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Summary: We present an improved method for in-
dependent component analysis aiming to detect
minerals in the Erongo complex, Namibia. We
evaluate independent component analysis (ICA) to
detect and map alteration halos in Erongo Namibia
using the Hyperion dataset. Detailed surveys and
investigations are possible given the capability of
the hyperspectral sensors to render a great deal of
spectral information by observing the surface of
earth. In terms of mineral detection, however, there
are particular challenges. In this research, we used
two methods to achieve an independent compo-
nents (ICs) map. The first method computes the vir-
tual dimensionality (VD) of a dataset, prioritises
calculated ICs, and finally picks up only a certain
number of ICs. This number is equal to the calcu-
lated VD. Since some ICs share extreme pixels, the
final extremes from this method are less than the
VD. The presented modified method differs slightly
from the first one. In this method, extreme pixels
for all ICs are determined, and all ICs with the same
extreme pixels are considered equal. Prioritisation
of IC bands takes place afterward. The results dem-
onstrate that the second method performs better
because in addition to its ability to map more end-
members, the mapped zones match lithological
structures better. The dataset is atmospherically
corrected by ACORN, and data quality assessment
is performed to discriminate bad bands before ICA.
To determine each extreme pixel mineralogical,
spectral feature fitting (SFF) algorithm was used in
the SWIR range of electromagnetic wavelength by
comparing to USGS mineral spectral library.

Zusamenfassung: Analyse unabhdngiger Kompo-
nenten von Hyperion Daten zur Kartierung von
Verwitterungszonen in Erongo, Namibia. Wir pra-
sentieren ein verbessertes Verfahren fiir die Analy-
se unabhédngiger Komponenten (ICA) mit dem Ziel
der Mineral-Erkennung im Erongo Komplex. De-
tail- Untersuchungen sind unter Verwendung von
Hyperspektral-Sensoren moglich, weil diese Sen-
soren eine grof3e Leistungsfahigkeit in der Wieder-
gabe der Spektralinformation der Erdoberfliche
besitzen. Bei der Mineral-Erkennung gibt es jedoch
besondere Herausforderungen. In dieser Untersu-
chung wurden zwei Methoden zur Erzeugung einer
unabhéngigen Komponenten (IC) Karte bertick-
sichtigt. Die erste Methode berechnet die virtuelle
Dimensionalitdt (VD) des Datensatzes, priorisiert
berechnete ICs, und verwendet schlieSlich nur eine
bestimmte Anzahl von ICs. Diese Anzahl ent-
spricht der berechneten VD. Da sich einige ICs ex-
treme Pixel teilen, sind die endgiiltigen Extrema
bei dieser Methode weniger als bei der VD. Die
vorgestellte Methode unterscheidet sich ein wenig
von der ersten. Bei ihr werden extreme Pixel fiir
alle ICs bestimmt, und alle ICs mit den gleichen
extremen Pixeln werden als gleich angesehen. Die
Priorisierung von ICs Bands erfolgt spéter. Die Er-
gebnisse zeigen, dass die zweite Methode eine ho-
here Leistungsfahigkeit besitzt, weil zusétzlich zu
der Fihigkeit, mehr Endmember zu kartieren, die
zugeordneten Zonen besser zu den lithologischen
Strukturen passen. Der Datensatz wird atmospha-
risch mit ACORN verbessert und es wurde eine
Bewertung der Datenqualitdt durchgefiihrt, um
schlechte Bénder vor der ICA zu unterscheiden. Fiir
die Detektion von Mineralien wird in jedem extre-
men Pixel ein spektraler Merkmalsanpassung (SFF)
Algorithmus im SWIR Band verwendet, indem mit
der USGS Minaral-Bibliothek verglichen wird.
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1 Introduction

Independent Component Analysis (ICA) has
been widely used in various blind source sepa-
rations. Its application to linear spectral mix-
ture analysis in remote sensing and image
processing has shown promising results (BAy-
Liss et al. 1997, CHIANG et al. 2000, LENNON et
al. 2001, Borcuko et al. 2003, WANG & CHANG
2006a, Du et al. 2006). Independent Compo-
nent Analysis addresses the problem of deter-
mining the factors that contribute independ-
ently (in a statistical sense) to observed data
from a set of sensors. So far, considering the
linear mixture model, in contrast to other ap-
proaches, ICA assumes that the abundance
fractions that are commonly assumed to be
unknown and non-random constants are now
random parameters and statistically independ-
ent signal sources. In addition, one signal
source at the most is allowed to be Gaussian
(VArsHNEY & ARORA 2004). These two as-
sumptions should be closely considered in the
unmixing procedure when violating of them
could result in estimation errors.

ICA is known as a blind source separation,
so it is possible to achieve estimation for end-
members themselves. If we assume that obser-
vations or Rs are noise-free (R=aE), then there
is a matrix W

where E=WR (1)

With regard to the ICA concept (independent
components), the matrix W can be determined
by solving an optimisation problem that aims
to minimise mutual information between
components (VARSHNEY & Arora 2004,
HyVARINEN 1999).

It is important in practice to make learning
faster and more reliable. This can be achieved
using fixed-point iteration algorithms. In these
algorithms, the computations are made in batch
(or block) mode, i.e., a large number of data
points are used in a single step of the algorithm.
In other respects, however, these algorithms may
be considered neural. In particular, they are par-
allel, distributed, computationally simple, and
require little memory space. HyVARINEN (1999)
showed that fixed-point algorithms have very ap-
pealing convergence properties, making them an
interesting alternative to adaptive learning rules

in environments where fast real-time adaptation
is not necessary. Note that their basic ICA algo-
rithms require a preliminary sphering or whiten-
ing of the data R. Sphering means that the origi-
nal observed variable, e.g., v, is linearly trans-
formed to a variable R = Qv such that the corre-
lation matrix of R equals unity: E{RR"} = L.

1.1 Study Area

The study area is located in north-western Na-
mibia and includes the Erongo Complex with
a diameter of approximately 35 km; this is one
of the largest Cretaceous anorogenic complex-
es in that country. The centre of the complex is
located at approximately 21°40° S and 15°38’E
(cf. Fig. 1).

This represents the eroded core of a caldera
structure with peripheral and central granitic
intrusions. Surrounding the outer granitic in-
trusions of the Erongo Complex is a ring dike
of olivine dolerite that locally reaches some
200 m in thickness and has a radius of 32 km.
The ring dike weathers easily and is therefore
highly eroded. However, it can be easily
identified in aeromagnetic data and satellite
images.

The central part of the Erongo complex
consists of a layered sequence of volcanic
rocks that form prominent cliffs rising several
hundred meters above the surrounding base-
ment. The basement rocks consist of mica
schists and meta-greywackes of the Kuiseb
Formation and various intrusions of granites.
In the southeast, the rocks of the Erongo Com-
plex overlie the Triassic Lions Head Forma-
tion, which consists of conglomerates, grit-
stone, arkose with interbedded siltstone and
mudstone, and quartz arenite (SCHNEIDER &
SCHNEIDER 2004).

1.2 Pre-processing

There are some essential processes that must
be done on the data before main processing
concerning on the sensor type and its techni-
cal specifications. The pre-processing includes
algorithms to correct probable errors that oc-
cur during image acquisition. Vertical destrip-
ing, georeferencing, atmospheric correction,
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Fig. 1: ETM scene of the Erongo complex and location of the Hyperion scene (left) in addition to

Hyperion band 28 (right).

and spectral profile enhancement (or polish-
ing) are the corrections that were performed
on the Hyperion data.

Vertical stripes usually occur in several col-
umns with constant Digital Number (DN) be-
cause of technical failure in the functionality
of some detectors and they were removed by
averaging the neighbouring columns.

Georeferencing of the data is performed
just before producing final map to prevent pos-
sible errors that resampling and approximat-
ing make in the data and will therefore affect
functionality of other processing tasks. The
Hyperion data was registered with the use of
the ETM image of Erongo that had been sup-
plied georeferenced.

The smile effect (line curvature) on the Hy-
perion data is an across track shift from a cen-
tre wavelength because of changes in disper-
sion angle. This is negligible in the SWIR
range of the spectra (less than 1 nm), but vari-
ables in the VNIR are about 30 % and should
be rectified. In this research the smile effect
was corrected by ACORN using prior the
launch parameters measured by TRW (a com-
pany contracted by NASA to build Hyperion).

A variety of packages for atmospheric correc-
tion have been developed, including ATREM,
FLAASH, ATCOR, ACORN, and the atmos-
pheric correction module in the GEOMATICA
platform. All of these use the MODTRAN ra-
diative transfer algorithm, however, and some
of them, like FLAASH and ACORN; have op-
tions to share the empirical experience of the
user.

According to some previous studies about
different algorithms for atmospheric correc-
tion, ACORN has proven its reliability. Its
only drawback is that applying this method
requires a great deal of knowledge about hy-
perspectral remote sensing (CHanG & Du
2004). ACORN offers different algorithms for
atmospheric correction of various sensors
(modes 1 to 7) and mod 1 is planned for hyper-
spectral data. We therefore used ACORN
mode 1 for the atmospheric correction of the
dataset.

ACORN offers a range of strategies for at-
mospheric correction. These include both em-
pirical and radiative transfer code based meth-
ods for atmospheric correction of both hyper-
spectral and multispectral datasets.
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ACORN also offers several artefact suppres-
sion options, as well as single spectrum en-
hancement options to improve atmospheric
correction results. Radiative transfer atmos-
pheric correction of calibrated data uses both
the calibrated data and additional specified
parameters to derive and model the absorption
and scattering characteristics of the atmos-
phere. These modelled atmospheric character-
istics are then used to invert the radiance to
apparent surface reflectance.

Available artefacts on ACORN are divided
into three types. Type 1 corrects for any mis-
match in the spectral calibration of the hyper-
spectral data and the spectral radiative trans-
fer calculations. It suppresses the artefacts lo-
cated near the strong atmospheric absorption
features at 760, 940, 1150, and 2000 nm. Type
2 identifies and suppresses other small arte-
facts located across the spectral range due to
errors in the absolute radiometric calibration
and/or errors in the radiative transfer calcula-
tions. The spectrum across the 1,400 and
1,900 nm water vapour bands often produces
noisy reflectance results because of the low
radiance values recorded in these regions.
Type 3 assesses the signal levels of the cali-
brated radiance and suppresses the lowest sig-
nal portions where erroneous reflectance cal-
culations may occur. The result is that the low-
est signal portions of the spectrum are set to
zero on the apparent surface reflectance out-
put. These artefacts do not manipulate absorp-
tion features on the spectral profiles. Fig.2 il-

lustrates the spectral profiles of a pixel before
and after atmospheric correction. All three ar-
tefact suppressions were applied.

After applying atmospheric correction and
artefact suppressions available in ACORN,
some additional tasks like bad band determi-
nation and polishing are done to improve the
spectral profile quality. This process smoothen
noisy fluctuations on spectral profile and small
absorption features are probably eliminated.

Briefly, bad bands refer to some bands in
the dataset that contain very little or no ex-
tractable information. The quality of digital
remote sensing data is directly related to the
level of the signal to system noise ratio (SNR).
Theoretically, the SNR ratio for Hyperion is
190 to 40 as the wavelength increases (PEARL-
MaN et al. 2000). One common approach to
determining an approximate SNR for remote
sensing data is to use a mean/standard devia-
tion method. This approach requires defining
a spectrally homogeneous area (an area with
minimum intrinsic variance), calculating the
average spectrum for that area, and determin-
ing the spectrally distributed standard devia-
tion for the average spectrum. MANOLAKIS et
al. (2003) conducted a survey by analysing ap-
proximately 14 Hyperion scenes from around
the world using the mean/standard deviation
SNR method and showed that there is a strong
relationship between the acquisition time of
the year (because of the effect of illumination
to observation geometries) and the SNR of the
Hyperion data. The calculated SNRs for Hy-

Fig.2: Spectral profile of a pixel before (a) and after (b) atmospheric correction by ACORN; bad

bands are marked by dotted ellipses.
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perion SWIR data are higher in the summer
and lowest in the winter. This has a direct ef-
fect on spectral mineral mapping, with lower
SWIR SNRs resulting in the extraction of less
detail (Manorakis et al. 2003). Fig.3 illus-
trates the signal to noise ratio calculated for
our Hyperion data by the aforementioned
method. According to this plot, uncalibrated
channels (channels 1-8 and 222-242) in addi-
tion to those affected strongly by water vapour
absorption (940 nm, 1,400 nm, 1,900 nm) have
zero SNR. These channels are listed in the list
of bad bands for the following processing
tasks. In addition, the bands that possess lower
SNR ratios compared to the nearby channels
are also considered to be bad bands.

The effect of an additive noise process, n,,
on an image digital number (DN) at the i" and
j™ pixel can then be modelled as the summa-
tion of the true signal, S, with the noise, as
shown by Tu et al. (1998):

DNG, j) = SG./) + n,(i.)) )

If the noise proportion in the above equation is
significant, the DNs almost equal the noise
amount and the band will be labelled as bad.
We used up only good bands (subset 166 good
bands of total 242 bands) to avoid any possible
mistakes during pre-processing and subse-
quent steps. As a final pre-processing task, the
data were polished using a geostatistical algo-
rithm presented by the author (Oskourr &
Busch 2008).

2 Independent Components
Analysis

Determining the virtual dimensionality (VD)
of a dataset is essential to perform a successful
ICA. This is also known as the number of de-
tectable endmembers. The VD was computed
using the Harsanyi, FarranD, and CHANG
(HFC) method presented by Harsany1 et al.
(1993), and then the Fast fixed-point algorithm
for Independent Component Analysis (Fastl-
CA) programme was applied to calculate inde-
pendent components (ICs). Since this program
does not prioritise the output ICs, a prioritisa-
tion step is also necessary after achieving the
ICs. Finally, the abundances of the ICs were
calculated for mapping purposes.

2.1 Virtual Dimensionality of the Data

The HFC method is presented by HarsANYI et
al. (1993) and uses Neyman-Pearson detection
theory to estimate the number of endmembers.
This idea is described in CHaNG & Du (2004)
and NasHa & Jonnson (2002).

According to CHANG & Du (2004), the eigen-
values generated by the sample correlation
matrix and the sample covariance matrix are
denoted by correlation eigenvalues and cov-
ariance eigenvalues, respectively. Since the
component dimensionality is equal to the total
number of eigenvalues, each eigenvalue speci-
fies a component dimension and provides an

Fig. 3: Signal to noise ratio calculated for Hyperion data by the mean/deviation method.
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indication of the significance of that particular
component in terms of variance. If there is no
signal source contained in a particular compo-
nent, the corresponding correlation eigenvalue
and covariance eigenvalue in this component
should reflect only the noise energy, in which
case the correlation eigenvalue and covariance
eigenvalue are equal. This provides us with a
basis from which we can formulate the differ-
ence between the correlation eigenvalue and
its corresponding covariance eigenvalue as a
binary composite hypothesis testing problem.
The null hypothesis represents the case of zero
difference, while the alternative hypothesis is
the case in which the difference is greater than
zero. When the Neyman-Pearson test is ap-
plied to each pair of correlation eigenvalues
and its corresponding covariance eigenvalue,
the number of times the test fails indicates
how many signal sources are present in the
image. In other words, a failure of the Ney-
man-Pearson test in a component indicates the
truth of the alternative hypothesis, which im-
plies that there is a signal source in this par-
ticular component. Using this approach, we
can estimate the virtual dimensionality with
the receiver operating characteristic analysis
to evaluate the effectiveness of the decision.
The virtual dimensionality of the image was
calculated using various false alarm probabili-
ties (HARsANYI et al. 1993); these are listed in
Tab. 1.

Decreasing the false alarm probability (P))
will increase the threshold amount used to
compare the correlation and covariance eigen-
values, but after achieving a certain magni-
tude, it does not have a significant effect on the
threshold. Therefore, as mentioned by the in-
novators of the method, 10~*seems to be a rea-
sonable value and consequently the virtual
dimensionality of the data is 37.

2.2 Prioritisation

After determining the number of endmembers
by HFC (37 endmembers), the FastICA pro-
gram (HyvARINEN 1999, HyvirRINEN & Ora
2000) was used to compute the demixing ma-
trix. It was not possible to load the image in
MATLAB because of the large size of the Hy-
perion dataset. According to HyVARINEN
(1999), we therefore resized them by averag-
ing while producing the two dimensional ma-
trix from the Hyperion cube. The averages can
be estimated using a smaller sample, whose
size may have a considerable effect on the ac-
curacy of the final estimates. The sample
points should be chosen separately at every
iteration. If the convergence is not satisfacto-
ry, one may then increase the sample size (Hy-
VARINEN 1999).

The rows of the matrix are equal to the
channel number (166), and each row consists
of observations for one band. The method pre-
sented by WanG & CHANG (2006b) has been
used to perform the priority task. They calcu-
lated a high order statistical formula as a score
for each independent component obtained by
FastICA:

(k) (k*=3)
MN i3 MN 4
where k3= 2":1 (Z") ’k4 — Zn:l (Zn) and
’ MN MN

z! is the DN of pixel n in IC i

Previous work, e. g., (WaNG & CHANG 2006a),
suggested extracting twice the VD, but we ran
the ICA to extract all possible ICs (166 ICs),
and the prioritisation algorithm based on for-
mula (3) was used to order ICs. Tab.2 illus-
trates the first 37 ICs in priority order.

Tab. 1: VDs calculated by the HFC method for different false alarm probabilities (Pfa).

P, 10! 102

10-3 10+ 103

VD 43 38

37 37 37
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Tab. 2: First 37 prior ICs.

18] 2 5 1 4 7 6 |11 |13 |16| 3 |20|19| 8 |33 ]39]32]15]35
24 |17 |50 | 10 | 12 {22 |29 | 28 | 31 | 21 | 23 | 41 |53 |36 | 9 |26 | 40| 30

The results imply that running FastICA for
only 74 ICs (twice the VD calculated by HFC)
was enough. After this the demixing (W) and
whitening matrices obtained from FastICA
were multiplied by original data to obtain IC
images according to formula (1) and the above
37 priority channels were picked for later
processes. The method for normalising the IC
abundances introduced by ZHENG et al. (2006)
and WaNG & CHANG (2006b) was also applied.
According to their formula for each endmem-
ber pixel e, let IC, be the IC from which e, was
extracted and /C,(r) denote the value of each
pixel 7 in /C,. We normalize the absolute value
of IC(v), | IC, (r) | with respect to |e,|, the abso-
lute value of e; and define its corresponding
abundance fraction a,.(r) by

[IC(r)|=min, |IC/(r)|
le,|—min _[IC,(7)]

Q)

drc (r)=

e,is the maximum of |/C (r)| over all the image
pixels in the IC,

In each channel of this image, the location of
any pixel that has a maximum amount for the
appropriate IC was noted. Knowing the loca-
tions of these pixels helps us to obtain a pre-
liminary evaluation for the independent com-
ponents and their similarities. In addition, the
image of each IC was surveyed visually to rec-
ognise ICs that are related to backgrounds.
The result demonstrates that some of the IC
images have the same extreme pixel, which
means that their maximum amount occurred
in the same pixels, like ICs 1,4,5,7,10-11,
14-16,18-21,23-35; ICs 2,22,36; and ICs 6,9.
It clearly does not mean that they are com-
pletely equal ICs, but we can conclude that
they are very similar; on the other hand, we
cannot distinguish their differences by this
method as our only tool to obtain information
about them is their spectral profiles.

2.3 Mapping Independent
Components

The spectral profiles of those extreme pixels
are shown in Fig. 4(a). The spectral angle map-
per (SAM) was applied to map the distribu-
tions of ICs. In the map produced by this
method, only 6 ICs show considerable distri-
butions. Studying each of the IC abundances
map separately could help one to obtain valu-
able information about the mineralogy in the
region, but preparing a comprehensive map
using by them is not really helpful (Fig. 5(b)).

2.4 Stepwise Algorithm

The outcomes of the last procedure imply that
some useful endmembers are ignored during
the process of prioritisation. This is because of
the close similarity between some prioritised
ICs that share in extreme pixels and prevent us
from detecting other purest pixels. The step-
wise algorithm presented here yields an exact
solution for this problem. Since the ICs with
the same extreme pixels cannot be discrimi-
nated, they will be considered as one. To do
this practically, the extreme pixels of all pos-
sible ICs (166 ICs) should be determined and
then the ICs are categorised based on their ex-
treme pixels (ICs with the same extreme pixel
in one group). Finally the IC with the best pri-
ority score represents its group and distribu-
tions of these representative ICs are mapped
on the scene. The stepwise process of this
method is summarised as follows:

1) run FastICA for extracting all possible ICs

2) change IC images to abundances map ac-
cording to formula (4)

3) find the maxima for each IC (extreme pix-
els)

4) group the ICs with the same extremes

5) prioritisation

6) select one IC for each group based on their
priority score
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7) classify the dataset by SAM based on the
extremes’ spectral profiles

8) match the spectral profile to the reference
data spectra

The application of this algorithm produced 24
prioritised from 166 primary ICs, as illustrat-
ed in Tab. 3. Classification of the scene is done
by SAM using the spectral profiles of the ex-
treme pixels as profiles of ICs. The resulting
map (cf. Fig. 5(c)) shows a considerable distri-
bution for 8 ICs. To identify the mineralogy of
each independent component, the spectral

14000
12000 +

Reflectance

RITH

g
8

1971.75

2062.55

profiles of extreme pixels were compared to
the USGS mineral spectral library, which is
resampled for the Hyperion wavelengths. The
spectral feature fitting (SFF) method was used
to perform that task in the short wave infrared
region of the spectra because most differences
between the endmember profiles are distin-
guishable in the range of 1971 to 2365 um ac-
cording to Fig. 4(b). Several minerals from the
SFF lookup table were selected considering
their matching scores as indicative of altera-
tion minerals. Tab. 4 illustrates selected min-
erals for each endmember.

2153.34
2u2
233501
92 2612
38 1320

28 2373

o

Fig. 4: Spectral profiles of extreme pixels: (a) Ordinary method and (b) Stepwise algorithm.
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Tab. 3: Extreme pixels of 24 different ICs.
priority IC sample line priority IC sample line
1 18 20 2380 13 59 214 308
2 2 3 46 14 79 151 1264
3 5 28 2373 15 93 165 1604
4 7 32 3093 16 66 220 551
5 11 92 2612 17 102 159 1609
6 20 38 1320 18 114 82 1269
7 19 113 2998 19 134 92 2664
8 32 164 1603 20 139 213 1957
9 30 182 549 21 152 164 208
10 42 38 1321 22 158 164 1604
11 54 161 1473 23 155 235 966
12 73 248 2817 24 163 178 2167

Tab. 4: Minerals that show a high match to 8 mapped ICs.

IC minerals
5 almandinel,hematitea,almandine3,augite3diposide3
11 ammonioillite,buddingtonite2,mascagnite,buddingtonitel,alunite2
20 ammoniojarosite,buddingtonite2,mascagnite2,buddingtonitel,hypresthen2
30 axinite,sphalerite4,5,augite3,1,mascagnitel
66 vegetation, mascagnitel,2,galena2, a-jarosite

102 axinite,augite3

134 rivadavite,alunite2,ulexite2alunite6,4,ulexitel,a-illite,orthoclase,a-smectite

a-jarosite,mascagnite2,buddingtonite2,mascagnitel,buddingtonitel,a-chlorite,
155 sphalerite4,acmite, sphalerite5, howlite,pectolitel

3 Conclusions

Independent component analysis on the Hype-
rion data of Erongo led us to present a modi-
fied algorithm in this study, as a previous
method (WANG & CHANG 2006) was able to de-
tect all possible ICs. Since some ICs share in
extreme pixels, only eight ICs were detected
by their method. The Hyperion scene is then
classified by a spectral angle mapper using the
spectral profiles of eight extreme pixels as
endmembers. This classifier revealed that only
six of them show considerable distribution on
the study scene.

The presented method differs from theirs,
as in this method extreme pixels for all 166
ICs are determined and all ICs with the same
extreme pixels are considered equal. Prioriti-
sation of the IC bands takes place afterward.
Therefore, by this method 24 different extreme
pixels were recognised, and like the first meth-
od, a spectral angle mapper was used for clas-
sification. The maps produced by these two
methods demonstrate that the second algo-
rithm performs better, because in addition to
its ability to map more endmembers, the
mapped zones match lithological structures
better (Fig. 5 (a) and (b)).
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Fig.5: RGB image of Hyperion data (a), ICs distribution map by the Chang method (b) and by the

method presented here (c).

References

Bavuiss, J.D., Guartieri, J.A. & Crowmp, R.F.,
1998: Analysing hyperspectral data with in-
dependent component analysis. — SPIE Inter-
national Conference, Washington, DC, 133—
143.

Botchko, V., BErINA, E., KoroTKAYA, Z., PARK-
KINEN, J. & JAASKELAINEN, T., 2003: Independ-
ent component analysis in spectral images. —
4th International Symposium on Independent
Component Analysis and Blind Signal Sepa-
ration, Nara, Japan, 203-207.

CHang, C.I. & Du, Q., 2004: Estimation of
number of spectrally distinct signal sources in
hyperspectral imagery. — IEEE Transactions

on Geoscience and Remote Sensing 42 (3):
608-619.

CHianGg, S.S., Cuang, C.I. & GINsBERG, LW,
2000: Unsupervised hyperspectral image
analysis using independent component analy-
sis. — IEEE International Geoscience and Re-
mote Sensing Symposium, 3136-3138.

Du, Q., Kopriva, I. & Szu, H., 2006: Independent
component analysis for hyperspectral remote
sensing imagery classification. — Optical En-
gineering 45 (1): 17008.

Harsanyi, J.C., FArRraND, W. & CHang, C.I,
1993: Determining the number and identity of
spectral endmembers: An integrated approach
using Neyman-Pearson eigenthresholding and
iterative constrained RMS error minimiza-



M.M. Oskouei, Independent Component Analysis

189

tion. — 9th Thematic Conference on Geologic
Remote Sensing, Pasadena, California, USA.

HyVARINEN, A., 1999: Fast and Robust Fixed-
Point Algorithms for Independent Component
Analysis. — IEEE Transactions on Neural Net-
works 10 (3): 626—634.

HyvARINEN, A. & Osa, E., 2000: Independent
Component Analysis: Algorithms and Appli-
cations. — IEEE Transactions on Neural Net-
works 13 (4-5): 411-430.

LexnoN, M., Mouchot, M., MEercier, G. & Hu-
BERT-Moy, L., 2001: Spectral unmixing of hy-
perspectral images with the independent com-
ponent analysis and wavelet packets. — IEEE
International Geoscience and Remote Sensing
Symposium.

MaNoOLAKIS, D., MARDEN, D. & SHaw, G.A., 2003:
Hyperspectral Image Processing for Auto-
matic Target Detection Applications. — Lin-
coln Laboratory Journal 14 (1): 79-166.

NasH, G.D. & Jounson, JW., 2002: Soil mineral-
ogy anomaly detection in Dixie Valley, Ne-
vada using hyperspectral data. — Twenty-Sev-
enth Workshop on Geothermal Reservoir En-
gineering, Stanford University.

Oskoutl, M.M. & Busch, W., 2008: A geostatis-
tically based preprocessing algorithm for hy-
perspectral data analysis. — GIScience & Re-
mote Sensing 45 (3): 356-368.

PeEArRLMAN, J., SEGAL, C., Liao, L., CaArRMAN, S.,
FoLkmaNn, M., BRowNE, B., ONG, L. & UNGAR,
S., 2000: Development and operations of the
eo-1 hyperion imaging spectrometer. — SPIE
Conference on Earth Observing Systems
4135: 243-254.

ScHNEIDER, G.I.C. & ScHNEIDER, M.B., 2004: Gond-
wanaland Geopark. (Windhoek Cluster Office),
Namibia.

Tu, TM., CueN, C.H., Wu, J.L. & Cuang, C.I.,
1998: A fast two-stage classification method
for high dimensional remote sensing data. —
IEEE Transactions on Geoscience and Remote
Sensing 36: 182—191.

VARSHNEY, P.K. & Arora, M.K., 2004: Advanced
image processing techniques for remotely
sensed hyperspectral data. — Springer, Berlin.

Wang, J. & Cuang, C.1., 2006: Applications of
independent component analysis (ICA) in
endmember extraction and abundance quanti-
fication for hyperspectral imagery. — IEEE
Transactions on Geoscience and Remote
Sensing 44 (9): 2601-2616.

Wang, J. & Cuang, C.I., 2006: Independent
Component Analysis-Based Dimensionality
Reduction with Applications in Hyperspectral
Image Analysis. — IEEE Transactions on Geo-
science and Remote Sensing 44 (6): 1586—
1600.

ZnenG, C.H., Huang, D.S., Sun, Z.L., Lyu, M.R.
& Lok, T.M., 2006: Nonnegative independent
component analysis based on minimizing mu-
tual information technique. — Neuro Comput-
ing 69: 878—883.

Address of the Author:

Dr. Manp MoHamMaDpy Oskouel, Faculty of Mining
Engineering, Sahand University of Technology,
Tabriz, Iran; Tel: +98(0)4123459-299, Fax: -299,
e-mail: moskouei@yahoo.com

Manuskript eingereicht: Juni 2009
Angenommen: Dezember 2009



	Heft_3
	0048_Oskouei

	Leere Seite

