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Summary: This paper focuses on the use of SAR
data in the context of natural disasters. A Curvelet-
based change detection algorithm is presented that
automatically extracts changes in the radar back-
scattering from two TerraSAR-X acquisitions –
pre-disaster and post-disaster – of the same area.
After a logarithmic scaling of the geocoded ampli-
tude images the Curvelet-transform is applied. The
differentiation is then done in the Curvelet-coeffi-
cient domain where each coefficient represents the
strength of a linear structure apparent in the origi-
nal image. In order to reduce noise the resulting
coefficient differences are weighted by a special
function that suppresses minor, noise-like struc-
tures. The resulting enhanced coefficients are
transformed back to the image domain and brought
to the original scaling, so that the values in the dif-
ference image describe the increase and the de-
crease with respect to the amplitude value in the
initial image. This approach is applied on three cri-
sis scenarios: flood, forest fire, and earthquake. For
all scenarios including natural landscapes and ur-
ban environments as well areas with changes in the
radar amplitude are clearly delineated. The inter-
pretation of the changes detected in the radar im-
ages needs additional knowledge, e. g., pre-disaster
maps. The combination of both could possibly de-
liver a robust and reliable database for the coordi-
nation of rescue teams after large-scale natural dis-
asters.

Zusammenfassung: Auf Curvelets basierende Än-
derungserkennung in SAR-Bildern für die Kartie-
rung von Naturkatastrophen. Fernerkundung im
Krisenkontext basiert auf einer schnellen und zu-
verlässigen Datenakquisition. Radarsysteme sind
für diesen Zweck aufgrund ihrer i. A. wetter- und
beleuchtungsunabhängigen Aufnahme besonders
geeignet. In diesem Artikel wird eine Methode vor-
gestellt, aus zeitlich versetzten Aufnahmen des
deutschen Radarsatelliten TerraSAR-X vollauto-
matisch Veränderungen abzuleiten. Die geokodier-
ten Radaramplitudenbilder werden dazu logarith-
misch skaliert und mithilfe der Curvelet-Transfor-
mation in den Curvelet-Koeffizientenraum über-
führt. Jeder Koeffizient entspricht hier der Stärke
einer bestimmten linearen Struktur im Bild. Aus
den Koeffizienten zweier Bilder kann nun ein Dif-
ferenz-Koeffizientenbild berechnet und anschlie-
ßend durch eine spezielle Gewichtungsfunktion
verbessert werden. Während starke Strukturen un-
verändert übernommen werden, erfolgt für Struk-
turen mittlerer Stärke eine kontinuierliche Herab-
gewichtung bis zum kompletten Entfernen zu
schwacher Strukturen. Auf diese Weise wird nicht
nur die Anzahl der Koeffizienten, sondern auch das
Rauschen im Bild deutlich verringert und der Bil-
dinhalt auf die wichtigsten Strukturen beschränkt.
Nach der Rücktransformation in den Bildraum und
die ursprüngliche Skalierung kann die Änderung
anteilig in Bezug auf die Ausgangsamplitude als
Zu- und Abnahme dargestellt werden. Zur Demon-
stration des Potentials der Curvelet basiertenÄnde-
rungserkennung werden drei Anwendungsfälle aus
dem Krisenkontext vorgestellt: Überflutung, Wald-
brand, Erdbeben. In allen drei Fällen lässt sich die
von der Katastrophe betroffene Fläche eindeutig
von Flächen ohne Änderung abgrenzen. Die Inter-
pretation dieser Änderungen ist jedoch ohne Zu-
satzwissen nicht möglich. Eine Verschneidung der
Ergebnisse der Änderungserkennung mit bestehen-
den Geoinformationen hingegen liefert eine verläs-
sliche Datengrundlage für die Organisation von
Rettungskräften nach Naturkatastrophen.
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time. Afterwards, the potential of the devel-
oped algorithm is validated for rapid mapping
applications in the context of natural hazards.
Three different disaster scenarios are consid-
ered: (1) The annual flood in the Caprivi stripe
in Namibia (April 2009), which was the com-
mon test site for the DeSecure project; (2) For-
est Fires on La Palma, Canary Islands (August
2009), where the Centre for Satellite Based
Crisis Information (ZKI) of the German Aero-
space Center has mapped the burned areas; (3)
Damage on buildings in the city of Padang,
Indonesia, after the earth quake of October
2009. For this test site reference information
extracted visually from optical satellite imag-
es as well as some ground truth information,
collected by several teams is available. Unfor-
tunately, the ground truth data only covers
single streets or building blocks.

The results of our change detection ap-
proach for SAR images are compared to the
results of ZKI and the ground truth data re-
spectively. In terms of the validation it is im-
portant to remember that the change detection
on SAR data and the reference data – mainly
extracted from optical satellite images – often
show different results because of the different
geometrical and radiometrical properties.
Though, this study underlines the usefulness
of SAR sensors as complementary data source
in the context of satellite-based disaster man-
agement.

2 Related Work

Due to the geometric and radiometric proper-
ties of SAR images change detection gets
more complicated – compared to optical data.
Some basics of SAR change detection, advan-
tages and constraints can be found in (Polidori

et al. 1995), which reviews the fundamental
approaches. (Scheuchl et al. 2009) distin-
guishes two different types of change detec-
tion: amplitude change detection and coherent
change detection, exploiting the phase infor-
mation. The latter one has been examined by
(Wright et al. 2005). The method presumes a
stable phase measurement, so that each inco-
herent region can be classified as changed. Re-
garding shorter wave lengths, even a repeat
pass acquisition with a very short repetition

1 Introduction

Remote sensing products for disaster monitor-
ing have to be fast and reliable. In most cases
the coordinators do not have the time to wait
for the next sunny day to acquire cloudless op-
tical satellite images of the catastrophe. Radar
sensors share the advantage to operate almost
independently of weather and illumination, so
that SAR images can be acquired in spite of a
cloudy sky and even by night. Each illumi-
nated object produces a certain SAR signature
in the image. As the signatures of several ob-
jects overlay and interfere in fine-structured
areas, a classification on SAR images is very
complicated. Hence, the idea is not to classify
single SAR images, but to identify changes
between two image acquisitions before and af-
ter a natural disaster. In regions not affected
by the impact, the radar signatures remain
constant. Changes on the real objects mostly
cause changes in the corresponding signa-
tures, so that the affected regions can clearly
be delineated. If the geometric properties of
the images are held constant by using repeat
orbit acquisitions, the only problem is the han-
dling of the SAR inherent radiometry with its
deterministic multiplicative noise-like com-
ponent: speckle. Speckle is caused by the co-
herent sum of many distributed scatterers in
one resolution cell (pixel). Hence, only indi-
vidual pixels are affected whereas the struc-
tures of a scene joining an arbitrary number of
individual pixels to geometric primitives e. g.,
lines, remain unchanged. Therefore, the com-
parison of two SAR amplitude images can be
greatly simplified – because the false alarm
rate is reduced – by comparing structures in-
stead of single pixels. For this task a structure-
based image description, called Curvelets, is
utilized. The complex Curvelet coefficients,
standing each for the strength of a linear fea-
ture in the image, allow us to compare and to
manipulate structures in order to enhance a
single as well as the difference between two
SAR images. The developed change detection
method runs automatically and delivers very
robust results in a relatively short computation
time. In contrast to the previous publications
– reported in the following section – this arti-
cle presents the theoretical background of the
Curvelet-based change detection for the first
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This study focuses on the use of different po-
larimetric decompositions for the retrieval of
several “polarimetric” features. The change
detection consists in comparing the features
extracted from the first image to the features
extracted from the second image. As the fea-
ture extraction algorithm has to be trained in
advance, this method is not suited for fully au-
tomatic data processing, e. g., in process
chains. (gamba et al. 2006) proposes a com-
bined approach based on pixel values and geo-
metrical features as well which are assumed to
provide two uncorrelated sources of informa-
tion. The goal is to utilize standard methods –
implemented in all available SAR software
products – to produce a rough pixel based
change detection map and to extract edges of
both amplitude images. The extracted features
are subsequently compared to discriminate ar-
eas with changes from areas without changes
and hence to stabilize the results of the pixel-
based change map.

A very interesting approach using the
Wavelet representation of a logarithmically
scaled ratio image is given in (bovolo & bruz-
zone 2005). For the first time the influence of
the speckle effect and several speckle reduc-
tion techniques on the change detection results
is addressed. The originally one-dimensional
Wavelet transform is extended to two dimen-
sions in order to represent an image at differ-
ent scales. The change detection results from
coarser to finer scales are recombined to the
final change map. Unfortunately, the proce-
dure still is characterized by a high amount of
manual interactions, e. g., trial-and-error
threshold determination. Although the results
are very promising, Wavelets do not seem to
be the best representation for SAR images of
urban areas (Schmitt et al. 2010b). Four differ-
ent representations have been introduced into
the same change detection procedure: Lapla-
cian pyramid, Wavelets, Curvelets, and Sur-
facelets. While the Laplacian pyramid only
distinguishes scales, Wavelets can distinguish
horizontally and vertically aligned features.
But, as most SAR signatures of urban areas
are composed of linear elements of an arbi-
trary orientation, the Curvelet decomposition
turns out to be the most effective way to de-
scribe urban scenes in SAR images (Schmitt

et al. 2010b). Surfacelets are more suitable to

time (11 days in the case of TerraSAR-X) can-
not assure coherence over natural cover. In the
case of natural disaster monitoring, where ref-
erence images often date from several years
ago coherence-based methods are not applica-
ble because too much disturbing incoherence
is caused by natural surfaces.

The amplitude-based change detection is
better suited for the monitoring of diverse
landscapes over a long period of time. (der-
rode et al. 2003) and (bouyahia et al. 2008)
adopt a hidden and a sliding hidden Markov
chain model respectively to select areas with
changes in reflectivity even from images with
different incidence angles. Although this
method allows to process very large images
and does not need additional parameter tun-
ing, except the window size, according to the
authors still a lot of research work has to be
done to improve the preliminary results. An-
other idea starting with the fusion of several
SAR images of different incidence angles and
a coarse digital elevation model to a „super-
resolution“ image is presented by (marcoS et
al. 2006) and (romero et al. 2006). Man-made
objects, i. e., geometrical particularities that
are not captured by the digital terrain model
used for the orthorectification, are classified
by their diverse appearance in the single or-
thorectified images due to the different acqui-
sition geometries. So, seasonal changes in
natural surroundings can easily be distin-
guished from changes in built-up areas. One
disadvantage is the large number of different
SAR images of the same area needed to gener-
ate the „superresolution“ image.

In contrast to the precedent approach, (balz

2004) needs a high resolution elevation model
(e. g., acquired by airborne laser scanning) to
simulate a SAR image with respect to the geo-
metric appearance of the illuminated area.
This simulated SAR image is subsequently
compared to the real SAR data. The quality of
the results is naturally highly dependent on
the resolution of the digital elevation model
and its co-registration to the SAR image. The
influence of different surface materials is ig-
nored so far. Although this method seems to
be very promising, its application is still re-
stricted to small-sized sample data. Another
approach – based on radar measurements –
has been published by (molinier et al. 2007).
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feature in the original image. The value of one
single pixel is thus calculated as sum of the
contributions of all Curvelets in the image.

Transporting this theory to SAR images,
clear structures in the image are always char-
acterized by high coefficient amplitudes. In
other words, the lower coefficients can be
omitted without loss of structures. Former
studies examine several types of weighting
functions and different methods to adapt the
function parameters to the image content. The
results have already been submitted for publi-
cation. In short, the described image enhance-
ment algorithm is based on a weighting func-
tion that is automatically adapted to the image
content and then applied to the Curvelet coef-
ficients of a SAR image. In terms of describ-
ing multiplicative speckle noise by an additive
image representation, the SAR amplitudes
have to be scaled logarithmically before the
Curvelet transform is done. After weighting
the coefficients and the inverse transform, the
image is brought back to the original scaling
by an exponential function.

The Curvelet-based change detection algo-
rithm for already co-registered images ex-
ploits the following mathematical relations:

L C kx y i i
i

n

, = ⋅
=
∑

1

(1)

The logarithmized SAR amplitude Lx,y
found at position x, y in the image forms out of
the sum over all Curvelets Ci multiplied with

describe small-sized ellipse-like features, e. g.,
for car tracking purposes.

Curvelets for SAR image enhancement,
structure extraction and change detection are
considered for the first time in (Schmitt et al.
2009a). The core of this method is a special
weighting function that is applied to the com-
plex Curvelet coefficients of an image. De-
pending on the application different weighting
functions are utilized. While the precedent
publication mainly shows the potential of the
Curvelet-based image understanding, (Sch-
mitt et al. 2009b) focuses on change detection
and its application to real SAR data over con-
struction sites and mining areas. Since then,
the weighting function as well as the scaling
of the results has been improved several times
in order to develop a fully automatic change
detection approach independent of the image
content. As the interpretation of the changes
still is a very challenging task, multi-polarized
SAR data is introduced as input data in (Sch-
mitt et al. 2010a). By the help of the dual po-
larized High Resolution Spotlight mode of
TerraSAR-X, the authors try to attach a physi-
cal meaning to the detected changes and to
relate the derived changes in the scattering
type to changes on real objects.

3 Change Detection with
Curvelets

The Curvelet transform is designed to describe
an image with singularities across straight
lines, by a minimum number of coefficients
(candèS & donoho 1999). This fact shows the
original purpose of the Curvelet transform:
image compression. The basic element of the
Curvelet theory is a linear feature, called
Ridgelet, that is composed of a sine and a co-
sine component (see Figs. 1 & 2) represented
by the real and the imaginary part of the cor-
responding coefficient. To describe an image
effectively this basic element is transported to
a wide range of scales, orientations and posi-
tions (candèS et al. 2005) and from now on
called “Curvelet”. In other words, each com-
plex coefficient belongs to a certain Curvelet
with a defined length, in a certain orientation
and on a special position. The amplitude of the
coefficient shows the strength of this linear

Fig. 1: Sine component.

Fig. 2: Cosine component.
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case of TerraSAR-X data, the geocoding based
on the science orbit information is sufficient.
For practical use, the input images should be
Enhanced Ellipsoid Corrected (EEC) prod-
ucts. Then, no further pre-processing is neces-
sary. After the logarithmic scaling the Curve-
let transform is performed. The differentiation
of the Curvelet coefficients follows. To sup-
press clutter the image enhancement algorithm
is applied to the coefficient differences before
the difference image is transformed back to
the spatial domain and scaled exponentially.
The pixel values of the resulting difference
image correspond to the relative changes Rx,y
in the SAR amplitudes, i. e., a relative increase
by a certain percentage, see Eq. (4).

R e sign Dx y
Dx y

x y,
,

,( )= −( ) ⋅1 (4)

The sign of the differences gives the direc-
tion of the increase. While positive difference
indicate an increase from the first to the sec-
ond image, negative differences stand for an
increase from the second to the first image.
The exponential function is subsequently ap-
plied to the absolute value of the differences,
which implies that every difference is seen as
increase either from the first to the second im-
age or the other way round. That’s the reason
why both increases and “decreases” of more
than 100% can appear in both directions. At
least the results of the exponential function are
reduced by their minimum value, i. e., 1, so
that the Rx,y directly refers to the relative in-
crease in the radar amplitude. The adoption of
relative changes again accommodates the
multiplicative nature of SAR images.

Mapping the increase and the decrease in
the SAR amplitudes of single polarized imag-
es, allows to delineate regions that are charac-
terized by this behavior, but it does not allow
any interpretation of the mapped change. To
explain what happened to the illuminated ob-
jects it is necessary to consult further data
sources, e. g., a land cover classification or a
building mask etc. One essential problem in
the fusion of different data sources is still the
coregistration of images having varying ac-
quisition geometries, e. g., SAR data and opti-
cal data. Hence, our future work primarily
will concentrate on the inclusion of polarimet-
ric SAR data as purely SAR-based approach,

the corresponding complex coefficients ki. To
detect changes in the radar amplitude the am-
plitude difference Dx,y is calculated.

Dx,y = L2x,y
−L1x,y

(2)

To express this relation via the Curvelet Co-
efficients, Eq. (1) is inserted into Eq. (2). As
the input images share the same size, they
share also the same number n of Curvelets.
Therefore, the decomposition in scales, orien-
tations and positions of the first image is con-
sistent with the decomposition of the second
image, i. e., the variable Ci stays constant while
ki varies depending on the image content.
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In a nutshell, the images are compared by
differentiating the corresponding Curvelet co-
efficients. An overview to the method is given
in the flow chart in Fig. 3. The input images
have to be co-registered in advance. In the

Fig. 3: Flowchart of the Curvelet-based change
detection approach.
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Fig. 5. Considering the Curvelet-based change
detection, we have to take into account that
the result is a change map instead of a water
mask. Therefore, areas that are flooded in both
images, e. g., the river, are not reported as
change. As input for the change detection al-
gorithm we use the enhanced ellipsoid cor-
rected products in the radiometrically en-
hanced type.
Fig. 7 depicts the detected changes from the

“pre-disaster” image to the image acquisition
during the flood. The changes are colored ac-
cording to the legend on the right. Changes of
more than one hundred percent are not further
distinguished. Green regions mark areas with
no or only minor changes. Red colors mark an
increase in the backscattering. In the imaged
region this effect is mainly caused by flooded
vegetation showing a high diplane scattering.
Blue refers to a decrease in the backscattering
amplitude which corresponds to recently
flooded regions. As expected, only minor
changes are indicated over the river and the
road crossing the river. In comparison to the
reference water mask, derived by the DeSe-
cure project using thresholding methods on
the backscattered intensity, the blue regions of
the Curvelet-based change detection fit the
flooded regions in Fig. 6. One larger region
left in the middle that is reported flooded in
Fig. 6 is marked in red in Fig. 7 because we
find flooded vegetation there that causes an in-
crease in backscattering. Having a closer look

in order to attach the changes to certain scat-
tering types. The knowledge about the change
in the scattering geometry might help to inter-
pret the change on the illuminated object and
bear unknown potentials of SAR sensors.

4 Flood in Namibia

As common test site for the DeSecure project
the Caprivi basin in the Caprivi stripe belong-
ing to Namibia (Africa) was chosen. The an-
nual flood reached very high water levels in
the year 2009. the first SAR image has been
taken during the flood in April (Fig. 4). The
second image – seen as the pre-disaster acqui-
sition – has been acquired in September after
the flood (Fig. 5). Dark regions show very
smooth surfaces where the incoming micro-
waves are scattered away from the sensor,
e. g., calm water or pavement. By comparing
the two TerraSAR-X Spotlight images with a
ground pixel spacing of 1.75 m visually, we
perceive large black regions in Fig. 4, showing
the flooded areas, whereas in Fig. 5 the black
pixels are restricted to the river and some
roads. Flooded vegetation, i. e., flooded forests
causes a higher backscattering. The trunks of
trees enclosing a perpendicular angle with the
water surface form a diplane scatterer that in-
creases the backscattering of the whole area.
In Fig. 4 the forested region on the top right –
presumably flooded – appears brighter than in

Fig. 4: Subset of TerraSAR-X Spotlight acquisi-
tion during the flood (06.04.2009).

Fig. 5: Subset of TerraSAR-X Spotlight acquisi-
tion after the flood (07.09.2009).
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than the Spotlight images. Due to the very flat
landscape, even a small deviation in water
level causes large laminar changes in the
flooded areas.

5 Forest Fires on La Palma

The second application of the Curvelet-based
change detection approach is the mapping of
burnt forest areas. The situation has been de-

on both Figs. 6 and 7 we see many details that
differ on the top left of the subset whereas the
results near the river coincide very well. There
are two simple reasons for this behavior. First-
ly, the reference data is not ground truth data.
As it is derived by simple amplitude thresh-
olding of a TerraSAR-X ScanSAR scene and
subsequently manually corrected, it only cov-
ers open water surfaces, i. e., flooded vegeta-
tion cannot be identified. Secondly, the Scan-
SAR image has been acquired five days later

Fig. 6: Reference data: roads and buildings
from Quickbird imagery, watermask from Ter-
raSAR-X ScanSAR (11.04.2009).

Fig. 7: Relative change of radar amplitude from
07.09.2009 (after the flood) to 06.04.2009 (dur-
ing the flood), colored according to the colorbar
on the right.

Fig. 8: Subset of TerraSAR-X Stripmap image
before the forest fires (13.12.2007).

Fig. 9: Subset of TerraSAR-X Stripmap image
after the forest fires (09.08.2009).
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gions showing an increase in backscattering
in Fig. 11. The reason for this increase lies in
the change of the scattering mechanism. While
the leafy crowns of trees cause a high volume
scattering – high values in the HV polariza-
tion and low values in both the HH and the VV
polarization – the bare soil and the nude trunks
respectively show high surface and diplane
scattering, that means higher values in HH
and VV. The TerraSAR-X images acquired in
the HH polarization subsequently should re-
port an increase in backscattering over burnt
areas. Why the large area in the middle right
that is marked as burnt in the reference map
only is reported as minor change in Fig. 11,
cannot be explained on the actual information
basis. The effect on radar images highly de-
pends on the change of the surface roughness
of the illuminated areas caused by the fire.
The use of multi-polarized radar data would
help to identify the underlying scattering
mechanisms instead of taking assumptions as
hitherto. This could give a deeper insight to
the type of forest before the fires and the de-
gree of destruction after the fires.

6 Earthquake in Padang

The third example concerns the detection of
damaged buildings in dense city centers. “On
September 30, 2009, a severe earthquake took

scribed by ZKI as follows: “Several forest
fires occurred between July 31, 2009 and Au-
gust 3, 2009 on the Canary Island of La Palma,
Spain. 30 houses and several vineyards were
destroyed. More than 4000 residents were
evacuated from the area on August 1, 2009
(ZKI 2009a). As input for the Curvelet-based
change detection we use TerraSAR-X radio-
metrically enhanced Stripmap products with a
pixel spacing on ground of 2.75 m (EEC). The
image in Fig. 8 shows the pre-disaster land-
scape on 13.12.2007. In Fig. 9 the post-disaster
image dating from 9.8.2009 is depicted. The
visual comparison delivers almost no changes,
except on the ocean’s surface on the bottom
right.

In contrast to that the Curvelet-based change
detection clearly delineates the burnt regions
via the relative change in the backscattering
amplitude (see Fig. 11). The reference map by
ZKI is depicted in Fig. 10 and explained as fol-
lows: “The map shows the burnt areas as well
as the locations of active fires between July 31,
2009 and August 3, 2009. The burnt areas
were derived through the analysis of two Spot
5 scenes (pre disaster: 30/07/2007, post disas-
ter: 07/08/2009). The locations of active fires
were automatically derived from MODIS
data” (ZKI 2009a). Although the reference
again shows the situation at another time than
the TerraSAR-X acquisition the burnt areas
from Fig. 10 coincide very well with the re-

Fig. 10: Reference data, visually digitized out
of optical satellite image (ZKI 2009a).

Fig. 11: Relative change of radar amplitude
13. 12. 2007 – 09. 08. 2009, according to color-
bar.
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of detail in Fig. 13. Despite these discrepan-
cies in the input images, the automatic change
detection delivers respectable results, see
Fig. 15.

In order to enable the operator to attach sin-
gle small-sized changes to objects, it is over-
laid with the building mask that has been ex-
tracted from optical satellite imagery of
IKONOS by (taubenböck et al. 2009). Many
changes – visible near the river – presumably
refer to boats or pontoons. Presuming that all
other mapped changes belong to buildings, we
perceive striking deviations that result from
the different image acquisition geometries of
radar and optical data. The images should
have been coregistered using the same high
resolution surface model to avoid these ef-
fects. Although this inconsistence is negligi-
ble for our coarse validation, it has to be taken
into account for real disaster applications. As
reference information we use the damage as-
sessment produced by (ZKI 2009b) which is
described as follows: “Destroyed and dam-
aged structures were derived by analyzing in-
formation provided by the Indonesian Disaster
Management Authority (BNPB), from post-
disaster Quickbird imagery acquired on Octo-
ber 3, 2009 (ground resolution 0.6 m) and from
field data. The damage assessment is incom-
plete and in some cases inaccurate due to
cloud cover and the difficulty to identify partly
damaged buildings from bird’s perspective”

place in the Indian Ocean with a magnitude of
7.9 and several aftershocks. The epicentre was
registered about 50 km north-eastern of Pa-
dang in a depth of 85 km. Heavy shocks caused
the collapse of many buildings and bridges,
fires broke out and major parts of the technical
infrastructure failed. More than 770 people
died, much more than 2100 are injured (infor-
mation of October 2, 2009). The International
Charter on Space and Major Disasters was
triggered to provide post-disaster satellite im-
agery for damage mapping and to support the
aid response” (ZKI 2009b). A pre-disaster ac-
quisition in the standard high resolution Spot-
light mode dating from 21.11.2007 was avail-
able. The post-disaster image has been ac-
quired in an experimental mode with the dou-
ble pulse repetition frequency (PRF) and
therefore possesses an increased azimuth res-
olution. In order to achieve equally-sized pix-
els on ground (1.25 m × 1.25 m) two different
processing types in the geocoding step are uti-
lized for image comparison. The first image
(Fig. 12) with a minor azimuth resolution is
processed as spatially enhanced product with
a reduced accuracy in the radiometry, whereas
the second image (Fig. 13) with a higher azi-
muth resolution is processed as radiometri-
cally enhanced product with a reduced spatial
resolution. The effects of the different acquisi-
tion modes and pre-processing steps are a
higher noise level in Fig. 12 and a higher level

Fig. 12: Subset of TerraSAR-X Spotlight im-
age, PRF 150 Mhz, spatially enhanced, pixel
spacing 1.25 m (21. 11. 2007).

Fig. 13: Subset of TerraSAR-X Spotlight im-
age, PRF 300 Mhz, radiometrically enhanced,
pixel spacing 1.25 m (03. 10. 2009).
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7 Conclusion

In this article we present a new change detec-
tion technique based on the Curvelet trans-
form. This approach requires two or more
coregistered SAR amplitude images. Changes
in the SAR amplitudes over a certain period of
time are captured as increase or decrease rela-
tive to the preceding amplitude values. Of
course, the change detection approach can
only detect changes present in the SAR ampli-
tude data. Additionally, the size of the changes
to be mapped must be superior to the pixel
size, which was true for the chosen examples:
flooded regions, burnt areas after forest fires,
damaged buildings after an earthquake. The
approach delivers robust and quasi noise-free
results over natural landscapes as well as over
urban environments. Validating urban scenes
we have to consider the reference data source.
Changes in the SAR image are always caused
by changes on the imaged objects, but those
are not always captured by other data sources
used as reference, e. g., optical satellite data.
And though the quantitative validation for
large area applications is nearly impossible
due to the lack of suitable reference data, the
qualitative validation proved the reliability of
the detected changes. The interpretation of the
mapped changes is still topic to our research.
The future focus lies on the exploitation of
multi-polarized SAR data in terms of inter-

(ZKI 2009b). Comparing the change detection
results in Fig. 15 to the damage map in Fig. 14,
only few sure coincidences are visible. Beside
the incompleteness of the reference map, again
the image acquisition geometry plays an im-
portant role. As the parallel projection in the
case of optical scanning sensors is very simi-
lar to an orthogonal projection due to the large
distance to the imaged objects, mostly roofs
and nearly no facades are visible. In contrast
the range projection of radar sensors repro-
duces roofs and facades as well. Hence, while
optical sensors only reveal changes on nearly
horizontal planes, i. e., ground or roofs, radar
sensors show a high capability to map even
changes on the buildings facades. Unfortu-
nately, without any prior information the radar
change detection results are only of limited
value, because changes on natural surfaces
cannot be distinguished from changes on man-
made objects. But, this new technique enables
to delineate areas with distinct changes to sup-
port the decision if a building that has been
classified “potentially damaged” from pre-
disaster analysis or optical satellite data is ac-
tually damaged or not. To conclude this exam-
ple, radar information might not replace opti-
cal sensors and in-situ surveys, but it is a com-
plementary tool to get reliable change infor-
mation over large areas in a very short period
of time and independent of weather, daylight
or the accessibility of the injured city.

Fig. 14: Reference data, including streets and
potentially damaged buildings: red (according
to building structure survey) and yellow (on
building characteristics derived from satellite
imagery).

Fig. 15: Relative change of radar amplitude
07. 09. 2009 – 06. 04. 2009 and building mask
from IKONOS imagery (tAuBenBöck et al.
2009).
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Mining for Security and Intelligence, Torrejon
air base, Madrid, Spain: on CD.

Scheuchl, b., ullmann, t. & koudogbo, f., 2009:
Change Detection using High Resolution TER-
RASAR-X Data: Preliminary Results. – Interna-
tional Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences 38 (1-
4-7/W5): on CD.

Schmitt, a., WeSSel, b. & roth, a., 2009a: Curve-
let Approach for SAR Image Denoising, Struc-
ture Enhancement, and Change Detection. – In-
ternational Achives of Photogrammetry, Remote
Sensing and Spatial Information Sciences 38 (3/
W4): 151–156.

Schmitt, a., WeSSel, b. & roth, a., 2009b: Curve-
let-based change Detection for man-made Ob-
jects from SAR Images. – IEEE Geoscience and
Remote Sensing Symposium: 1059–1062.

Schmitt, a., WeSSel, b. & roth, a., 2010a: Intro-
ducing Partial Polarimetric Layers into a Curve-
let-based Change Detection. – 8th European Con-
ference on Synthetic Aperture Radar: 1018–
1021.

Schmitt, a., Wendleder, a., WeSSel, b. & roth,
a., 2010b: Comparison of Alternative Image
Representations in the Context of SAR Change
Detection. – IEEE Geoscience and Remote Sens-
ing Symposium: on CD.

taubenböck, h., goSeberg, n., Setiadi, n., läm-
mel, g., moder, f., ocziPka, m., klüPfel, h.,
Wahl, r., Schlurmann, t., Strunz, g., birk-
mann, J., nagel, k., Siegert, f., lehmann, f.,
dech, S., greSS, a. & klein, r. (2009): Last-
Mile preparation for a potential disaster – Inter-
disciplinary approach towards tsunami early
warning and an evacuation information system
for the coastal city of Padang, Indonesia. – Natu-
ral Hazards and Earth System Sciences 9: 1509–
1528.

Wright, P., macklin, t., WilliS, c. & rye, t., 2005:
Coherent Change Detection with SAR. –Euro-
pean Radar Conference: 17–20.

ZKI, 2009a: Center for Satellite Based Crisis Infor-
mation (ZKI) – Emergency mapping & Disaster
Monitoring, a service of German Remote Sens-
ing Data Center (DFD), 8.8.2009 www.zki.dlr.
de/applications/2009/canaryislands/176_en.
html (30.8.2010).

preting changes to objects by changes to the
scattering mechanism. Another aim will be
the fusion with pre-disaster optical image in-
formation in order to support human operators
in interpreting the results of the SAR change
detection, e. g., by the help of vulnerability
maps or buildings masks.
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