross link and

links) augmented by the observed cross link
parameters, the optimization problem is given
by

( ) ( )1
ˆ ˆ minpp

−Ω = − − →p p p p
T

Σ (11)

subject to c ( p̂) = 0. Here, the sought con-
strained parameters are p̂ and the loop con-
straints are c ( p̂ ) = 0. Linearization of the con-
straints yields

0
ˆ ˆ( ) ( )= +c p c p C p∆ (12)

with the Jacobian C. Then the estimator is

( ) 1
( 1)

0
ˆ

pp pp

ν −+ = +p p C C C c
T TΣ Σ (13)

with CΣ
pp
CT being the covariance matrix of

the contradictions c(p) and

( ) ( )( ) ( )

0
ˆ ˆ

ν ν= − −c C p p c p (14)

at each iteration ν. The covariance matrix for
the estimates (13)

( ) 1

ˆ ˆ pp pp pp pppp

−
= − C C C C

T TΣ Σ Σ Σ Σ (15)

is fully occupied in general and therefore com-
putable for problems of moderate size only.
The constraints for the chained homogra-

phies or integrated motion are simply

1
1

j
j l

i l

l i

−
+

=

′ − =∏H H O (16)

for a single loop with j > i. The constraints
take one cross link (see section 3.1) into ac-
count, denoted by a single prime. Please note
that all homography matrices are unambigu-
ous due the determinant one constraint or the
Euclidean motion parameterization. An alter-
native formulation of the loop constraints (16)
is

1
1

j
i l

j l

l i

−
+

=

′ ⋅ =∏H H I (17)

(Unnikrishnan & kelly 2002a), whereby the
Jacobians w.r.t. the cross link depend on the
sequential links, too.
The constraints have to be fulilled for the

adjusted parameters. During the optimization
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bian C
seq
depends on the chosen cycle basis.

The size of the matrix to be inverted in (13)
depends only on the number of loops L. Note
that no special treatment of the homographies
not being part of any loop is necessary. No
case-by-case analysis is necessary, since the
corresponding estimates for the corrections in
(13) will simply be zeros.

4 Experiments

In the following, we demonstrate the feasi-
bility of the approach for the tasks of video
mosaicking (terrestrial and airborne, section
4.1) and 3D exploration, the latter possibly
by simultaneous localization and mapping
(SLAM) with the help of video cameras or la-
ser scanners (section 4.2).

4.1 Video Mosaicking

For each image of a video stream, salient
points have been extracted by the Förstner op-
erator (Förstner & GülCh 1987), and tracked
in the corresponding subsequent image by
the Lucas-Kanade tracker (lUCas & kanade
1981). The respective positional uncertainties
– represented by covariance matrices – have
been determined for incorporation into the ad-
justment. The correspondences of the cross

( )

( ) ( )

( ) 1

1

1 1 1

1 1 1 1

ˆ( )

ˆ

s k j

i k

i k j k

+ +
+

+ − + + −

∂
= = ⊗

∂

 = ⋅ ⊗ ⋅ 

H H

H H H H

c q
C G G

q

G G

T

T T

(23)

w.r.t. the parameters of a sequential link. Note
that all Jacobians can be computed with a
cross link or cumulative transforms only.
For multiple loops to be adjusted, the entire

Jacobian C is then a matrix for the S sequen-
tial links

( ) ( ) ( )

11 12 1

( ) ( ) ( )

21 22 2
seq

( ) ( ) ( )

1 2

s s s

S

s s s

S

s s s

L L LS

 
 
 =
 
 
  

C C C

C C C
C

C C C





   



(24)

augmented by a usually much smaller block
diagonal matrix

( )( ) ( ) ( )

cross 1 2Diag , , , ,c c c

L= C C C C (25)

where L denotes the number of cross links, i.e.,
loops, and D = 8 parameters for 2D homogra-
phies and D = 6 parameters for 3D motion, re-
spectively. Thus, the size of the Jacobian

seq cross| =  C C C (26)

is DL × D(S+L). Its shape is usually very lat,
since S >> L holds. The sparseness of the Jaco-

Fig. 2: Mosaicking of 355 video images of size 720 × 576 pixel. Top: Image alignment by consider-
ing consecutive links only. Bottom: Result after the adjustment of two loops.
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cording to the ∞ sign. The mosaic obtained by

applying the consecutive homographies only
is shown in Fig. 2, top, and reveals numerous
discrepancies due to drift. Subsequent adjust-
ment yields a consistent result. The gauge
freedoms for the mosaics have been ixed by

selecting the mean cumulative homography
(10) as reference transformation.
For the provision of airborne imagery we

abused a virtual globe system as an image
source and camera simulator. This guaran-
tees that the model assumptions are valid – all
uncertainties stem from tracking and match-
ing, respectively. The images have a rather
poor resolution of 480 × 320 pixel. The given
camera path features varying heights above
the ground as well as changing roll, pitch, and
yaw angles. During the light, the camera car-
ried out a 180-degree-turn around its optical
axis, see Fig. 3. Four loop closing events have
been identiied by visual inspection. The com-
puting time for the adjustment was 1.4 sec-
onds on a standard CPU at 1.59 GHz with non-
optimized Matlab code in four iterations.

4.2 Simulated Indoor Exploration

To the author’s knowledge, there are no pub-
licly available 3D data that contain sensor mo-
tion for sequential links and additional cross
links with uncertainty information as well as
ground truth for evaluation, neither derived
from visual data nor from laser scans. There-
fore, we restricted our investigation to syn-
thetic data relecting already derived naviga-
tion solutions obtained by dead reckoning. In
doing so, we are omitting the effects of spe-
ciic feature tracking and/or feature matching

techniques, which are outside the scope of this
investigation.
Fig. 4 summarizes the experimental setup,

the simulated data and the results. The cho-
sen sensor trajectory imitates indoor explo-
ration by a forward looking moving video
camera. The camera visits two rooms, moves
along corridors, and inally revisits its start-
ing point. The results could be provided by a
visual SLAM algorithm, e.g. a sliding window
bundle adjustment. Gaussian noise has been
added to the successive relative motion. This
results in the camera path depicted in Fig. 4,

links have then been established by applying
the scale invariant feature transform SIFT
(lowe 2004) in combination with random
sample consensus (FisChler & bolles 1981).
Fig. 2 shows the result for the acquisition

of a façade by an uncalibrated ordinary vid-
eo camera before and after adjustment of two
loops. The camera was moved in a pattern ac-

Fig. 3: Mosaicking of approx. 1,200 images
with 480 × 320 pixel resolution. Top: Footprints
of the adjusted images (every 10th drawn). Mid-
dle: Aerial mosaic built by using the estimated
sequential links only (detail). Bottom: Mosaic
after adjusting four loops (detail). Image data:
©GeoContent provided by Google.
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the relative consecutive motions change only
slightly due to the least squares approach. Lo-
cally, the trajectory is hardly affected while,
globally, consistency is achieved. For the de-
termination of the empirical accuracy of the
adjustment result, we compute the test statistic

( ) ( ) ( )1
(ref) (ref ) (ref )

ˆ ˆ

,

1
ˆ ˆ

~

pppp

R

T
R

F

−

∞

= − + −p p p p
T

Σ Σ

(27)

based on the Mahalanobis distance w.r.t. refer-
ence values of the parameters, i.e., the ground
truth (MCGlone et al. 2004, diCksCheid et al.
2008). The test statistic is F

R, ∞
-distributed

with R = DS degrees of freedom. We obtain
T = 1.0174 which is lower than the 0.95-quan-
tile 1.0176 of the F-distribution. Thus the ac-
curacy potential has been fully exploited.

5 Conclusions

We have proposed a statistically optimal ap-
proach to adjust multiple loops simultaneously
in particular for image alignment in 2D and
simultaneous localization and mapping in 3D.
The adjustment model chosen and the param-
eterizations used enable an eficient imple-
mentation: Hundreds of images or poses can
be adjusted within a second. To come up with
a set of consistent loop constraints, we exploit
the natural order of datasets given by the se-
quential acquisition process of moving map-
ping sensors.
Visual inspection of the test results clearly

reveals the capability of the approach to com-
pensate for inevitable drift, which indicates
that the approach supports the generation of
consistent mosaics and scene reconstruc-
tions. For path planning during exploration,
such loop closing implies an obvious strategy:
loops should be detected and closed as soon as
possible and wherever possible.
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centre. The gap between the starting and end
points of the path is huge. The result after
closing and adjusting the three loops given by
the fundamental cycle basis depicted in Fig. 1
(Loops 1, 2 and 3) is clearly more consistent.
The computing time for the adjustment was
0.1 seconds at 1.59 GHz with a non-optimized
Matlab implementation.
Most of the absolute sensor poses change

considerably during the adjustment. However,

Fig. 4: Synthetic data with 3,000 camera poses
(every 10th is plotted) simulating indoor explo-
ration by a moving camera with subsequent
place recognition and loop adjustment. Top:
Ground truth with three loops. Middle: Noise
and drift added to the consecutive motion. Bot-
tom: Trajectory after adjustment of the loops.
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