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Summary: The study is intended as a contribution
to assessing the value of digital image data for
semi-automatic analysis of classified land cover
and tree species and was carried out in the frame-
work of the DGPF-project. Sensor specific strengths
of ADS40-2nd, Quattro DigiCAM, DMC, JAS-150,
Ultracam-X, and RMK-Top15 cameras and weak-
ness for classification purposes are presented and
shortly discussed. The first approach is based on a
maximum likelihood method in combination with a
decision tree and produces 13 land cover classes.
The second approach is based on logistic regression
models and produces eight tree species classes.
The classified images were visually assessed and

quantitatively analyzed. The accuracy assessment
reveals that in both approaches similar classifica-
tion results are obtained by all sensors with overall
Kappa coefficients between 0.6 and 0.9. However, a
real sensor comparison was not possible since the
image data was acquired at different dates. Thus,
some variations in the classification results are due
to phenological differences and different illumina-
tion and atmospheric conditions. It is planned for
the future that the classifications of the first ap-
proach will be adjusted to the characteristics of
each sensor. In the second approach, further work
is needed to improve distinguishing non-dominant,
small and partly covered deciduous tree species.

Zusammenfassung: Potenzial digitaler Sensoren
zur Klassifizierung der Landbedeckung und Bau-
marten – eine Fallstudie im Rahmen des DGPF-
Projektes. Anhand der Bilddaten aus den Kamera-
systemen ADS40-2nd, Quattro DigiCAM, DMC,
JAS-150, Ultracam-X, und RMK-Top15 wurden
zwei Klassifikationsverfahren (Maximum Likeli-
hood und logistische Regression) getestet. Dabei
wurden sensor-spezifische Eigenschaften erläutert,
sowie die Stärken und Schwächen der einzelnen
Systeme aufgezeigt.
Die Resultate wurden visuell und quantitativ be-

wertet. Direkte Sensorvergleiche erwiesen sich da-
bei als schwierig, da zum Aufnahmezeitpunkt der
einzelnen Bilddaten sowohl eine unterschiedliche
Vegetationsentwicklung wie auch Unterschiede in
den Beleuchtungs- und atmosphärischen Verhält-
nissen vorherrschten. Quantitative Analysen zei-
gen, dass sich mit jedem Kamerasysteme sehr ähn-
lich gute Resultate erzielen liessen. Das erste Ver-
fahren zeigt für 13 Landnutzungsklassen Kappa
Koeffizienten von gut 0,6 bei allen verwendeten
Systemen. Allerdings unterscheidet sich die Ge-
nauigkeit der einzelnen spezifischen Klassen wie
Mais oder Kartoffeln für die unterschiedlichen Ka-
meras. Hierzu soll in weiteren Analysen das Klas-
sifikationsverfahren an die jeweiligen Kameras
angepasst werden. Für das zweite Verfahren liegt
der Kappa Koeffizient für 8 Baumarten zwischen
0,7 und 0,9. Bei diesem Verfahren soll in zukünfti-
gen Analysen die Genauigkeit der Erkennung von
nicht dominanten, kleinen und teilweise verdeckten
Baumarten erhöht werden.
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or hybrid approaches.●

None of these classification methods is supe-
rior to another. The most appropriate classifi-
cation strategy depends on different parame-
ters such as the biophysical characteristics of
the research area, the homogeneity of the re-
mote sensing data and the “a priori” know-
ledge (Jensen 2005). Even a standard algo-
rithm, such as the maximum likelihood, could
produce better results than modern algorithms
such as ANN (artificial neural networks) (er-
bek et al. 2004) or boosting (bailly et al.
2007). An overview of classification algo-
rithms is given in (lu & Weng 2007).

According to scott et al. (2002), modern
regression approaches are particularly useful
for modelling the spatial distribution of tree
species and communities. When analyzing the
relationship between categorical dependent
variables and remotely sensed data logistic re-
gression models are very powerful. Thus, re-
gression analyses with explanatory variables
derived from high-resolution remote sensing
data seem very promising for the second part
of this article – modelling tree area and tree
species. Some recent forest research has fo-
cused on integrating multisensor data to esti-
mate forest area (Wang et al. 2007; Waser et
al. 2008a), forest composition and tree species
(Heinzel et al. 2008). But only few studies
have already shown that optical digital air-
borne data have also been opened up new op-
portunities for tree species classification: The
data are recorded by frame-based sensors, e. g.
DMC (Holmgren et al. 2008), Ultracam-X
(HirscHmugl et al. 2007) or line-scanning
sensors, e. g. ADS40 (Waser et al. 2008b),
which provide stereo-overlap of up to 90% or
entire image strips with higher radiometric
resolution.

The main objective of this article was to
show the potential of frame-based camera sys-
tems (DMC, Quattro DigiCAM, Ultracam-X),
two line scanning systems (ADS40-2nd, JAS-
150) and a classical analogue camera (RMK-
Top15) for two different classification ap-
proaches. Sensor specific strengths and weak-
ness for classification purposes will be briefly
investigated and emphasis was placed on ob-
jectivity and not only on accuracy of classifi-
cation.

1 Introduction

This paper compares different aerial cameras
for land cover classification purposes. It was
carried out in the framework of the project of
the German Society for Photogrammetry, Re-
mote Sensing and Geoinformation (DGPF).
An overwiev and test design of this project is
given in this issue (cramer 2010). In the
DGPF-project “Evaluation of digital aerial
cameras” a special interest group “Thematic
Analysis” was initiated within the radiometry
working group. The objective of this group is
the comparison of the different aerial cameras
in terms of information extraction.

While there are many articles related to the
radiometric comparison between different
aerial cameras (markelin et al. 2006;
Hoonkvaara et al. 2009), there are only a few
articles related to a comparison of the classifi-
cation accuracy between different aerial cam-
eras. E. g. eHlers et al. (2007) used different
supervised classification methods to compare
DMC, UCD and ADS40 data. rosso et al.
(2008) compare different spectral curves of
specific plant species from DMC, UCD and
ADS40 data. Further articles are related to
this project (klonus 2009; klonus et al.
2009).

The focus of the Institute for Geoinformat-
ics and Remote Sensing (IGF) at the Univer-
sity of Osnabrück in this article is on an entire
land cover classification whereas the group
Pattern Recognition and Photogrammetry at
the Swiss Federal Research Institute (WSL)
focusses on the classification of forest area and
different tree species.
The general objective of an image classifi-

cation is the automatic allocation of all pixels
to land cover classes or specific themes. The
grey value of each pixel is the numeric base
for this allocation (lillesand & kiefer 1994).
According to Jensen (2005) the multispectral
classification can be processed using one or
more of the following approaches:

algorithms based on parametric and non-●
parametric statistics
supervised and unsupervised classification●
algorithms
the use of hard or soft classifications (Fuzzy)●
pixel and object based classification algo-●
rithms
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The first field survey was carried out on 12th

and 13th of April 2008 and arranged by the
company EFTAS of Münster. Summer and
winter crops as well as different objects in the
settlements were recorded. The entire spec-
trum of field crops (nearly 85% of the area)
and tree species in selected forest areas were
recorded between 20th and 22nd of June 2008
by experts from the University of Düsseldorf
(HHUD). The field survey of the University of
Osnabrück was carried out during the first
flights of the digital aerial cameras between
27th and 31st of July 2008. The data was col-
lected for selected areas and updated from the
HHUD. During the recording of the Ultracam-
X and AIC images another field survey from
10th of September to 3rd of October 2008 was
carried out by the company C+B Technik
GmbH. The mapping also included the field
crops in autumn. The last field survey was car-
ried out by experts of the University of Düs-
seldorf from 18th to 19th of October 2008. The
field crops from the first field trip were updat-
ed and the current field crops were recorded.
Prior to digitizing and storing the field infor-
mation in vector files all field surveys were
documented with photographs in the direc-
tions North, South, East and West for the dif-
ferent field crops.

2 Material

2.1 Study Area

The DGPF-project study area is located about
20 km north-west of Stuttgart/Germany in a
hilly area providing several types of vegeta-
tion and land use, mostly rural area with
smaller forests and villages, quite steep vine-
yards and some quarries.

To save processing time, two smaller areas
of the DGPF-project study area were chosen as
test sites for the classification algorithms (cf.
Fig. 1). To collect ground truth data for inter-
pretation and classification of the recorded
scenes different field trips were carried out.
Both particular locations were chosen, be-
cause they present the highest heterogenity of
our study area and include artificial and natu-
ral areas. In test site 1 nearly all crops were
represented, whereas test site 2 is character-
ized by different forest types.

Test Site 1

Test site 1 is located between the villages
Vaihingen and Rosswag. And is approx. 2 km2

in area. The terrain is mostly characterized by
agricultural fields in the South and vineyards
in the norhern part. The area is crossed by a
forest, a stone quarrel and the river Enz.

Fig. 1: DMC RGB Orthoimage of test sites 1 and 2.
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2.2 Optical Sensors

In the framework of the DGPF-project, data
was recorded by nine different aerial cameras:
DMC, ADS40-2nd, JAS-150, Ultracam-X,
RMK-Top15, Quattro DigiCAM, AIC-x1,
AIC-x4 and DLR 3K-Kamera. Most of the
cameras (DMC, RMK-Top15, ADS40-2nd,
Quattro DigiCAM) recorded the data on 06th

of August 2008, whereas the data from JAS-
150, Ultracam-X, AIC-x1, was recorded at the
beginning of September. The data of the Can-
on 3K camera from DLR, which was recorded
on 15th of July 2008 was not used in this study
due to large seasonal differences. Tab. 1 gives
an overview of the characteristics of the six
camera systems for which the data was avail-
able on time and therefore have been tested for
classification of land cover and tree species.
Allthough the image data was recorded with a
ground sampling distance (GSD) of 8 and
20 cm by all cameras, a GSD of 20 cm was
considered to have sufficient terrain detail for
our study.

In terms of spectral characteristics DMC
and JAS-150 recorded the data in the visible
red, green and blue and in the near-infrared
(NIR) range. Ultracam-X recorded the data in
the same wavelengths, but provided only the
visible bands for the test sites. The Quattro
DigiCAM recorded the data only in the three
visible bands: red, green and blue. For the
RMK-Top15 camera the NIR, red and green
data was available at 20 cm resolution. To use

Test Site 2

Test site 2 is located in the southern part of the
village Rosswag and is approx. 1.75 km2 in
area. The terrain varies (forest slopes and flat
areas along the river Enz) with mixed land
cover and forest. The altitude ranges from 240
m to 410 m a.s.l. The forest area covers approx.
0.7 km2, and is mostly characterized by mixed
forest (approx. 80%) and riverside woodland
(approx. 20%). The dominating deciduous
tree species are ash (Fraxinus sp.), beech (Fa-
gus sp.), poplar (Populus sp.) and willow (Salix
sp.) and less frequently maple (Acer sp.) and
oak (Quercus sp.). Norway spruce (Picea
Abies) and Scots pine (Pinus sylvestris) are the
main coniferous trees. The ground truth data
to validate the different outputs was collected
in the natural environment to be representa-
tive for test site 2. For the validation of the tree
cover (forest area), two types of samples were
distinguished (tree area / non tree area) and a
total number of 2×60 samples were digitized
from the four input orthoimages. To determine
the eight main tree species, a ground survey
visiting 240 trees was carried out on 10th of
June 2009. Typical examples of each tree spe-
cies as seen in the ADS40-2nd RGB and CIR
images are shown in Fig. 2. This information
was used to calibrate and validate the logistic
regression models.

6' .5!7B) 4' ,BB#=) 3' /?=) 1' >"!75A) 0' @58) -' 2;77"&) *' +"A&5% ?!A:#B) (' 9#"<? !;$B

Fig. 2: Examples of the 8 sampled tree species in test site 2 as they appear in the ADS40-2nd im-
agery (RGB and CIR).
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3 Methods

3.1 Land Cover Classification

To ensure the objectivity of the comparison,
the same training areas for all different cam-
eras were chosen. The training areas were
chosen after the criteria by dennert-möller

(1983). They had to be
connected and large enough●
all the pixels in an area need to be contigu-●
ous
homogeneous with an unmixed spectral●
signature
be representative for each class●
and spectrally well separable.●

The classification method consisted of two
steps: a pixel-based maximum likelihood clas-
sification (Jensen 2005) and a decision tree
based classification. The maximum likelihood
method was used because it showed the best
results among other six classification methods
for different agricultural scenes in a previuos
study (klonus & eHlers 2009). Additionally,
a higher objectivity is ensured since it is rela-
tively simple and only a few parameters need
to be defined. To avoid an inaccurate classifi-
cation, weights to each of the classes were
added. These weights were the same in all the
scenes of all the cameras and were determined
using experienced data from other classifica-
tions.

at least three different bands of each sensor
DMC, JAS-150, DigiCAM and Ultracam were
studied together using the RGB bands. RMK-
Top15 was also included but using the band
combination RGN (red, green, near infrared).
The objectivity of our comparisons is slightly
reduced by this compromise. The usage of the
NIR band of the RMK-Top15 has the advan-
tage that the entropy is substantial higher than
it is when only using optical bands, because
the RGB bands have a higher correlation be-
tween each other and therefore lower entropy.
Additionally, the main advantage of the NIR
information is the better detection of plants
(albertz 2001). Concerning the four band
classifications only ADS40-2nd, DMC and
JAS-150 data could be compared since only
for these three cameras all four channels were
available.

2.3 LiDAR DTM and DSM

In addition to the image data, a LiDAR flight
was realized on 21 August 2008 by a Leica
ALS 50 scanner with an average point density
of 5 points / m2. For our investigations DSM
and a DTM grid of 0.25 m raster width was
produced from the raw data. A colour coded
hillshade of the LiDARDSM is given in Fig. 9.
20 cm orthoimages have been calculated from
each data set using the LiDAR DTM.

Tab. 1: Summary of characteristics of the image data used in this study.

Sensor ADS40-2nd DMC RMK-Top15 Quattro
DigiCAM

JAS-150 Ultracam-X

Used in test
site

2 1,2 1 1 1,2 1,2

Acquisition
date

06/08/2008 06/08/2008 06/08/2008 06/08/2008 09/09/2008 11/09/2008

Spectral
resolution
(nm)

RGB+NIR
B: 428-492
G: 533-587
R: 608-662
NIR:
833-887

RGB+NIR
B: 429-514
G: 514-600
R: 600-676
NIR:
695-831

RG+NIR
B: --
G: --
R:--
NIR:--

RGB
B: 400-540
G: 480-600
R: 580-660
NIR: --

RGB+NIR
B: 440-510
G: 520-590
R: 620-680
NIR:
780-850

RGB+NIR
B: 400-580
G: 500-650
R: 590-675
NIR:--

Spatial
resolution

20 cm 20 cm 20 cm
(RGB: 8 cm)

20 cm 20 cm 20 cm

Radiometric
resolution

12 bit 12 bit -- 14 bit 12 bit >12 bit
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3.2 Tree Species Classification

Variables Derived from Remotely
Sensed Information

The extraction of tree area and classification
of tree species is based on logistic regression
models (for details see, e. g., Hosmer & leme-
sHoW 1989). As explanatory variables several
geometric and spectral signatures were de-
rived from the remote sensing data using
standard digital image processing methods as
described in (gonzales & Woods 2002).

A detailed extraction of geometric and
spectral explanatory variables derived from
airborne remote sensing data is described in
Waser et al. (2007 and 2008a). The explana-
tory variables used in this study consist of four
commonly used geometric parameters derived
from the LiDAR DSMs (slope, curvature, and
two local neighbourhood functions: rate of
change in slope for each cell and assessment of
topographic position). For further details, see
burrougH (1986).

Based on experiences made in Waser et al.
(2008b) as spectral input variables we pro-
duced for each data set: four original bands
(RGB and NIR) of ADS40-2nd, DMC and JAS-
150, Ultracam-X (only 3 bands RGB were
available); the 3 ratios of each RGB band di-
vided by the sum of the corresponding three
bands; and the three colour transformations
from RGB to IHS into the 3 channels intensity
(I), hue (H), and saturation (S). In total we
have derived ten spectral input variables from
each of the ADS40-2nd, DMC and JAS-150
data sets and 9 from the Ultracam-X where no
NIR channel was available for this study.

Image Segmentation

Homogenous image segments of individual
tree crowns or tree-clusters are needed to ex-
tract the tree area and to classify tree species
(see below). The four orthoimages were there-
fore subdivided into patches by a multi-resolu-
tion segmentation using the Definiens 7.0 soft-
ware (baatz & scHäpe 2000). The RGB bands
are used as input data with the LiDAR DSMs
providing additional geometric information
(height and slope). Segmentation was itera-
tively optimized using several levels of detail

The normalized difference vegetation index
(NDVI) was added as an additional input pa-
rameter for the comparison between DMC and
JAS-150 data. The results of the maximum
likelihood classification (in the form of a layer)
together with the grey value information of
the input bands (and the NDVI – if available)
were used to build the decision tree.

A decision tree is a hierarchy of rules and
consists of different nodes. The first or root
node is displayed at the top, connected by suc-
cessive branches to other nodes. These are
similarly connected until a leaf node is
reached, which has no further branches. Each
leaf node is similar to a class in Tab. 3. The
classification of a particular pattern (vector in
feature space) begins at the root node. Each
node contains a rule, e. g. NDVI > 500. The
different branches from the root node corre-
spond to the different possible answers, in this
case yes or no. Based descendent on the an-
swer it follows the appropriate branch to a sub-
sequent or descendent node. Therefore the
branches must be mutually distinct and ex-
haustive. The next step is to make the decision
at the sub-tree appropriate subsequent node,
which can be considered the root of a sub-tree.
This way is continued until a leaf node is
reached, which has no further rule (duda et al.
2001).

To guarantee a high objectivity of the clas-
sification the settings for the decision tree
were extracted automatically from the train-
ing areas using the mean and standard devia-
tions of the pixel values in these areas. Over-
all, fourteen different classes were distin-
guished for this classification (see Tab. 3). The
images were visually assessed and quantita-
tively analysed using 255 randomly chosen
points in the classified images. Then the points
were compared to field data, and producers’
and users’ accuracy and the kappa coefficient
were calculated. Classes that had less than five
points were not included in the analysis (see
also Tab. 2).
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to the class “tree” ranges between 0 and 1.
Segments with a tree probability of 0.5 or
more were assigned to the class “tree”, the
others to the class “non-tree”. To validate the
method, a similar regression was applied to
segments with our ground truth data with a
tree or non-tree sample unit by at least 50%.
The validation consisted of a 5-fold cross-val-
idation of the logistic model.

Tree Species Classification

The tree species were classified within the tree
covers (for each data set) using logistic regres-
sion models. Prior to modelling the tree spe-
cies for the whole area, the variables were se-
lected empirically using the image segments
of each data set with species assignments. The
best model runs were obtained using the vari-
ables derived from the IHS transformations of
the original image bands (means and standard
deviations) and the NIR bands (if available).
As output, probabilities for each tree species
within an image segment were obtained for
each data set. The following eight tree species
were modeled: ash, beech, maple, Norway
spruce, oak, poplar, Scots pine, and willow.

4 Results and Discussion

4.1 Visual Analysis

Prior to image classification of test site 1 a vis-
ual analysis was performed to detect similar
training areas. For interpretation purposes the
images of the different sensors are displayed

and an adapted to shape and compactness pa-
rameters.

Finally, the means and standard deviations
of the remotely sensed explanatory variables,
the variables derived from them were calcu-
lated for each segment.

Tree Cover

The extraction of the tree area is a required
input in classification of the tree species ap-
proach. Tree canopy and non-tree area masks
were generated in five steps. First, a digital
canopy height model (CHM) was produced
subtracting the LiDAR DTM from the DSM.
In a second step, pixels with CHM values > 2
m were used to extract potential tree areas.
Then four shadow masks were empirically
generated using the spectral information (ratio
of channels) from the four input orthoimages.
In a fourth step, non-tree objects, e. g. build-
ings, roofs, artefacts in the CHMs were re-
moved using NDVI values (ADS40-2nd, DMC,
JAS-150) or ratio of red / green bands (Ult-
racam-X) information (curvature) about the
image segments (e. g. segments on buildings
have lower curvature values and ranges).
These four steps resulted in a canopy cover
per data set (four in total) providing discrete
tree / non-tree data.
Then in a fifth step, based on these canopy

covers, four fractional tree covers were pro-
duced using logistic regression and the four
topographic variables from the CHM as de-
scribed above, with a probability for each im-
age segment that it belongs to the class “tree”.
The probability (P) for each pixel that belongs

Fig. 3: Red band of DMC (left) and RMK-Top15 (right).
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ences, differences in contrast might be caused
by the different phenological state due to the
different dates of image acquisition.

4.2 Thematic Classification

The overall classification accuracies for each
sensor are summarized in Tab. 2. Figs. 6–8
show the examples of the land cover classifica-
tions based on the different sensors. With
variations of the kappa coefficient of only 0.15
(Tab. 2) the quantitative results confirmed
what the visual assessments suggested (cf.
Figs. 3–5), that all cameras performed simi-
larly.
The relatively low kappa coefficients are

caused by different factors: (a) The application
of the same method to all different images, (b)
different weather conditions during the re-
cording of the images, (c) phenological differ-
ences between the images and (d) bi-direc-
tional reflectance distribution function
(BRDF)-related problems such as the natural
in-field variations or the missing atmospheric
corrections. Atmospheric corrections were not
applied since they are hardly used in praxis. A
consideration of the BRDF may lead to better
results since the final greyvalues in the image
strongly depend on the position of the sun and
the position of the observer relative to the sun
(demircan et al. 2009). To reduce these ef-
fects, an attempt was made to use only one im-
age per classification. Image mosaics were
solely used if the single images were smaller
than the study area.

in the red band (Figs. 3–5). The red band was
chosen since only the red and green bands
were available for all sensors. At first glance,
visual analysis revealed that most of the imag-
es of the different cameras have a similar qual-
ity and the different field crops and land cover
classes could be easily extracted.
However, the missing atmospheric correc-

tion is clearly visible in the RMK-Top15 and
the JAS-150 images. The position of the sun
during image acquisition was east of the
scenes and the effects can be clearly seen on
the roof of the big farmyard at the bottom.

Some differences in the appearance of the
vegetation are also visible in the field in the
north of the big farmyard. While the contrast
between the different fields in images from
DMC and RMK-Top15 is high, images from
Ultracam-X are characterized by a lower con-
trast. Additionally to the atmospheric differ-

Fig. 4: Red band of Quattro DigiCAM (left) and JAS-150 (right).

Fig. 5: Red band of Ultracam-X.
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misclassified pixels which corresponded to ar-
tificial structures such as stones or buildings.

Another problem occurred when classify-
ing the vineyards. The usage of 20 cm resolu-
tion images did not absolutely guarantee pure
pixels of vineyards for the trainings areas.
Therefore the overall accuracy of the classifi-
cation is reduced by the vineyard class. Nearly
5% better results are obtained when perform-
ing a classification without vineyards.

The analysis of the shadow class has been
separated into three types: shadows over wa-
ter, shadow in vegetation and shadows in set-
tlements. The RMK-Top15 detected most of
the shadows in vegetation as water with high
amount of algae; the usage of this sensor also
generates problems with shadows over water
because the majority was not detected. The
extraction of shadows in vegetation and water
was good using the images from DMC and
Quattro DigiCAM. In the Ultracam-X images
most of the shadows in settlements are classi-
fied as water. The best results are again ob-
tained for DMC and Quattro DigiCAM. Since

Figs. 6–8 clearly show that most of the
grassland are correctly classified. However, in
some parts of the RMK-Top15 and JAS-150
images this class is mixed with pixels of sugar
beets. The characteristics of the river Enz are
clearly visible in all classified scenes and only
the size of the area of algae varies. Especially
in the JAS-150 images most of the algae are
classified as forest. Further problems occurred
in separating sugar beets from grassland and
corn from forest.

The detection of corn shows a relatively low
accuracy. In one corn field no single pixel has
been classified as corn and distinction between
fallow and stubble fields was not always pos-
sible using the JAS-150, RMK-Top15 and Ult-
racam-X images. The real distribution of stub-
ble or fallow lands could not accurately be
determined due to the time differences be-
tween the flights and the lack of information
on the field crops of each day. Generally, the
accuracy for these two classes is about 80%.
The misclassified pixels mostly belong to oth-
er crops, and only the JAS-150 images show

Tab. 2: Fourteen thematic classes (all data except of Cohen’s kappa coefficient (K) is given in %,
for cells with --- less than 5 reference points were available).

Class RMK-
Top15
(RGN)

DMC
(RGB)

DMC
(RGBN)

JAS-150
(RGB)

JAS-150
(RGBN)

Quattro
Digi-
CAM
(RGB)

Ult-
racam-X
(RGB)

Fallow ground 97.05 60.36 79.69 69.23 81.86 74.03 85.08

Water with Algae --- --- 60.00 80.00 75.00 62.50 ---

Grassland 83.32 69.46 74.30 64.65 74.74 77.10 75.72

Potato --- --- --- --- --- --- ---

Corn --- 53.70 25.75 --- 60.72 54.17 ---

Shadow 66.67 80.77 78.25 84.45 80.98 77.27 62.22

Quarry 65.39 42.43 53.34 12.70 80.81 62.22 57.15

Stubble field 91.67 53.62 82.02 90.45 85.06 94.15 63.05

Streets 34.09 71.47 75.56 29.83 41.67 32.15 66.97

Buildings 49.09 58.93 59.09 59.53 51.76 75.00 75.00

Forest 69.09 81.38 74.80 78.90 79.76 70.38 69.61

Water 96.42 67.33 92.04 92.13 94.77 76.51 88.99

Vineyard --- 58.34 --- --- --- 62.50 66.67

Sugar beets 78.57 63.64 62.50 62.92 38.57 71.43 67.50

K 0.66 0.53 0.63 0.62 0.68 0.68 0.58
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small streets are predominantly correctly clas-
sified. In the RMK-Top15 images many of the
street pixels are classified as quarry stone and
fallow field. Generally, buildings can be visu-
ally separated from the remaining classes.
Misclassified buildings in the JAS-150 images
are mostly due to strong light reflections on
one site of the roofs which in turn are caused
by the low altitude of the sun. The best results

the quarry stone class is mixed with the street
class in all images low accuracies are obtained
for both with the exception of the DMC clas-
sification where an accuracy of over 70% is
obtained. In the Quattro DigiCAM images the
marks on the streets and the borders of the
streets are mostly classified as quarry stone.

In the JAS-150 images especially the larger
streets are extracted as buildings whereas the

Tab. 3: The 14 thematic classes of the land
cover classification approach.

Class Color Class Color

Fallow ground Stubble field

Water with algae Streets

Grassland Buildings

Potato Forest

Corn Water

Shadow Vineyard

Quarry Sugar beets

Fig. 6: Classification results for Quattro DigiCAM (left) and RMK-Top15 (right).

Fig. 7: Classification results for DMC (left) and Ultracam-X (right).

Fig. 8: Classification results for JAS-150.
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4.3 Tree Species Classification

The modelled tree covers were cross-validated
using a patch-to-patch comparison to the
ground truth data (120 tree and non-tree sam-
ples), i. e. segments overlapping at least 50%
with a tree or non-tree sample unit. Tab. 4
summarizes the correspondence between the
randomly sampled tree / non-tree samples and
the modelled tree covers for each of the four
datasets of this study. The accuracy of the
classified trees was generally high in all four
data sets. The fact that the geometric parame-
ters alone almost suffice for the generation of
the tree covers underlines the importance of
the LiDAR DSM quality. An example of the
CHM and the tree cover classification is given
in Fig. 9.

are obtained using the images from Quattro
DigiCAM and Ultracam-X.
Since only one potatoe field exists in test

site 1 only few reference points were allocated
to this class. The visual inspection shows, that
this class has a low accuracy and more than
40% of the pixels are classified as other crop
types. High accuracies are obtained for the
forest class by all sensors. The Quattro Digi-
CAM scene shows a lot of corn pixels in the
final result. Best results for this class are ob-
tained when using the DMC and the JAS-150
images. On the other hand, in all images most
of the corn pixels have been classified as for-
est. The relatively high accuracy obtained by
the RMK-Top15 images is due the additional
usage of the near infrared band.

Tab. 4: Correctly classified tree / non-tree segments (%) and Cohen’s kappa coefficient (K).

ADS40-2nd DMC JAS-150 Ultracam-X

Tree segments 524 521 533 512

Non-tree segments 454 465 432 448

Correct (%) 99 99 99 99

K 0.95 0.96 0.95 0.95

Fig. 9: Top left: ADS40-2nd CIR orthoimage of a part of test site 2; top right: colour-coded hillshade
of LiDAR DSM, classification of tree probabilities (bottom left) and tree species (bottom right).



152 Photogrammetrie • Fernerkundung • Geoinformation 2/2010

reference tree species was assigned to an im-
age segment if the overlapping area of the spe-
cific species was at least 10%. If this was the
case, for each segment the tree species with

In order to validate the classification of the
main tree species, the reference tree data was
assigned to the corresponding image segments
using ArcGis 9.3.1. Each of the 240 delineated

Tab. 5: Confusion matrices for tree species classification using different data sources, proportion
of correctly classified trees (prop. corr. %) of different tree species, overall accuracy (ov. acc. %),
and Cohen’s kappa coefficient (K). The number of tree segments used varies in each model; in the
segmented DMC image 456 tree segments were assigned, 500 in the ADS40-2nd, 452 in the JAS-
150, and 462 in the Ultracam-X image.

Field Classified as

Maple Beech Ash Poplar Oak Willow Spruce Pine Ov.
acc. %

K

DMC
Maple 6 0 7 3 0 0 0 0
Beech 0 89 19 2 0 0 0 0
Ash 0 15 79 3 0 0 0 0
Poplar 0 1 3 72 0 0 0 0
Oak 0 0 0 0 4 0 0 0
Willow 0 0 0 0 0 69 0 0
Spruce 0 0 0 0 0 0 58 0
Pine 0 0 0 0 0 0 0 26
Prop. corr.(%) 38 71 63 86 100 100 100 100 88.4 0.86

ADS40-2nd

Maple 8 5 3 0 0 0 0 0
Beech 6 109 10 1 0 0 0 0
Ash 6 22 71 2 1 1 0 0
Poplar 5 2 2 52 0 4 0 0
Oak 0 0 2 1 3 0 0 0
Willow 2 3 1 2 0 67 0 0
Spruce 0 0 0 0 0 0 74
Pine 0 0 0 0 0 0 35
Prop. corr. (%) 23 69 59 73 43 84 100 100 83.8 0.81

JAS-150
Maple 3 9 1 0 0 0 0 0
Beech 1 97 11 1 0 1 2 0
Ash 0 31 49 4 0 1 1 0
Poplar 0 3 3 59 0 2 0 0
Oak 0 0 0 0 5 0 0 0
Willow 0 0 0 0 0 67 1 0
Spruce 0 2 0 0 0 0 65 0
Pine 0 0 0 0 0 0 0 33
Prop. corr.(%) 21 61 41 82 100 94 93 100 80.3 0.76

Ultracam-X
Maple 1 7 4 0 0 3 1 2
Beech 1 77 18 4 0 0 9 1
Ash 1 20 73 2 0 4 2 1
Poplar 0 1 3 66 0 3 0 0
Oak 0 5 0 0 2 0 0 0
Willow 0 3 1 9 0 53 1 1
Spruce 0 5 0 1 0 1 47 1
Pine 0 2 0 1 0 0 0 25
Prop corr.(%) 5 53 50 73 29 67 70 74 74.1 0.69
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natural variability, shadowing effects and dif-
ferences in crown health.

Spectral separability between species and
the variability of trees within species have
also been analysed and described in leckie et
al. (2005). Maples as non-dominant deciduous
tree species in this region can be more difficult
to identify because they may be short and
shaded or obscured by nearby large tree spe-
cies, or by the merging of close crowns. The
field visit and visual stereo-image interpreta-
tion revealed that maples are often not grouped,
have smaller crowns and are therefore partly
covered by each other or by larger trees. Fig. 10
illustrates this situation.

5 Conclusions and
Recommendations

The present study shows the potential and the
limits of classifying thirteen land cover and
eight tree species classes using newest digital
airborne sensors tested in the the DGPF-
project. Small variations in classification re-
sults are most probably due to phenological
differences, different illumination and atmos-
pheric conditions. However, an absolute and
clinical one to one comparison between the
classification results obtained by the different
camera systems was not possible due to the
following reasons: 1) the usage of different

the most overlapping area was assigned. The
classified tree species were then cross-validat-
ed (5 times) using a segment-to-segment com-
parison on the delineated reference tree data
per sensor. To test the ‘robustness’ of the
methods and to see whether consistent results
could be achieved, the training and testing
samples were exchanged. Tab. 5 shows the
four confusion matrices for tree species clas-
sification. An example of the classified tree
species based on the ADS40-2nd input data are
depicted in Fig. 9.
Tab. 5 shows that overall classification ac-

curacies are generally high for each input data
set and variations of the kappa coefficient lay
within 17%. The model based on DMC data
produced highest accuracies for all tree spe-
cies. At first glance, visual assessments of the
classifications suggest that all cameras per-
formed quiet similarly and that the agreements
in most parts of the site are good. Some differ-
ences are visible between deciduous and co-
niferous trees and within deciduous tree spe-
cies. Coniferous tree species are generally
better classified than deciduous trees when us-
ing the DMC, ADS40-2nd and JAS-150 data
sets. The lower accuracies of coniferous trees
in the Ultracam-X data set are obvious and
most probably due to the missing NIR chan-
nel. The analysis showed that the results for
deciduous trees are generally less accurate.
Oaks as a non-dominant tree species vary
from 29% (Ultracam-X) to 100% (DMC,
JAS-150) correctly classified, however this
classification is based on very few samples.
Second best results are obtained for poplar
and willow (67% to 100%). Again highest ac-
curacies are obtained from DMC and JAS-150
data. The analysis showed that the classifica-
tion of maple was the least accurate. Most er-
rors involved maple being misclassified as
beech (ADS40-2nd, JAS-150, Ultracam-X) or
ash (DMC). Beech is often misclassified as
ash (all data sets) or as Norway spruce (Ult-
racam-X). Visual image inspection showed
that old and tall beeches and ashes are often
difficult to distinguish since they have a simi-
lar structure (opened crowns with tall branch-
es and few leaves) and very often also spectral
similarities. Even within species, spectral var-
iability can be large because of illumination
and view-angle conditions, openness of trees,

Fig. 10: Illustration to show the problems in-
volved in identifying deciduous trees. Both
beech and ash have a similar structure with
large partly leaf-less branches, at the back-
ground a dominant oak is partly covering a
smaller maple which is characterized by having
a smaller crown diameter.
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