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Summary: Monitoring of urban areas using remote
sensing data requires reliable change detection
techniques. While most of the changes are optically
visible and easily detectable by an expert user, au-
tomatic processes that remain valid even when dif-
ferent kinds of input data are considered, are quite
difficult to develop. This paper provides new solu-
tions for semi-automatic 3D change detection of
buildings based on the joint use of height and spa-
tial information. It is an attempt to build a reliable
scheme for change detection able to process high as
well as lower quality Digital Surface Models
(DSMs). The subtraction of DSM, computed from
stereo pairs acquired at different epochs, provide
valuable information about 3D urban change. How-
ever, when at least one of the DSMs presents some
artifacts, a simple DSM subtraction may result also
in the detection of virtual changes. Several post-
processing steps are proposed in this paper and
adapted to different DSM qualities in order to
quantify real changes. Shape features are intro-
duced to describe the geometry of the detected
changes and a Support Vector Machine (SVM)
classifier is used to differentiate real from virtual
changes. Evaluation of the proposed approach on
object and pixel level in terms of completeness,
correctness, overall accuracy, etc is performed,
proving its efficiency and relatively high accuracy
for different kind of stereo images and consequent-
ly different DSM qualities.

Zusammenfassung: Automatische 3D-Verände-
rungsanalyse in städtischen Gebieten durch die
Kombination von Höhen und Form Information.
Das Monitoring städtischer Gebiete mit Fernerkun-
dungsdaten erfordert zuverlässige Verfahren der
Veränderungsanalyse. Obwohl die meisten Ände-
rungen visuell durch einen erfahrenen Bildinter-
preten leicht erkennbar sind, erweist sich die Ent-
wicklung automatischer Verfahren, die auch dann
verlässliche Ergebnisse liefern, wenn unterschied-
liche Qualitäten von Input-Daten vorliegen, als sehr
problematisch. Dieser Artikel zeigt neue Ansätze
zur semi-automatischen Erkennung von 3D Verän-
derungen von Gebäuden, die auf der gemeinsamen
Nutzung der räumlichen sowie der Höhen-Informa-
tion basieren. Ziel ist die Erstellung eines Verfah-
rens zur Erkennung von Veränderungen in Digita-
ler Oberflächenmodellen (DSM) welches auch mit
Daten geringerer Qualität zuverlässig arbeitet. Die
Subtraktion von DSM erstellt aus Stereo-Bildpaa-
ren aus unterschiedlichen Zeiten enthält wertvolle
Information über neue oder abgerissene Gebäude.
Wenn allerdings eines oder beide DSM Fehler auf-
weisen, wird eine einfache Subtraktion von DSMs
auch virtuelle Veränderungen enthalten. Aus die-
sem Grund werden mehrere Verarbeitungsschritte
entwickelt um virtuelle Änderungen auch in DSM
schlechterer Qualität möglichst weitgehend zu eli-
minieren. Es wird die Verwendung von vorgegebe-
nen Form-Eigenschaften vorgeschlagen, welche die
Geometrie der erfassten 3D Objekte beschreiben
und ein Klassifikator aus dem Bereich Support
Vector Machines (SVM) wird zur Unterscheidung
von virtuellen und echten Änderungen verwendet.
Die anschließende Bewertung auf Objekt- und Pi-
xel-Level im Hinblick auf Vollständigkeit, Richtig-
keit und Genauigkeit zeigt die Effizienz des vorge-
schlagenen Ansatzes für verschiedene Arten von
Stereo-Bilddaten mit unterschiedlichen DSM Qua-
litäten.
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have been obtained, but this is somehow due
to the very good quality of the used DSMs and
to the successful tuning of the different thresh-
olds. This height and spatial information joint
exploitation has also been the focus of some of
our previous publications (Tian et al. 2011,
Chaabouni-Chouayakh et al. 2011) and has
shown quite promising change detection re-
sults for DSMs generated from satellite imag-
es. This article aims at generalizing this ap-
proach so that it remains valid for a wider
range of DSM qualities and sources. In here,
two different DSM datasets have been in-
volved in order to evaluate the ability of the
proposed method to detect changes from vari-
ous input remote sensing data. The first DSM
dataset has been produced from airborne im-
ages acquired at two different epochs from the
DLR 3K camera system (kurz et al. 2007).
Whereas, the second DSM dataset is generat-
ed from two pairs of Ikonos satellite stereo
images acquired at different epochs. Since the
quality of the considered DSM datasets is not
as good as the Lidar/Laser ones, some adap-
tive post-processing steps have been included
so that the proposed approach does not remain
limited only to very high quality DSMs. Also,
still in the frame of the automation of the pro-
posed change detection approach and to avoid
the manual tuning of the different thresholds,
after the feature extraction step, this work
suggests to separate the real changes from the
virtual ones, using the Support Vector Ma-
chine (SVM) classifier which has shown high
efficiency and robustness in various pattern
recognition applications (burges 1998).
The organization of this paper is as follows:

Section 2 gives a short overview about the
DSM processor adopted to generate the DSMs.
Section 3 describes the data used in this work
while Section 4 provides the different steps of
the proposed 3D change detection approach.
Section 5 assesses the accuracy of the method
using several objective metrics. Finally, Sec-
tion 6 gives some conclusions and proposes
some perspectives.

1 Introduction

In the last few decades, the constantly inten-
sive global urbanization has made the urban
and suburban areas among the most dynamic
sites on Earth. New innovative tools are thus
required for better monitoring of such areas.
Remotely sensed imagery in some cases may
be a very reliable source for better understand-
ing of urban areas. In fact, satellite imagery
can significantly improve the monitoring of
cities in a wide range of applications, e. g., ur-
ban growth monitoring, disaster damage as-
sessment, urban change detection, etc.
The overall goal of this paper lies in the de-

velopment of a reliable automatic urban
growth monitoring scheme valid even when
input remote sensing data with different quali-
ties and/or from different sources are consid-
ered. The proposed processing scheme is
based on the joint use of height and spatial or
shape information. In fact, urban changes are
in general either related to building and road
construction/demolition or vegetation growth.
These issues should be well described if height
and shape information are available. Many
works have been dedicated to detect 2D chang-
es using remote sensing data as reviewed in
(Lu et al. 2004, radke et al. 2005), but the is-
sue of 3D change detection has been seldom
tackled. In the literature, to monitor height
changes, subtraction of Digital Surface Mod-
els (DSMs) has been widely used (gong et al.
2000, heLLer et al. 2001, hoLLands et al.
2007). This simple approach could provide re-
liable results if accurate DSMs are available.
However, if at least one of the used DSMs
shows some artifacts (which is quite often the
case), we are in general faced by the problem
of significant height differences over some
complex 3D structures. This may result in the
detection of virtual changes, generally charac-
terized by strange shapes. Therefore, this work
suggests the additional use of several shape
features in order to describe the geometry of
the spatial extent of the different constructed/
demolished buildings, generally characterized
by quite regular shapes. A similar approach
has been used in the works of (ekhTari et al.
2008, MaTikainen et al. 2010) to detect build-
ings and building changes using Lidar and La-
ser DSMs. Accurate building detection maps
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cluded areas. This is generally the case
when more than one pair of stereo images1

is used as input to the DSM processor. Ac-
tually, it is worth to note that one of the
common artifacts in DSMs over urban ar-
eas comes from the interpolation over some
problematic areas such as shadowed areas
from buildings. This will be explained in
more detail in Section 4.1.

3. Additionally, ortho-rectified Multi-Spectral
(MS) images (according to the DSM) might
also be provided, when necessary.

3 Presentation of the Data

The evaluation of the proposed change detec-
tion approach has been carried out using two
DSM datasets with different quality:
Munich dataset: High quality unfilled●
DSMs (Fig. 2):
These DSMs have been generated after ap-
plying SGM on airborne images from June
2007 and August 2008 over the city of Mu-
nich in Germany. These images have been
provided by the DLR 3K camera system
(Kurz et al. 2007). The 2007 data are com-
posed of 7 nadir and 7 side-looking images

1 When more than one pair of stereo images is
available, the SGM stereo matching is first per-
formed on each pair of these pairs. Then, the result-
ing “unfilled DSMs” are combined using a median
value to generate one final “unfilled DSM”.

2 DSM Processor Overview

To generate the different DSMs investigated
in this work, the Semi-Global-Matching
(SGM) algorithm implemented at DLR
(hirsChMüLLer 2008, d’angeLo et al. 2008)
has been used. The high performance of SGM
in comparison to other DSM processors has
been highlighted in (heipke et al. 2007) and its
overall processing scheme is displayed in
Fig. 1.

In the following, the different steps of the
DSM processor of Fig. 1 are explained in more
detail. For each pair of stereo images:
1. A stereo matching is first applied using
SGM. This results in a first DSM version,
usually called “unfilled DSM” since it
shows some holes when the matching be-
tween the two stereo images fails (e. g., in
occluded areas).

2. Then, the Delta surface fill technique is ad-
opted to fill the “unfilled DSM” with data
from the corresponding DSM in the SRTM
ETM+ reference data. This has the notion
that a very coarse DSM is used to interpo-
late a high resolution DSM but this tech-
nique is adapting the SRTM DSM to the
local height values of the SGM-DSM and
therefore leads to a meaningful filling. This
step provides the final DSM version, called
“filled DSM”. Although this interpolation
step is highly required to get higher DSM
quality, it might be omitted when the un-
filled DSM does not present too many oc-

Fig. 1: DSM processor overview.
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red to the side-looking images) have been
involved in the generation of the 2008 data.
Another possible explanation consists in the
larger number of image pairs used in the
case of the 2008 data. Despite its occluded
areas, the 2007 unfilled DSM is still consi-
dered to have a tolerable quality and the
Delta surface fill-based interpolation of the
DSM processor could consequently be
omitted for both 2007 and 2008 data.
It should be noted that the Munich dataset
has been used in this work to check the ro-
bustness of the proposed approach in per-
forming a multi-temporal urban area change
monitoring using high quality DSM without
integrating the potential DSM computation

with a side overlap of 66%. Neighboring na-
dir and side-looking pairs were processed
as described in Fig. 1 to generate the final
unfilled DSM. However, the 2008 data are
made of 18 nadir images with an along-
track overlap of 80%. The corresponding
unfilled DSMs have been generated in this
case after processing several neighboring
nadir pairs. The two results are displayed in
Fig. 2. It can be noticed that the unfilled
DSM of 2008 shows much less occluded
areas (black pixels) than the one of 2007.
This can be explained by the fact that a mix-
ture of nadir and side-looking images has
been used to generate the 2007 data while
only nadir images (which are often prefer-

(a) Unfilled DSM from June 2007 (b) Unfilled DSM from August 2008

Fig. 2: Munich dataset: The two unfilled DSMs used in this work to perform a multi-temporal
change monitoring of the city of Munich in Germany. The black pixels in the DSM images corre-
spond to no-data values (occluded areas).

(a) DSM from spring 2006 (b) DSM from winter 2010

Fig. 3: Yeonwon dataset: The two filled DSMs used in this work to perform a multi-temporal and
multi-season change monitoring of the city of Yeonwon in North Korea.
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After the DSM subtraction, this work propos-
es to introduce some adaptive post-processing
steps to generate better change detection re-
sults. Note that the subtraction of unfilled
DSMs consists in differentiating the data only
over the areas where the stereo matching did
not fail, as described in the following state-
ment:

For each pixel (i, j):
if (uDSM1(i, j) ≠ NoData) and

(uDSM2(i, j) ≠ NoData), (1)
then DiffuDSM(i, j)

= uDSM2(i, j) – uDSM1(i, j),
else DiffuDSM(i, j) = 0

where uDSMk, (k=1,2) are the two unfilled
DSMs displayed in Fig. 3 and DiffuDSM denotes
the difference image while NoData corre-
sponds to the value adopted to identify the not
matched areas.

Fig. 4 depicts the two absolute DSM differ-
ences, when the statement (1) is applied to the
Munich dataset unfilled DSMs of Fig. 3 and a
simple subtraction of the Yeonwon dataset
filled DSMs of Fig. 4 is performed.

After examining deeply the DSM differ-
ence images depicted in Fig. 4, the following
observations can be stated:

Most of the virtual changes come from the●
DSM artifacts caused either by the SRTM-
based filling over certain occluded areas,
specially the ones corresponding to shado-
wed regions of buildings (in the case of the
Yeonwon dataset), or by some precision er-
rors in the height computation of the DSM.
In order to overcome the first problem, eli-
mination of the shadowed regions over the
wrongly filled areas is suggested in this
work (Section 4.1). Whereas, a histogram-
based thresholding and shape feature ext-
raction are included in the overall proposed
change detection procedure to remove auto-
matically the virtual changes caused by

errors coming from the interpolation step as
described in Section 2.
Yeonwon dataset: Lower quality filled●
DSMs (Fig. 3):
These DSMs have been generated from two
pairs of Ikonos-2 stereo images (©EUSI
provided under the EC/ESA GSC-DA) ac-
quired in spring 2006 and winter 2010 over
the city of Yeonwon in North Korea. The
generated filled DSMs (Fig. 3) exhibit a
sampling distance of 1 m and a quite good
quality. Indeed, most of the man-made
structures are well reconstructed.
Note that the Yeonwon dataset has been
used to check the robustness of the propo-
sed approach in performing a multi-tempo-
ral and multi-season urban area change mo-
nitoring using lower DSM qualities genera-
ted from satellite data. Since also multi-
spectral information is available, it will be
later included in the proposed change detec-
tion scheme in order to improve its perfor-
mance.

The quality of the two DSM datasets has been
measured in terms of 1) percentage of no-data
pixels (over the occluded areas and due to
other matching problems) and 2) Standard de-
viation (STD) for completely flat areas. Tab. 1
provides the quantitative evaluation of the
quality of the DSMs used to detect changes in
the cities of Munich and Yeonwon.

4 Change Detection Procedure

A typical solution to detect positive and nega-
tive changes consists in subtracting one DSM
from the other. Such an approach provides
generally good results when every pixel in the
image represents the real height of the corre-
sponding point in the studied area. However
when at least one of the DSMs exhibits arti-
facts, this simple approach can not be reliable.

Tab. 1: DSM Quality evaluation.

Munich Dataset Yeonwon Dataset

DSM 2007 DSM 2008 DSM 2006 DSM 2010

Percentage of no-data pixels 2% 0.4% 29.6% 29.7%

STD [m] 0.45 0.48 0.64 0.62
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ferent seasons (spring and winter). Also,
unlike the Munich dataset, in this case the
availability of the multi-spectral data should
allow accurate vegetation detection through
the simple computation of the Normalized
Differenced Vegetation Index (NDVI). The
extracted features in both cases are then
used to feed a SVM classifier to distinguish
between real and virtual changes.
The overall workflow of the proposed change●
detection procedure is displayed in Fig. 5.

height computation errors (Sections 4.2 and
4.3).
The real changes correspond to either cons-●
truction/destruction of buildings or to vary-
ing levels of vegetation growth. For the Mu-
nich dataset, only changes linked to buil-
ding construction/destruction are conside-
red using several shape features. However,
for the Yeonwon dataset, vegetation chan-
ges are additionally monitored since the
data have been acquired in completely dif-

(a) Munich dataset (b) Yeonwon dataset

Fig. 4: DSMs absolute difference. The black pixels in (a) correspond to no-data values in at least
one of the unfilled DSMs of Fig. 2.
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the unfilled DSM difference in the case of●
the Munich dataset (Fig. 4(a)); and
the DSM difference image (Fig. 4(b)) in the●
case of the Yeonwon dataset after applying
the shadow-hole mask described by Eq. (2).

In fact, observing exemplarily the histogram
of the Yeonwon dataset difference image after
shadow elimination depicted in Fig. 7, it could
be noticed that possible real changes are lo-
cated in the tail of the histogram (far from the
average value, which is close to zero).
To determine the threshold Threspos relative

to the possible positive changes, a histogram-
based thresholding is applied as follows:

(3)

4.1 Shadow Elimination

One of the common artifacts in DSMs over
urban areas comes from the filling with a
coarser DSM in locally high varying height
regions. Exemplarily, neighboring buildings
separated by a narrow road appear usually as
one connected structure in the filled version of
the DSM with a quite strange shape, as can be
seen in Fig. 6(a-c). Such an artifact bothers the
characterization of the real changes using
shape features. To recover this problem, the
following shadow-hole mask has been applied
to the DSM difference image:

(2)

where MaskL
Shadow and MaskR

Shadow are the
shadow masks computed, according to the
method of (MarChanT & onyango 2000),
from the left and right stereo images, respec-
tively, and MaskHole represents the hole mask
calculated from the unfilled DSM.

Fig. 6(d) illustrates well the usefulness of
the shadow detection step in improving the
DSM quality inside urban areas. The charac-
terization of changes relative to single build-
ing construction/destruction becomes there-
fore easier through shape feature extraction.

4.2 Histogram-based Thresholding

As done in the work of (Tuong Thuy et al.
2004), in order to remove the virtual changes
coming from height computation errors, a
histogram-based thresholding is performed
on:

(a) (b) (c) (d) (e)

Fig. 6: Illustration of the usefulness of the shadow detection in improving the DSM quality inside
urban areas. (a) Multi-spectral image. (b) Shadow mask. (c) Unfilled DSM. (d) DSMs subtraction.
(e) Improved DSMs subtraction (the masked pixels are highlighted in black).

Fig. 7: Histogram of the DSM difference image
whose absolute value is depicted in Fig. 4(b)
after applying the shadow-hole mask. Possible
real changes are located in the tail of the histo-
gram.
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extent (ratio of pixels in the segment to pi-●
xels in the total bounding box)

LengthAxisMinorLengthAxisMajor
AreaExtent
×

=

(7)

compactness (ratio of the square root of the●
area to the perimeter of the segment)

(8)

In addition to the features described above,
the mean and standard deviation of the height
over each object have been computed.

In the case of the Yeonwon dataset, the
mainly observed 3D changes are linked either
to varying levels of vegetation appearance
since the two stereo images have been ac-
quired in two different seasons (spring and
winter), or to building construction since a
quite long period (4 years) separates the acqui-
sition years of the two stereo image pairs.
Therefore, in this case, it is first proposed to
compute NDVI masks from the multi-spectral
images and examine their overlaps with the
change segments in order to detect changes
relative to vegetation. After that, assuming
that the rest of the change segments are linked
to building construction, the previously de-
scribed features are computed for each non-
vegetation segment.

After the feature extraction step, SVM has
been used to classify the segments into real
and virtual changes. SVM has been run 10
times with different training and testing data
to avoid any dependency between the choice
of the training data and the classification re-
sults.
Fig. 8 provides the final classification maps

obtained for the two studied datasets in terms

where hpos is the histogram relative to the pos-
itive changes, hmax

pos is the maximal height
difference and αpos denotes the bound over
which a height difference is identified as real
change. The threshold Thresneg relative to the
possible negative changes is similarly com-
puted. In the case of the Munich and Yeonwon
dataset, α-bounds of 0.7 and 0.99 have been
found to be a good compromise in detecting
real changes, maintaining 9 and 1.2% of the
pixels for the next steps, respectively. Al-
though these bounds have been here custom-
ized to each of the considered dataset, more
automation in this thresholding step is expect-
ed in future work.

4.3 Feature Extraction and SVM-
based Real Change Detection

After the thresholding step, the changes are no
more treated as single pixels, but as objects
which are represented through connected pix-
el regions after applying Eq. (3). Different fea-
tures are then computed for each object in or-
der to describe at best the real positive and
negative changes.

In the case of the Munich dataset, only
changes that correspond to building construc-
tion/destruction have been studied. That is
why, the following shape features have been
computed for each object in this work:

area●
elongation (ratio of the major axis length●
and the minor axis one)

LengthAxisMinor
LengthAxisMajorElongation = (4)

eccentricity (ratio of the distance between●
the foci of the ellipse that has the same se-
cond-moments as the segment, and its ma-
jor axis length)

(5)

solidity (proportion of the pixels in the con-●
vex hull that are also in the segment)

(6)
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(Figs. 9 and 10). In the case of the Yeonwon
dataset, only an 800× 800 pixels sub-image of
the change map displayed in Fig. 8(b) has been
investigated in this step since the whole change
map is quite large (2400× 2400 pixels).

Fig. 9 shows that two of twelve changes,
which can be found at the (x,y)-coordinates
(640,560) and (670,570), have been missed in
Munich study site. They actually correspond
to some scaffoldings used during the restora-
tion of the carillon in the tower of the old town
hall in the centre of Munich. They have un-
usual shapes (in comparison to the rest of the
changes), which makes their retrieval as real

of mean of the 10 repetitions. The degrees of
redness and blueness represent the probability
of each segment to be a real change: the higher
the mean value of each segment is, the more
probable the segment corresponds to a real
change.

5 Accuracy Assessment

To assess the accuracy of the obtained change
detection results, a comparison has been car-
ried out between the change maps of Fig. 8 and
the manually derived Ground truth maps

(a) Munich dataset (b) Yeonwon dataset

Fig. 8: Change maps: Positive (in blue) and negative (in red) changes. The degrees of blueness
and redness represent the probability of each segment to be a real change.

(a) Ground truth (b) Change detection results

Fig. 9: Munich dataset accuracy assessment: Change detection results versus GT.
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Based on the quantities summarized in
Tab. 2, the following objective metrics widely
used in the literature (sohn & dowMan 2007,
ekhTari et al. 2008), were computed to pro-
vide a quantitative assessment of our change
detection algorithm:

Branching Factor = FP/TP (9)
Miss Factor = FN/TP,
Completeness(%) = 100 ×TP/(TP + FN),
Correctness(%) = 100 ×TP/(TP + FP),
Quality Percentage(%)

= 100 ×TP/(TP+FN+FP),
Overall Accuracy(%)

= 100 × (TP + TN)/(TP + TN + FN + FP).

Each metric mentioned above provides its
own quantitative measure for evaluating the
overall performance of the algorithm. The
branching and miss factors describe the two
types of potential mistakes (FP and FN) that
may occur in the automatic process. The com-
pleteness represents the percentage of

changes with SVM based on shape features
quite difficult to perform.

In the case of the Yeonwon dataset (Fig. 10),
only two changes (whose centroids are located
approximately at (1360,1250) and (1400,1280))
out of 32 have not been detected. They corre-
spond actually to 3m height differences which
have been removed during the thresholding
step. Also the changes whose centroids are lo-
cated at (1275,1010) and (1278,1055) have
been detected as one connected component
since their boundaries are separated only by 4
pixels.

A pixel-to-pixel evaluation of the proposed
change detection approach in terms of confu-
sion matrix, is summarized in Tab. 2 where TP
(True Positive) and TN (True Negative) are the
numbers of pixels classified as “Change” and
“Non-change” by both maps, respectively, and
FP (False Positive) and FN (False Negative)
are the numbers of pixels classified as “Change”
only in our change detection map or only in the
Ground truth one, respectively.

(a) Ground truth (b) Change detection results

Fig. 10: Yeonwon dataset accuracy assessment (for part of the data): Change detection results
versus GT.

Tab. 2: Accuracy assessment: Pixel-to-pixel evaluation of the change detection results versus
Ground truth.

Munich
dataset

Ground truth Yeonwon
dataset

Ground truth

Our results Change Non-Change Our results Change Non-Change

Change 7085 (TP) 276 (FP) Change 13530 (TP) 1164 (FP)

Non-Change 737 (FN) 894402 (TN) Non-Change 3083 (FN) 622223 (TN)
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The comparison between the object based
and the pixel based change detection shows
that, if one excludes the scaffolding change in
Munich (which can also be seen as a virtual
one), the absolute number of detected changed
objects is quite high (Completeness and Cor-
rectness are 100% for the Munich case and
about 94% for the Yeonwon case). So on object
level this method is highly reliable even for the
lower quality data set, but if one goes into the
details of single pixel comparison then proba-
bly some parts of buildings are missing, the
forms are not exactly given in the DSMs and
therefore quality values are lower.

6 Conclusions and Perspectives

This paper suggested solutions for automatic
3D change detection inside urban areas using
stereo remote sensing data with different qual-
ity. Our solutions are based on the joint use of
height and spatial information. Height changes
are computed through DSM subtraction fol-
lowed by histogram-based thresholding.
Whereas, spatial information is extracted by
computing several shape features for each
change. Finally, the separation between real
and virtual changes is performed through
SVM-based classification.
The approach is tested and evaluated using

data taken from different sensors. While the
first data set consists of high quality DSMs,
each of which is computed from a large num-
ber of airborne image pairs, the second data
set consists of lower quality DSMs, each of
which is generated from only one pair of high
resolution satellite stereo images. A number of
common objective metrics (branching factor,
miss factor, completeness, correctness, quality
percentage, overall accuracy) are computed in
the frame of the quantitative assessment of the
developed change detection algorithm. They
show that although the algorithm performs
better in the case of the high quality data set, it
presents quite accurate change maps also for
the lower quality data set.
The results show a real progress towards

automatic 3D change detection inside urban
areas, although some of them might still be
improved and completed. For instance, more
automation of the procedure could still be

“Change” pixels which are correctly detected
while the correctness shows the percentage of
detected “Change” pixels which belong indeed
to the “Change” class. The quality percentage
describes how likely a “Change” pixel pro-
duced by the automatic approach is true, and
is the most stringent measure of the overall re-
sults of the six statistics. The overall accuracy
is another metric which evaluates the accuracy
of any classification process. It shows the per-
centage of correctly classified pixels.
Tab. 3 provides an evaluation of the pro-

posed change detection algorithm in the case
of the Munich and Yeonwon datasets by means
of the objective metrics described in Eq. (4).
According to Tab. 3, the proposed change

detection algorithm performs better in the
case of the Munich dataset, especially in terms
of miss factor, completeness and quality per-
centage. This is already expected since the
corresponding DSMs have a higher quality.
From the first four objective metrics of

Tab. 3, we can notice the tendency of the pro-
posed algorithm to produce less FP pixels than
FN ones. Indeed, branching factors of 0.04
and 0.08 and miss factors of slightly poor per-
formance (0.1 and 0.22) have been obtained.
Also, the two correctness rates are higher than
the corresponding completeness ones. This in-
dicates that the number of over-classified
“Change” pixels is less than the number of
missed “Change” pixels. Finally, the proposed
change detection technique could reach a
quality percentage of more than 87% when
high quality DSMs are involved and a high
overall accuracy of 99.89%, proving its effi-
ciency and relatively high accuracy.

Tab. 3: Accuracy assessment: Objective met-
rics based evaluation of the obtained change
detection results versus ground truth.

Objective Metrics Munich
dataset

Yeonwon
dataset

Branching Factor 0.04 0.08

Miss Factor 0.1 0.22

Completeness (%) 90.58 81.44

Correctness (%) 96.25 92.08

Quality percentage (%) 87.49 76.11

Overall Accuracy (%) 99.89 99.34
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gwinner, k., hirsChMüLLer, h., kiM, J.r., kirk,
r., Mayer, h., MuLLer, p., rengaraJan, M.,
renTsCh, M., sChMidT, r., sChoLTen, F., shan, J.,
spiegeL, M., wähLisCh, M., neukuM, g. & hrsC
Co-invesTigaTor TeaM, 2007: Evaluating plane-
tary digital terrain models – The HRSC DTM
test. – Planetary and Space Science 55 (14):
2173–2191.

heLLer, a.J., LeCLerC, y.g. & Luong, Q.T., 2001: A
Framework for Robust 3-D Change Detection. –
SPIE, Toulouse, France, on CD.

hirsChMüLLer, h., 2008: Stereo Processing by
Semiglobal Matching and Mutual Information.
– IEEE Transactions on Pattern Analysis and
Machine Intelligence 30 (2): 328−341.

hoLLands, T., bosTröM, g., gonCaLves, J.g.M.,
guTJahr, k., nieMeyer, i. & seQueira, v., 2007:
3D Scene Change Detection from Satellite Im-
agery. – 29th Symposium on Safeguards and Nu-
clear Material Management, on CD.

kurz, F., MüLLer, r., sTephani, M., reinarTz, p. &
sChroeder, M., 2007: Calibration of a Wide-
Angel Digital Camera System for Near Real
Time Scenarios. – The International Archives of
the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences, 36 (I/W51): on CD.

Lu, d., MauseL, p., brondzio, e. & Moran, e.,
2004. Change Detection Techniques. – Interna-
tional Journal of Remote Sensing 25 (12): 2365–
2407.

MarChanT, J.a. & onyango, C.M., 2000: Shadow-
Invariant Classification for Scenes Illuminated
by Daylight. Journal of the Optical Society of
America A: Optics, Image Science, and Vision
17 (11): 1952−1961.

MaTikainen, L., hyyppä, J., ahokas, e., MarkeLin,
L. & kaarTinen, h., 2010: Automatic Detection
of Buildings and Changes in Buildings for Up-
dating of Maps. – Remote Sensing 2:
1217−1248.

radke, r. J., andra, s., aL-koFahi, o. & roysaM,
b., 2005: Image Change Detection Algorithms:
A Systematic Survey. – IEEE Transactions on
Image Processing 14 (3): 294−307.

sohn, g. & dowMan, i., 2007: Data Fusion of High-
resolution Satellite Imagery and LiDAR Data for
Automatic Building Extraction. – ISPRS Journal
of Photogrammetry and Remote Sensing 62 (1):
43−63.

Tian, J., Chaabouni-Chouayakh, h. & reinarTz, p.,
2011: 3D Building Change Detection from High
Resolution Spaceborne Stereo Imagery. – Inter-
national Workshop on Multi-platform/multi-
sensor Remote Sensing and Mapping, on CD.

done at the histogram-based thresholding and
classification levels to avoid any parameter
tuning. The results can also be considered as
preliminary results for some higher level ap-
plications, such as refining urban area moni-
toring through a more intensive exploitation of
the multi-spectral information so that a wide
range of man-made structures is involved.
Moreover, DSMs could be further processed
to identify several levels of building or vegeta-
tion growth. Future work will include such ap-
proaches.
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