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Summary: Thermal building textures are used

for the detection of damaged or weak spots in the

insulation of building hulls. These textures can be

extracted from directly geo-referenced oblique air-

borne infrared (IR) image sequences by projecting

a 3D building model into the images. However, the

direct geo-referencing is often not suficiently ac-

curate and the projected 3D model does not match

the structures in the image. Thus we present a

technique with the main goal of inding the best it

between the 3D building model and the IR image

sequence. For this purpose we correct exterior ori-

entation via line based matching. We assign image

lines to projected model lines based on the distance

and angle between them. The maximum distance

and maximum angle between assigned lines is giv-

en by the uncertainties in the projected lines, which

is derived from the uncertainties in the 3D build-

ing model and from the uncertainties in the camera

position and orientation by error propagation. Then

we use the random sample consensus (RANSAC)

to remove incorrect correspondences. The corre-

spondences selected by RANSAC are adjusted us-

ing the least squares method. In the adjustment we

consider both uncertainties in the model and in the

image features. To evaluate the presented method

we test it running the algorithm among the set of

images and visually assess the improvement.

Zusammenfassung: Linienbasierte Zuordnung

von unsicheren 3D-Gebäudemodellen mit IR Bild-

sequenzen zur präzisen Texturgewinnung. Thermi-

sche Gebäudetexturen werden für die Detektion

von Schwach- und Schadstellen in der Isolation von

Gebäudehüllen eingesetzt. Solche Texturen können

aus den direkt georeferenzierten, infraroten (IR)

Luftbildsequenzen gewonnen werden, indem das

3D Gebäudemodell ins IR Bild projiziert wird. Das

direkte Georeferenzieren ist jedoch oft nicht genau

genug und das projizierte 3D Modell stimmt nicht

mit den Bildstrukturen überein. Deswegen wird

hier eine Technik präsentiert, mit dem Ziel, die bes-

te Anpassung zwischen dem IR Bild und dem 3D

Gebäudemodell zu inden. Dafür korrigieren wir

die Parameter der äußeren Orientierung mittels li-

nienbasierter Zuordnung. Die Bildlinien werden

den projizierten Modelllinien aufgrund der Entfer-

nung und aufgrund des Winkels zwischen ihnen

zugeordnet. Die maximale Distanz und der maxi-

male Winkel zwischen zugeordneten Linien erge-

ben sich aus der Unsicherheit der projizierten Lini-

en, die aus den Unsicherheiten der Kameraposition

und Orientierung und aus den Unsicherheiten der

3D-Gebäudemodelle mittels Fehlerfortplanzung

berechnet werden. Danach verwenden wir RAN-

dom SAmple Consensus (RANSAC), um die feh-

lerhaften Korrespondenzen auszusortieren. Die

von RANSAC ausgewählten Korrespondenzen

werden mit der Methode der kleinsten Quadrate

ausgeglichen. Bei der Ausgleichung werden zwei

Unsicherheiten berücksichtigt: die des 3D Gebäu-

demodells sowie die der Bildmerkmale. Um die

präsentierte Methode zu evaluieren, wird der Algo-

rithmus in einer Bildsequenz angewandt und die

Verbesserung visuell beurteilt.
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“Manhattan scenes”, where many horizontal
and vertical lines can be detected in the image.
In some works (Vosselman 1992, eugster &
nebiker 2009) relational matching is applied,
which does not only consider the agreement
between an image feature and a model feature,
but also takes the relations between features
into account.
Methods can also be differentiated based on

which image features they use for matching.
Some authors propose points (Ding& Zakhor
2008, aVbelj et al. 2010), but most works con-
sider lines as more natural for building struc-
tures and use them for co-registration (DebeV-
ec 1996, Früh et al. 2004, schenk 2004, eug-
ster & nebiker 2009). In some papers hybrid
methods employing points and lines at the
same time are presented (Zhang et al. 2005,
tian et al. 2008).
Only few authors take the uncertainty of

the applied 3D models into account. Usually
the models used for these kinds of matching
are stored in a parameterized form (sester
& Förstner 1989, lowe 1991, DebeVec et al.
1996, Vosselman 1998), which is very useful
for 3D reconstruction, because the parame-
terized models represent simple buildings or
building primitives. However, reconstructed
building models are frequently modelled by
polyhedra and stored in a format supporting
polyhedral models, e.g. CityGML. Thus, for
matching images with existing 3D building
models other methods should be developed.
In our research we present a method for

matching polyhedral 3D building models with
thermal IR imagery. Because we do not use
the parametric model representation, we can-
not directly apply the stochastic model pro-
posed by sester & Förstner (1989). In con-
trast to hoegner et al. (2007) we do not use
terrestrial image sequences but instead match
images taken by a camera mounted on a ly-
ing platform. We extend our previous work
(aVbelj et al. 2010) as we do not use the inter-
section points but apply a line based match-
ing and consider both, the uncertainties in
the 3D building model and those in the image
features. The goal of this technique is an im-
provement of the camera position, so that the
best it between the 3D building model and the

image structure is achieved.

1 Introduction

Thermal inspections of buildings contribute
to the detection of damaged and weak spots
in the building structure. Three dimensional
(3D) spatial referencing of the captured imag-
es helps the interpretation of the data, espe-
cially for large area inspection using images
taken by a mobile mapping system. Façades
seen from the street level can by captured by a
camera mounted on a vehicle (hoegner et al.
2007) and the roofs are imaged from a lying

platform. Using multi aspect airborne oblique
images, the missing walls in inner yards are
captured. The spatial reference is achieved by
combining infrared images with 3D building
models via texture mapping. The existing 3D
building models can be projected into the in-
frared (IR) images and the building textures
can be extracted. For the projection the exte-
rior and interior orientation parameters of the
camera need to be known. These parameters
can be determined directly from the naviga-
tion device and camera system calibration pa-
rameters (camera calibration, boresight and
lever-arm calibration). Unfortunately, the di-
rect geo-referencing is often not suficiently

accurate and the model does not match the
structures in the image. To reine the regis-
tration a model-to-image matching should be
carried out.

2 Related Work

In literature the model-to-image matching
problem for airborne imagery is frequent-
ly addressed and many methods for solving
the problem have been presented. Früh et al.
(2004) propose line matching based on slope
and proximity by testing different random
camera positions. However, as Ding & Zak-

hor (2008) mentioned, this method requires
high computational effort. hsu et al. (2000)
search for the best camera position by mini-
mizing the disagreement between projected
features and features detected in the image.
Other authors propose methods for coarse ori-
entation which use vanishing points (Ding &
Zakhor 2008, Förstner 2010). These methods
lead to faster results, but they assume so called
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3.1 Line Parameterization

Polyhedral 3D building models are stored
as a set of polygons deined by lines (edges)

and points (corners). Lines are natural build-
ing structures, which can be detected in the
image. To use these lines for co-registration a
mathematical description of a line is needed.
Typically a line in 3D is described by a direc-
tion vector v and a point P. For this descrip-
tion any point P belonging to the line can be
used, thus there is more than one set of param-
eters describing one line. To solve this prob-
lem roberts (1988) introduced a line repre-
sentation which is unique and unambiguous.
This line representation was discussed, varied
and applied in photogrammetric context by
schenk (2004).
Roberts’ line representation is based on two

orientation parameters (α, θ) and two position-
al parameters (X

s
, Y

s
). The azimuth α and ze-

nith θ can be deduced from the spherical co-
ordinates of vector v. (X

s
, Y

s
) are coordinates

of the intersection point with the plane X’Y’,
where X’Y’Z’ is the rotated original coordinate
system XYZ, so that the Z’-axis is parallel to
the line (Fig. 1a). All equations required to cal-
culate these parameters are given by schenk
(2004) and meierholD et al. (2008). Each
point on the line can be expressed as

cos cos sin cos sin

sin cos cos sin sin .

sin cos

s s

s s

s

X X Y t

Y X Y t

Z X t

α θ α α θ
α θ α α θ

θ θ

− +  
   = + +  

   − +   
(1)

As we can see, all lines, including verti-
cal and horizontal ones, are deined using (1).

This parameterization uses four parameters,
which is the number of degrees of freedom of
a 3D line. We use this representation of lines
to express the edges of the 3D building model.
Similarly, we searched for a 2D line repre-

sentation which uses the minimal number of
parameters and is deined in all cases. For this

purpose the representation with angle γ and
distance p can be used:

cos sin 0x y pγ γ+ − = , (2)

3 Line based Matching

In the presented research the main goal is to
ind the best it between the existing 3D build-
ing model and the IR image sequence. We as-
sume a calibrated camera system with GPS/
INS navigation, known interior orientation
of the IR camera, and known lever-arm and
bore-sight parameters. Accordingly, the cam-
era position and orientation are determined
quite accurately. This allows the projection of
the 3D building models into the image using
the collinearity equations. Unfortunately the
projected 3D model often does not match the
structures in the image. On one hand this is a
consequence of the remaining error after the
camera calibration and the camera pose (po-
sition and orientation) determination. On the
other hand the mismatch can be related to the
rolling shutter effect. Rolling shutter occurs
in cameras with a line-wise readout system
when the photographed objects or the camera
are moving. Such systems are often used in IR
cameras, thus the rolling shutter effect is par-
ticularly noticeable in IR images taken by a
moving camera and can lead to a “shrinking”
or “stretching” effect on the imaged objects.
Another reason for the mismatches can be the
unmodelled lens distortions of the IR camera
or unmodelled vibrations of the camera. To re-
duce all these remaining errors we propose a
matching procedure between the 3D models
and each IR image frame.
Our method is based upon the least squares

method. We use the stochastic model to em-
bed the uncertainties of the extracted image
lines and the uncertainty of the 3D building
models. The uncertainty of the image lines is
given by the uncertainty of the extraction pro-
cess of the lines, and the uncertainty of the 3D
building models is a result of the inaccurate
extraction process and generalization. In this
research we use 3D building models generated
from aerial images. Therefore we assume the
roofs to be more reliable, because they were
directly measured during the 3D reconstruc-
tion. Besides, the radiometric properties of the
ground (sidewalks and streets) in thermal IR
are similar to the properties of the walls, so
that the edges between have very low contrast
and often cannot be extracted.
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calculated as Δγ
max
= 3·σ

γ
, where σ

γ
is the un-

certainty of the parameter (angle) γ of the pro-
jected model line, which is calculated by prop-
agating the uncertainty of the camera position
and the uncertainty of the model. Formally we
can write these conditions as:

{ }1 2 maxif ,j mi j j i ijl l e e S γ γ→ ⊆ ∧ ∆ ≤ ∆ (3)

ij i jγ γ γ∆ = − , (4)

where l
mi
denotes the ith model line, S

i
is the

search space for the ith model line (buffer
around l

mi
), l

j
denotes the jth image line, e

1j
and

e
2j
are the end points of the jth image line, γ

i
is

the γ-parameter of the representation given by
(2) for the projection of the ithmodel line and γ

j

is the γ-parameter for the jth image line.
This search for correspondences is applica-

ble in our case because we assume to know
the exterior orientation of the camera from the
GPS/INS path precisely enough for the pro-
jected model lines to be only a few pixels away
from their corresponding image features. To
ensure a reliable assignment a visibility check-
ing algorithm is also required, so that hidden
edges are not projected into the image and no
correspondences for them are assigned.

p denotes the shortest distance from the line
to the origin of the coordinate system, and γ
denotes direction angle of the normal vector
to the line (Fig. 1b).

3.2 Assignment of Corresponding
Lines

Assignment of corresponding lines is carried
out in the 2D image space. The model lines
are projected into the image using coarse exte-
rior orientation parameters obtained by direct
georeferencing, and for each model line po-
tentially corresponding image lines are found.
In this work we apply an assignment based on
relative position and orientation. We calcu-
late a buffer S

i
around every projected visible

model line segment. The width 2·Δp of S
i
is

given by Δp = 3·σ
p
, where σ

p
is the uncertainty

of the parameter p (distance) of the projected
model line, calculated by propagating the un-
certainty of the camera position and the un-
certainty of the model. For all image line seg-
ments within the buffer we calculate the an-
gle difference Δγ

ij
(Fig. 2). All model line seg-

ments for which Δγ
ij
is smaller than a threshold

Δγ
max
are accepted as correspondences. Δγ

max
is

Fig. 1: Parametrization of a line – graphical
representation a) in 3D space using 4 param-
eters; b) in 2D space using 2 parameters.

Fig. 2: Assignment of correspondences. l
mi

is
the ith model line. For every l

mi
(in black) a

search space S
i
(the buffer around l

mi
) is de-

ined. If both end points e
1j

and e
2j

of image line
are within S

i
and the angle difference ∆γ

ij
be-

tween l
mi

and l
j
is smaller then a threshold, then

the image line l
j
is accepted as a correspond-

ence for l
mi

(in green). Otherwise l
j
is rejected

as a correspondence for l
mi

(in red).
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constant. v̂
γj
and v̂

pj
denote the corrections we

seek to minimize in the least squares context:

( )2 2
ˆ ˆ minj pjv vγ + →∑ ∑ . (10)

Writing the model in a vector form, where

1 1 2 2[ , , , ,....., , ]Tn np p pγ γ γ=b , (11)

1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , , , ,....., , ]Tp p n pnv v v v v vγ γ γ=v , (12)

0 0 0
ˆˆ ˆ ˆ ˆ ˆˆ [ , , , , , ]X Y Z ω φ κ=x (13)

we get:

ˆ ˆ ˆ ˆ ˆ,+ = = + = +b v f(x) f(x x) x x x ∆ ∆ . (14)

Here b denotes the observation vector for
n-correspondences, x̂ denotes the vector of es-
timated unknowns, and ̇ denotes the vector
of approximated values for unknowns. Apply-
ing a irst order approximation using a Taylor

series the Jacobian matrix A is calculated as

( )∂
=

∂
f x

A
x




. (15)

Then ∆x̂ and v̂ are estimated using

( ) ( )
1

ˆ ( )T T

bb bb

−

= −x A P A A P b f x∆ , (16)

( )ˆ ˆ ( )= − −v A x b f x∆ . (17)

where P
bb
is the weighting matrix and

1 2 1

0bb bb bbσ− −= = ⋅P Q C . (18)

Q
bb
denotes the weight coeficient matrix,

C
bb
denotes the covariance matrix and σ

0
2 de-

notes the variance factor.

3.4 Uncertainty of the Building Model

The uncertainty of the building model is re-
lated to the inaccuracies of creation and gen-
eralization. Many building models are created
from aerial imagery, where the roof corners
and the height to the ground are measured.
Hence often the roof overlap is not modelled,
and the wall edges are less accurate (less reli-
able) than the roof edges. We assume differ-

3.3 Line Based Least Squares
Adjustment

The correspondence between 3D coordinates
and their perspective projection into the im-
age is given by the collinearity equations. The
collinearity equations can be combined with
(1) and the parameters m and d from the line
representation

:l y mx d= + (5)

can be calculated. Detailed equations needed
to express m and d in terms of camera posi-
tion parameters are given by meierholD et al.
(2008). The authors also mention the problem
of vertical image lines, which cannot be ex-
pressed using (4) and propose to change the
line representation to

1
: ' ', where ' , '

d
l x m y d m d

m m
= + = = . (6)

The problem during the adjustment is that
some lines can change from being non-verti-
cal to being vertical in the iteration process,
so that the Jacobian matrix would have to be
re-designed. To avoid this problem we use (2),
express γ and p in terms of camera orientation
parameters and use them as observations.

2

1
arctan ,

1

d
p

m m
γ  = − = 

  +
(7)

For the adjustment we use the least squares
method with the model:

0 0 0
ˆˆ ˆ ˆ ˆ ˆˆ ( , , , , , , , , , )j j i i Si Siv f X Y Z X Yγγ ω φ κ α θ+ = ,

(8)

0 0 0 0 0

ˆ

ˆˆ ˆ ˆ ˆ ˆ( , , , , , , , , , , , , )

j pj

i i Si Si

p v

f X Y Z X Y c x yω φ κ α θ

+ =

.(9)

In (8) and (9) the hat “^” is used for un-
knowns to be estimated. f denotes the func-
tional model derived from the modiied collin-
earity equations (7) based on the exterior ori-
entation of the camera (X

0
, Y

0
, Z

0
, ω, φ, κ), the

interior orientation parameters (c, x
0
, y

0
) and

the parameters (α
i
, θ

i
, X

Si
, Y

Si
) of the 3D lines.

The interior orientation parameters and the
parameters of the 3D lines are assumed to be
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Therefore the uncertainty in the parameters of
the 3D line models (α

i
, θ

i
, X

Si
, Y

Si
) has to be cal-

culated using error propagation law:

T

yy xx=C FC F . (21)

C
xx
denotes the covariance matrix for 3D

coordinates of the corners, F is the Jacobian
for the function transforming the XYZ coor-
dinates to line parameters α, θ, X

S
, Y

S
, and

C
yy
denotes the covariance matrix for the line

parameters. The uncertainty of X
S
and Y

S
de-

pends on the coordinate system. Therefore all
calculations should be carried out in the local
coordinate system.

3.5 Reliability and Uncertainty of
Image Lines

Edge extraction is carried out using the Can-
ny algorithm. The edges are detected with dif-
ferent extraction parameters. By varying the
minimum edge strength required for a feature
to be accepted as an edge, different results
are achieved. Lowering this parameter results
in multiple detections, because low-contrast
edges are also included. However, these edges
are less reliable as building edges. Setting a
high minimum edge strength means “strong-
er” edges can be detected, but there may not
be a suficient amount to it the model. Thus

we propose edge detection with varying mini-
mum edge strength. As a result we get three
sets of detected edges. We then combine all
three edge sets using the minimum strength
to weight them.
Additionally, we assume that building edg-

es correspond to long image lines. Short lines
more likely correspond to other objects or to
noise. Therefore we also use the length of the
detected lines for weighting. The weights of
the lines are calculated as follows:

max

1

2 255

j j

j

l a
g

d

 
= + 

 
(22)

where g
j
denotes the weight for the jth im-

age line, l
j
denotes the length of the jth line,

a
j
∈ [0,255] denotes the threshold for the min-

imum edge strength used for the extraction of
the jth line and d

max
is the length of the diagonal

ent accuracy values for the roof points and for
the wall/ground points in the model, which are
presented graphically as ellipses in Fig. 3. The
Z-coordinate is assumed to be less accurate
than X- and Y-coordinates. In Fig. 3 it can be
observed that in the case of oblique airborne
images not only the X- and Y-components, but
also the Z-component of the uncertainty has
a strong inluence on the position error of the

projected point.
The model uncertainty can be embedded

into the model presented in section 3.3 ex-
tending the vector of unknowns with the mod-
el line parameters:

0 0 0
ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ [ , , , , , , , , , ]i i Si SiX Y Z X Yω φ κ α θ=x . (19)

Also the functional model f (14) has to be
extended with equations for the model line pa-
rameters as follows:

ˆˆ

ˆˆ

ˆˆ

ˆˆ

i i i

i i i

Si Xsi Si

Si Ysi Si

v

v

X v X

Y v Y

α

θ

α α

θ θ

+ =

+ =

+ =

+ =

(20)

Accordingly the Jacobian matrix A is ex-
tendedwith 4n observations and 4n unknowns.
Unfortunately the uncertainties of the param-
eters of the 3D line models (α

i
, θ

i
, X

Si
, Y

Si
) are

not directly known. Usually the position accu-
racy of the 3D building models created from
aerial imagery is given for building corners.

Fig. 3: Projection of model point uncertainty
into the image in oblique geometry.
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log(1 0.99)

log(1 (1 ) )r
k

ε

−
=

− −

, (23)

where r is the number of necessary observa-
tions, ε∈ (0,1) is the outliers rate and the prob-
ability that RANSAC makes at least one error
free selection is 99 %. We estimate ε as

ModN Nε = − , (24)

where N is the number of hypothetical corre-
spondences selected by the assignment algo-
rithm and N

Mod
is the number of model lines

which have at least one assigned image line.
The RANSAC algorithm results in new exte-
rior orientation parameters and a set of correct
correspondences. These data are taken as the
input for the adjustment procedure described
in section 3.3.

5 Data Description

For our experiments we used a test dataset
captured in a densely built-up area in the cen-
tre of Munich, Germany. The thermal imag-
es were taken using the IR camera AIM 640
QLW FLIR with a frame rate of 25 images per
second. The camera was mounted on a plat-
form carried by a helicopter. The lying height

was approximately 400 m above ground lev-
el. The camera was forward-looking with an
oblique view of approximately 45°. The size

of the entire image. An exemplary weighting
of the lines is presented in Fig 4.
We use weighting to identify the reliable

edges and do not consider those with low
weights for the assignment of correspondenc-
es.
For the image features the position uncer-

tainty of the end points is given. Thus, we cal-
culate the P

bb
matrix for γ and p using error

propagation as shown in (21).

4 Elimination of Incorrect
Correspondences Using
RANSAC

The method of assigning correspondences de-
scribed in section 3.2 allows for the selection
of multiple image lines corresponding to one
model line. This leads to many incorrect cor-
respondences, which have to be eliminated or
reduced. For this purpose we apply the ran-
dom sample consensus – RANSAC (Fischler
& bolles 1981). From the set of all hypotheti-
cal correspondences selected in the procedure
from section 3.2, we randomly select three
correspondences from different parts of the
model and calculate exterior orientation pa-
rameters without redundancy. We then check
how many of the remaining correspondences
it the randomly estimated exterior orienta-
tion parameters. This procedure is repeated k-
times, and k is calculated as

Fig. 4: An exemplary IR frame (a) and the weighting of the lines extracted in this frame (b). Three
different minimum edge strengths were used for the extraction.
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6 Results

We carried out tests with the data described
in section 5. An exemplary frame with the
image lines (cyan, blue and magenta) and the
projected model (yellow and green) is pre-
sented in Fig. 5a. The model lines which have
correspondences are printed in green and the
model lines without correspondences in yel-
low. The image lines without correspondenc-
es are presented in cyan; image lines which
were assigned to model lines, but refused by
RANSAC are depicted in blue, and image
lines which were accepted by RANSAC and
taken as input for the adjustment are depict-
ed in magenta. Fig. 5b shows the same frame
with the projected model before (red) and after
(green) adjustment.
In Fig. 5b an improvement of the position

of the projected model can be observed. Pro-
jected building structures match the IR image
very well. Thanks to this, thermal building
textures can be extracted precisely. Neverthe-
less, accuracy of the exterior orientation pa-
rameters estimation is not very high. For the
exemplary frame from Fig. 5 the standard de-

of the images is 640 × 512 pixels. According
to the lying height, camera orientation and

camera parameters, the ground resolution of
the IR images varies from about 0.5 m in the
foreground to about 1.4 m in the background
of the oblique images.
For geo-referencing we use data acquired

by an Applanix POS AV 510 GPS/INS sys-
tem. To correct the INS drift a Kalman ilter is

applied and an extended bundle adjustment is
carried out (kolecki et al. 2010). The correct-
ed exterior orientation parameters are used for
the model projection.
The 3D building models were created semi-

automatically using commercial software for
3D building reconstruction from nadir view
aerial images and stored in the CityGML for-
mat. In this format the buildings are stored
face-wise as sequences of 3D points. Accord-
ingly, all the lines are stored twice (once in
each of the two faces intersecting at that line),
and points even occur three or more times. We
therefore reorganize the model to reduce dou-
ble lines. We collect all points (corners) and
remove repetitions. Then we store lines and
faces as references to the points.

Fig. 5: Exemplary frame with extracted lines and a projected model: (a) before matching, where
cyan = image lines without correspondences, blue = image lines with correspondences but re-
fused by RANSAC, magenta = accepted image lines, green = model lines with correspondences,
yellow = model lines without correspondences; and (b) after matching, where red = 3D building
model projected with initial exterior orientation parameters, green = 3D building model projected
with adjusted exterior orientation parameters.
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tions are known with an accuracy of 1–2 m
and 0.1–0.2°, respectively. As we mentioned in
section 3.2, the size of the search space S

i
and

the angular threshold are calculated based on
the expected displacement and rotation of the
projected model lines, which are in turn cal-
culated from the propagation of errors in the
3D building model and the exterior orientation
parameters. If we downgrade the initial exte-
rior orientation by 4σ, we get the width param-
eter of the buffer Δp = 3·σ

p
in range of about

40 pixels and the angular threshold Δγ = 3·σ
γ
,

which corresponds to about 8°. The values are
so high, because σ

p
and σ

γ
are calculated as

propagation of the uncertainty of the camera
position and orientation and the uncertainty
of the 3D building model. This leads to many
incorrect correspondences with ε ≈ 85 %. In
case of downgrading with 7σ we get ε ≈ 93 %.
The typical least squares adjustment method
cannot cope with such a large number of out-
liers. However, using RANSAC the algorithm
is robust even if the camera is “shifted” from
the initial position by few meters (e.g. Fig. 6).
For 7σ we still get 46 % successfully matched
samples.

7 Discussion and Future Work

Line based model-to-image matching has high
potential for co-registration of buildings with
oblique airborne images. Edges are the most
representative features for building structures
and can be easily detected in the image using
standard image processing algorithms. Con-
sidering the uncertainty of image lines and of
the building model, as proposed in this paper,
a better it between the building model and the

image structures is achieved. However, esti-

viations are σ
X
= 3.8 m, σ

Y
= 6.5 m, σ

Z
= 4.5 m,

σ
ω
= 0.60°, σ

φ
= 0.69°, and σ

κ
= 0.39°. This is

related to the low resolution of the images and
the low accuracy of the extracted edges.
To evaluate the method and to investigate

the sensitivity of the method with respect to
changes in the initial exterior orientation we
selected one frame and carried out a test in
which we generated normally distributed ran-
dom numbers with mean μ = 0 and standard
deviation σ

xyz
= 1 m, σ

ωφκ
= 0.1° and used them

to degrade the initial exterior orientation pa-
rameters. We successively repeated the test
with increasing σ

xyz
and σ

ωφκ
. Results of this

investigation are presented in the irst row of

Tab. 1. For comparison we conducted the same
test without RANSAC (second row of Tab. 1).

Tab. 1: Percentage of successfully matched
samples with downgraded initial exterior orien-
tation. σ denotes the standard deviation used
for the generation of normally distributed ran-
dom numbers, with σ = σ

xyz
, σ

ωφκ
, where σ

xyz
=

1 m, and σ
ωφκ

= 0.1°. First row: results using
RANSAC; second row: results based on the
assignment of correspondences without outlier
detection.

Successfully matched samples when
downgrading the exterior orientation with
normally distributed numbers using mean

μ = 0 standard deviation (%)

σ 3σ 4σ 5σ 7σ

(1) 96 68 65 61 46

(2) 98 43 20 16 0

Tab. 1 shows that our method works for well
geo-referenced images. The search for corre-
spondences proposed in section 3.2 delivers
good results if the camera position and rota-

Fig. 6: Exemplary frame with the 3D building models projected with exterior orientation parame-
ters downgraded by normally distributed numbers with μ and 7σ (red) and projected 3D building
models after adjustment (green).
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the measured radiation row-wise. If the cam-
era is moving each row is read at a different
point in time, and therefore at a different posi-
tion, which should be accounted for in the geo-
metrical model used for estimation.
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