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Summary: In contrast to conventional airborne
multi-echo laser scanner systems, full-waveform
lidar systems are able to record the signal of each
emitted and backscattered signal of each laser
pulse. Instead of clouds of individual 3D points,
lidar devices provide connected 1D profiles of the
3D scene, which contain more detailed and ad-
ditional information about the structure of the
illuminated surfaces. This paper is focused on the
analysis of full-waveform data in urban areas.
First, a brief overview of the workflow of the pro-
posed classification model is given. Then the
problem of modelling full-waveform lidar signals
is tackled. The standard method assumes the
waveform to be the superposition of signal con-
tributions of each scattering object in such a laser
beam, which are approximated by Gaussian dis-
tributions. This model is suitable in many cases,
especially in vegetated terrain. However, since it
is not tailored to urban waveforms, here the gen-
eralized Gaussian model is selected instead. Then,
a pattern recognition method for urban area clas-
sification is proposed. A supervised method using
Support Vector Machines is performed on the
full-waveform lidar point cloud based on the par-
ameters extracted from the post-processing step.
Results show that it is possible to partition urban
areas in building, vegetation, natural ground and
artificial ground regions with high accuracy using
only lidar waveforms.

Zusammenfassung: Analyse des zeitlichen Signal-
verlaufs von Laserpulsen zur Klassifikation stddti-
scher Gebiete. Daten konventioneller luftgestiitz-
ter Laserscannersysteme beschrianken sich meist
auf die Koordinaten der 3D-Punkte, gegebenen-
falls erweitert durch weitere Merkmale, wie etwa
Breite und Intensitét der Echos. Eine neue Gene-
ration von Sensoren erfasst durch Abtastung den
zeitlichen Verlauf der Sendepulse sowie des em-
pfangenen Signals. Im Gegensatz zu den bislang
verfiigbaren diskreten Punktwolken entspricht
die mit diesen sogenannten Full-Waveform-Sen-
soren gewonnene Signalform somit zusammen-
hingenden 1D-Profilen der 3D-Szene, anhand de-
rer weitergehende Riickschliisse auf die Struktur
der beleuchteten Oberflichen mdoglich sind. Der
Schwerpunkt dieses Aufsatzes liegt auf der Aus-
wertung von Full-Waveform-Daten, die iiber
stddtischem Gebiet gewonnen wurden. Nach
einer Ubersicht des vorgestellten Verfahrens zur
Klassifikation solcher Profile, wird das zugrunde
liegende Datenmodell erldutert. Im Standardmo-
dell ergibt sich die Signalform aus einer Uberla-
gerung der Beitrdge aller sich im Kegel des La-
serstrahls befindlichen Streukdrper, die in guter
Niherung mit GauBlkurven approximiert werden
konnen. Dieses Modell ist in vielen Fallen ange-
messen, insbesondere bei Vegetationsflaichen. Zur
Beschreibung urbaner Gebiete ist es allerdings
nicht hinreichend, daher wird hierzu in diesem
Beitrag ein erweitertes generalisiertes Gaul3mo-
dell vorgeschlagen. Zur tiberwachten Klassifika-
tion der Daten dient eine Support-Vector-Ma-
schine, die auf in einem Vorverarbeitungsschritt
aus den Profilen extrahierten Merkmalen auf-
setzt. Die Ergebnisse zeigen, dass es moglich ist,
anhand der Signalformen mit hoher Genauigkeit
die Klassen Gebdude, Vegetation, natiirliches Ge-
linde und kiinstliches Geldnde zu unterscheiden.
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1 Introduction

In the last decade, airborne lidar systems
have become an alternative source for acqui-
sition of altimeter data. Such devices deliver
a reliable, fast and accurate representation
of terrestrial landscapes through geore-
ferenced and unstructured 3D point clouds
(root mean square error, RMSE < 0.1 m in
altimetry). Range is determined directly ac-
cording to the signal runtime measurement,
whereas stereoscopic techniques derive the
3D information, indirectly based on the
camera orientations and the disparity of
correspondences in optical images identified
by image matching methods. A large body
of literature addresses the potential of laser
scanning data for urban and suburban area
analysis. For instance, many algorithms for
classifying lidar point clouds have been de-
veloped so far aiming at building detection
and subsequent reconstruction (Haara &
BRENNER 1999, SITHOLE & VOSSELMAN 2004).

Often external context information, such
as cadastral maps, is exploited. However,
even in the case of lack of supplementary
data, generally at least the main building
outlines can be extracted from the laser
point clouds alone. In the latter case the dis-
crimination of buildings from adjacent trees
is difficult. All these approaches rely only
upon geometric and topologic criteria and
have in common that they are sensitive to
large off-terrain objects and surface discon-
tinuities. Therefore, many authors proposed
to add other inputs like echo intensity
(TOVART & VOGTLE 2004) or multi-spectral
images (ROTTENSTEINER et al. 2005), which
are often gathered in parallel to the laser
data from the same carrier today, to achieve
better results.

Since a few years, a new generation of li-
dar devices designed to digitize and to re-
cord the entire signal of each emitted laser
pulse became operational. They are called
full-waveform lidar systems. Full-waveform
data offer the opportunity to overcome
many drawbacks of classical multi-echo li-
dar data (WAGNER et al. 2004). In addition
to single range measurements, further physi-
cal properties of the objects included in the

diffraction cone may be revealed by analysis
of the shape of the sampled backscatter se-
quence.

Many studies have already been carried
out to perform full-waveform data proces-
sing, mainly in vegetated areas. The higher
point density inside the penetrated canopy
offersinsight in the vegetation type and state
(HARDING et al. 2001). In urban areas, the
potential of such data has been barely inves-
tigated. For instance, JuTz1 & STILLA (2005)
extract linear features on roof tops by estab-
lishing neighbourhood relationships be-
tween waveforms. They also localize more
accurate building outlines. Moreover,
KIRCHHOF et al. (2008) iteratively process
terrestrial waveforms to detect additional
points in partially occluded and partly illu-
minated regions. On the other hand, by ex-
ploiting other features in addition to the
geometry (e. g., pulse amplitude or width),
detection of vegetated areas is now possible
(Grossetal. 2007). To achieve more advanc-
ed point classification in urban areas, a theo-
retical knowledge of the influence of the geo-
metric and radiometric properties of the hit
targets (i.e., the differential laser cross-sec-
tion) on the shape of the lidar waveforms
is required.

The aim of the article is to show that a
fine analysis of full-waveform lidar data can
lead to an accurate classification of urban
areas. In Section 2, the general outline of
this work is described. Then, a new model-
ling function is proposed in Section 3 to pro-
cess raw signals. Results of the integration
of the previously extracted features into a
supervised classification algorithm are pre-
sented in Section 4. The aim is to discrimi-
nate four classes: buildings, vegetation, ar-
tificial ground, and natural ground regions.
The test data sets are outlined in Section 5.
Finally, the results of waveform processing
and classification are presented and the con-
clusions are drawn.

2 Overall Methodology

Common laser data formats are clouds of
3D points, often provided without link to
the original laser shot. In contrast to this,
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Fig.1: Lidar waveform processing workflow. Echoes within each waveform are first modelled using
an analytical function. The generated 3D point cloud is then classified using features extracted

from the signal processing step.

lidar profiles comprise information of the
1D object structure along the line of sight.
Nevertheless, such data are more difficult to
handle and specific studies have to be carried
out. In this article, an approach is proposed
to process full-waveform lidar data to ex-
tract 3D point clouds featuring more useful
parameters in addition to the traditional
(x, y, z) coordinates and to subsequently
perform a point classification based on these
parameters (see Fig. 1).

Waveform processing consists in decom-
posing the waveform into a sum of compo-
nents or echoes, in order to characterise the
different individual targets along the path
of the laser beam. A parametric approach
ischosen, i. e., parameters of a mathematical
model are estimated. Non-analytic methods
like neural networks, or Parzen windows are
known to work very well to approximate 1D
signals (BisHOP 2006). Nevertheless, they do
not provide physical information about the
target (laser cross-section). The objective of
waveform processing is twofold. It starts in
maximizing the detection rate of relevant
peaks within each signal in order to foster
information extraction from the raw signal.
Furthermore, from a class of functions the
best fit to the waveform is chosen. This al-
lows to introduce new parameters for each
echo and to extract additional information
about the target shape and its reflectance.

Then, the extracted point cloud is clas-
sified. The aim of our work is to assess
whether or not each new parameter intro-
duced is a relevant feature for classification
and how significant it is for urban analysis

(does it provide useful information?). The
features are fed into a supervised classifica-
tion algorithm using a Support Vector Ma-
chine (SVM). This method is well adapted
to deal with high-dimensional feature space
since the algorithm complexity does not de-
pend on the data dimension. Furthermore,
SVM belong to the non-parametric classifi-
cation techniques, i. €., no parametric prob-
ability density functions are required. In re-
cent years, SVM became relevant for solving
remote sensing classification tasks. SVM
permits to use jointly classical geometric
features, image-based information (SECORD
& ZAKHOR 2007) as well as in our case new
parameters extracted from the post-proces-
sing step.

The methodology for classifying urban
areas by lidar waveform analysis is designed
to be flexible. Depending on the modelling
function, the theoretical understanding of
pulse propagation in such regions and the
chosen options of the SVM classifier, it is
possible to refine the classification (e. g., by
splitting the ““vegetation” class in tree spe-
cies or “‘buildings” in roof materials).

3 Waveform Processing

Our methodology is based on a paper writ-
ten by CHAUVE et al. (2007). The authors
describe a waveform processing using an ite-
rative Non-Linear Least Squares fitting al-
gorithm. After coarse initial peak detection,
missing peaks are found in the difference be-
tween the modelled and the initial signal. If
new peaks are detected, the fit is performed
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again. This process is repeated until no fur-
ther improvement is possible. This enhanced
peak detection method is useful to model
complex waveforms with overlapping
echoes and also to extract weak echoes not
found by on-line detection techniques. In ur-
ban areas, the former case is observed when
the laser beam hits building edges. The re-
sulting waveform is therefore composed of
distributed backscatters of the roof and the
ground, which can often not be separated
by hardware detection algorithms using
thresholds.

Waveforms collected with a small-foot-
print lidar system are used in this article
(RIEGL LMS-Q560). Such data can be well
modelled by superposition of Gaussian pul-
ses. WAGNER et al. (2006) have shown that
more than 98 % of the observed waveforms
collected from the RIEGL system could be
approximated by a sum of Gaussian func-
tions. Each laser output pulse shape is as-
sumed to be Gaussian, with a specific and
calibrated width. The collected pulse is
therefore a convolution between this distri-
bution and a ““surface” function, depending

transmitted signal is not always Gaussian.
Indeed, it is observed that the LMS-Q560
transmitted waveform is slightly asymmet-
ric.

In urban areas, most of the return wave-
forms are in reality subject to the mixed ef-
fects of geometric (e. g., roof slopes) and ra-
diometric object properties (e. g., different
kinds of streets and roof materials). Histo-
grams of the four considered classes are il-
lustrated in Fig. 2. Hence, the characteristics
of return peaks may differ significantly. It
was already shown that standard extensions
of the Gaussians model, such as Lognormal
and generalized Gaussian functions, are
suitable to model raw lidar signals. Using
the generalized Gaussian (GG) model im-
proves the signal fitting for symmetric and
distorted waveform shapes (more than
99.3% of satisfactory results) (CHAUVE et
al. 2007). The authors argue that the Log-
normal model fits asymmetric pulses with
success but fails for symmetric ones.

Here, the GG model was used to process
full-waveform lidar data:
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Fig. 2: Histogram of o values over the four test classes. Each plot indicates, for the respective
class, the percentage of echoes having a specific a value included in the range [1.3, 1.9]. a is
one of the parameters extracted from the signal processing step based on a generalized Gaussian
modelling of the peaks. a = 1.41 simulates the Gaussian function, typically used for aerial lidar

waveform modelling.
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where A is the pulse amplitude, o its width,
p the function mode and « the shape para-
meter which allows to simulate Gaussian
(o = ]ﬁ), flattened (o> ]ﬁ) or peaked
(< 1/5) pulses.

A, o and o are the three new features
which will be introduced in the classification
step in Section 4.

4 Classification of Urban Areas

4.1 Methodology

Based on a clustering analysis of the para-
meters extracted from the modelling step,
four classes have been chosen to character-
ize urban areas: buildings, vegetation, natu-
ral ground, and artificial ground. Artificial
ground gathers all kinds of streets (tar, as-
phalt...), pavements and, street items (e. g.,
cars or traffic lights) whereas the natural
ground class includes grass, sand, and bare-
earth regions.

4.2 Support Vector Machines

The general mathematical formulation of
SVMs is briefly recalled in this section.

Linear SVMs

Let D be the data space, Y the label space
and A the training set (e.g., D =90
Y ={—1,1} in a two-class problem).

The classification is carried out using a
linear discriminant function o (D —Y).
x;€ A are the N training samples available
with their labels y,/ie[1, N]. The theoretical
aim of supervised classification is to find a
classifier consistent with the training set.
The SVM method consists in finding the hy-
perplane maximizing the distance (called the
margin) to the closest training data points
in both classes (the support vectors). For a
linear classifier, ® (x) = w.x-0, where we D
is the normal vector to the hyperplane and
0 the bias. We aim at finding the classifier
parameters (w, 0) which verify:

Vx,y)eAd, y;x(w-x;—0)>0 2

Since the SVM method searches the best
classifier (i.e., the largest margin), we im-
pose:

Vix,y)ed, yyx(w-x,—0) =1 (3)

The support vectors lie on two hyperplanes
w - x;— 0 = £+ 1 which are parallel and equi-
distant to the optimal linear separable hy-
perplane. Finally, the optimal hyperplane
has to maximize the margin (i. e., the Euclid-
ian distance between both hyperplanes, de-
fined as 2/ || w|| under the constraints defined
in Equation 3). Unfortunately, in most
cases, such quadratic optimization problem
is unsolvable: we cannot find a linear clas-
sifier consistent with the training set, be-
cause the classification problem is not
linearly separable.

Consequently, slack variables' &, are in-
troduced to cope with misclassified samples
and prevent Equation 3 from being violated.
Another reason is the avoidance of over-fit-
ting the classifier to the training samples,
which would result in poor performance.
Equation 3 thus becomes:

V(x,y)€eA,
yix(w-x,—0)>1-¢,/V,e[1,N], £, = 0(4)

C is a constant which determines the trade-
off between margin maximization and train-
ing error minimization.

The final optimization problem is subse-
quently:

2 N
min |:|v; +C)Y é,:| subject to (4)  (5)
i—1

Nonlinear SVMs

When the classification problem is not lin-
early separable, one solution consists in
changing the feature space. The data is pro-
jected in a higher dimension space using a
nonlinear mapping function ®: D — H, in
which the new distribution of samples en-
ables the fitting of a linear hyperplane. Ker-

! A slack variable is a nonnegative variable that
turns an inequality into an equality constraint.
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nel methods provide nonlinear hyperplanes
and improve classification abilities. The
same margin optimization method can then
be performed.

Finding ® is a difficult problem. In prac-
tise, the xi points are implicitly projected
into H by defining a kernel K: D xD —» R
with K (x;, x) = (© (x)|® (x))). In fact, the
knowledge of K is sufficient to compute the
optimal classifier. It has only to fullfil Mer-
cer’s condition (SCHOLKOPF et al. 1998).

Multiclass SVMs

SVMs are designed to solve binary prob-
lems. When having n > 2 classes of interest,
various approaches are possible to address
the problem, usually combining a set of bi-
nary classifiers. We choose the ‘one-against-
one’ approach because it has been shown
to be more suitable for large problems (Hsu
& LIN 2002). For such pairwise classifica-
tion, n(n — 1)/2 binary classifiers are com-
puted on each pair of classes. Each sample
is assigned to the class getting the highest
number of votes. A vote for a given class is
defined as a classifier assigning the sample
to that class.

In practise

The LIBSVM software is used to implement
the SVM algorithm (available at www.csie.
ntu.edu.tw/ ~cjlin/libsvm). Slack variables
are introduced (soft-margin classifier).
Then, the parameter C has to be optimized
with the kernel hyperparameters (see Sec-
tion 4.3).

4.3 Kernel Selection

Without sufficient a priori knowledge of the
influence of geometric and radiometric tar-
get properties on the pulse shape (or even
strong hints about characteristic behaviours
on urban areas), it is difficult to design a
kernel dedicated to our purpose. Therefore,
the generic Gaussian kernel was selected. It
is defined as:

I — x|
K (x;,x)) = exp (sz (6)

where x;; is the data to be classified and y
is used to express how similar to the training
data the test data is expected to be (y - 0
for instance leads to over-fitting and conse-
quently reveals a low generalization ability
of the classifier). Because optimal values of
C and vy are not known beforehand, a grid
search is performed in which the cross-vali-
dation accuracy (CVA) is computed for
each point (the CVA over (C, y) set is not
convex). A v-fold cross-validation pro-
cedure is carried out i. e., the training data
are divided in v subsets of equal size. The
classifier is trained on v-1 subsets and ran
on the remaining one. Such process has the
advantage of not requiring a separate and
independent data set for assessing the clas-
sification accuracy. The CVA represents the
percentage of samples correctly classified
averaged over all the subsets when they were
used as the testing subset. After the coarse
grid search, a finer one is computed in a
smaller range around the optimal par-
ameters found in the first step. Grid search
is not necessary but is one simple tool for
identifying the optimal hyperparameters.
Several advanced methods exist. But, for
two parameters, the computational time to
find (C, y) with such exhaustive search is
not significantly higher than genetics or
gradient-based optimization algorithms
(CHAPELLE et al. 2002).

4.4 Feature Selection and Relevance

Our feature vector for each lidar point has
eight components.

— n,, difference between the pulse range
and the highest range (lowest altitude)
found in a large spherical environment
(20 m radius for instance; this parameter
is selected manually, depending on the
data set),

— R: residuals computed from a plane est-
imated by a robust M-estimators with
norm L, (the selection of an optimal p
has been investigated and for p around
1.2, a good estimate may be expected, see
(XU & ZHANG 1996) for more details) on
the points in a given neighbourhood
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Tab.1: Empirical values of the selected features for SVM

classification for the four labels.

Feature Building Vegetation Artificial Ground Natural Ground

Har variable variable -0 -0

R -0 high -0 -0

n, [—45°, 45°] variable [—10°, 10°] [—10°, 10°]
Az, 0 high 0 0

N ~ 1 >1 ~1 1

A variable medium low variable

c medium high variable variable

o [1.5, 1.6] variable ~ 1.6 >1.6

(here, a spherical environment of 0.5m
radius),

— n,: the deviation of the local normal vector
from the vertical direction,

— Azg: the altitude difference between the
first and the last pulse of the waveform,

— N: the number of echoes within the wa-
veform of the current lidar point,

— A, o, o the pulse amplitude, width, and
shape, respectively (extracted from the
waveform processing step described in
Section 3).

The first three parameters can be used with
every 3D point cloud (only geometric infor-
mation). The last three ones are derived by
waveform modelling (amplitude can also be
available with multiple-pulse point clouds).
Feature p,, allows to filter points on the ter-
rain from off-terrain points; Az, and N dis-
criminate vegetation points from the others.
Multiple reflections can occur when the laser
beam hits a building (due to superstructures,
e.g., chimney, roof edges) or a street (due
to objects on the street e. g., vehicles or traf-
fic lights). R and n, values are also affected
in these cases. The generalized Gaussian
parameters are introduced in the SVMs to
see how significant they are for the segmen-
tation between the four classes and in be-
tween natural and artificial grounds.

Tab. 1 summarizes the feature values for
the different labels. Other features have been
tested such as the altimetric texture and sev-

eral moments of the three extracted par-
ameters in a given neighbourhood (mean,
standard deviation, and skewness) and the
backscatter cross-section (WAGNER et al.
2006) but they were not found relevant for
our study.

5 Full-waveform Lidar Data

Two data sets are available for this study.
Data acquisition was performed with the
RIEGL LMS-Q560 system over the cities
of Biberach (Germany) and Le Brusquet
(France). The main technical characteristics
of this sensor are presented in (WAGNER et
al. 2006). The specifications of the two sur-
veys are described in Tab. 2.

Each return waveform is a signal com-
posed of one or two sequences of 60 and 80
samples (for Biberach and Le Brusquet, re-
spectively), i.e., 60 and 80 bins with a re-
corded amplitude. For each recorded wave-
form, the digitized emitted pulse and the
echoes found by the hardware detection al-
gorithm are given as well as their amplitude
and width. In urban areas, the digitization
of vertical sections of 60ns (around 18 m)
is sufficient to record backscattered signals
both from the tree tops and the ground be-
low them.

The city of Biberach includes residential,
industrial, and dense urban areas. The sur-
veyed area of Le Brusquet consists of scat-
tered houses in a rural region.
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Tab. 2: Overview of the specification of the data sets (PRF = pulse repetition frequency).

Area Urban Flight Footprint PRF Pulse Temporal Pulse
specificity height size (kHz) width sampling density
(m) (m) (ns) (ns) (/m?)
Biberach dense 500 0.25 100 >5 1 2.5
Le Brusquet | sparse 700 0.35 111 >5 1 >5

An artifact, specific to the RIEGL sensor
and called ‘ringing effect’, is noticed within
the waveforms: after the sampled emitted
pulse, a small secondary maximum resulting
from effects of the hardware waveform pro-
cessing chain can be seen. Consequently, in
urban areas, when the laser beam hits planar
objects of high reflectance and with a small
angle of incidence (typically streets and
roofs), such artifact is still present in the re-
flected waveform. In the iterative process
(see Section 3) a weak pulse just behind a
strong one is therefore removed when their
amplitude ratio is close to the ratio com-
puted from the emitted pulse.

6 Results and Discussion

6.1 Modelling Raw Signals

As described in detail in (CHAUVE et al.
2007), it is still appropriate to model com-
plex waveforms with the GG function and
all the more crucial in urban areas. Indeed,

the benefits of full-waveform data for build-
ing reconstruction or classification are two-
fold:

First, the GG model improves signal fit-
ting. More relevant points are extracted.
Compared to the standard method 5% ad-
ditional pulses are found which correspond
to weak pulses in trees, hedges, building
edges and roof superstructures. Further-
more, taking the ‘ringing effect’ into account
allows to exclude artifacts (i. e., non-existing
points) during post-processing (see Fig.3).
On ground and building regions, ringing
points are removed (>15% of the total
number of points).

Secondly and above all, the global signal
fitting quality is increased. Flattened and
high single pulses as well as narrow ones are
now well detected. Fig.2 shows that since

o values are in many cases larger than ]/5
(mean value = 1.52), waveforms are in real-
ity flattened, compared to Gaussian curves.
Depending on the application, the Gaussian
model can nevertheless be sufficient. For

Fig. 3: Building point cloud without taking the ‘ringing effect’ into account (left, the black arrow
shows the false point layer). The same data after the removal of the sensor artifacts (right). The

roof no longer appears doubled.
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example, in forested areas waveforms are
mainly composed of at least two peaks. In
such application, it is often not of interest
to extract a shape parameter, which will de-
pend both on the reflected target and on the
targets already hit by the laser beam. But,
in urban areas, the GG contribution is all
the more significant since this parameter
provides genuine information about the tar-
get shape and reflectance.

6.2 Behaviour of Extracted
Parameters

A visual interpretation of the shape of lidar
waveforms is needed and a simulation step
is required to understand how the pulse in-
teracts with the targets and to decorrelate
geometric and radiometric influences. Am-
plitude and width values have also to be cor-
rected according to the waveform angle of
incidence and the target slope. Analysis of
extracted point clouds revealed the follow-
ing general behaviour of the three extracted
parameters for different targets in urban
areas:

— High amplitude values are found on build-
ing roofs independent of the material (ex-
cept metal), on gravel, on sand, and cars.
The lowest values correspond to vegeta-
tion points, due to a higher target hetero-
geneity and attenuation. Asphalt and tar
streets have also low amplitude values,
but despite low contrast it is possible to
visually discriminate different kinds of
surfaces.

Vegetation spreads lidar pulses; that is
why the highest width values are found

in trees and hedges. Ground and building
surfaces coincide with low width values,
even if it is noticed that an increasing roof
slope tends to increase pulse width.
Very low and high shape values are char-
acteristics of building edges and vegeta-
tion. Building regions correspond to o
values in a specific range (between 1.5 and
1.6). Natural ground (especially grass)
and artificial ground surfaces can also be
visually distinguished. However, veg-
etated areas exhibit comparable values
(see Fig.2).

6.3 Classification

Both data sets have been classified. Ap-
proximatively 0.8 % of the pulses were used
for the training step and 1% to find the op-
timal values of C and v.

Tab. 3 gives the classification results over
the city of Biberach using the vector com-
posed of eight features. It shows that the
segmentation between different kinds of
ground leads to a certain rate of misclassifi-
cation. The main reasons are, first, that only
few grass or sand regions are present in the
Biberach area and therefore only limited
numbers of samples are available for train-
ing and test. Moreover, the clusters in the
feature space of these two classes are very
close (¢f. Tab.1). The results are therefore
very sensitive to the training step and the
selected regions. Consequently, the SVM
classification often fails when discriminating
these two regions. Nevertheless, tests carried
out on the city of Le Brusquet (rural area)
show that classification in four labels is still

Tab. 3: Confusion matrix computed with ground truth consisting on 6% of the whole data set of

Biberach (p = 0.81 and 135627 points).

Number % points correctly Building Vegetation Artificial Natural
of points classified Ground Ground
76593 Building 87.1 8.8 3.6 0.5
8943 Vegetation 10.2 88.9 0.7 0.2
49048 Artificial Ground 2.2 21 84.6 1.1
1043 Natural Ground 4.1 ~0 33.2 62.7
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conceivable when enough training samples
are available (¢f. Fig.5). The building and
vegetation points are well classified. As ex-
pected, some building points are classified
as ground (their values can be close, €. g., a
flat dark roof close to the ground) and as
vegetation especially superstructure and
building edge points. Vegetated points can
also be labelled as building when the laser
beam hits dense tree areas.

The overall accuracy p is used as a quality
criterion and is defined as:
— Z?IZYAI}/ c

dim Y dim Y

Z,‘=1 Z_,’=1 Ai,.f
where A, ; gives the number of laser points
labelled as j and belonging to the class i in
reality. p is equal to 1 when the classification
is perfect and 1/(number of labels) when the
classifier randomly chooses the class for
each point with the same probability. Fig. 4
shows the evolution of the classification ac-
curacy depending on the input features,
adding them by their historical ‘order of ap-
pearance’ (see part 4.4). The first five at-
tributes are available or can be computed
with multi-echo lidar data. Amplitude is
sometimes given with the 3D point cloud
that is why this feature is then added. The
width and shape attributes are finally intro-
duced, beginning with ¢ to assess the con-
tribution of the generalized Gaussian wave-
form decomposition compared to the stan-
dard Gaussian one. Each new feature im-
proves the classification results but such re-

P 0,1] @)

Fig. 4: Overall accuracy evolution depending on
the features included in the SVM algorithm.
Starting from the vector p,,, R, n,, the other ones

s g

are added progressively (Biberach area).

sult strongly relies on the order of feature
introduction.

A label-by-label analysis reveals first that
the amplitude value allows to discriminate
building and ground points: ground sur-
faces have much lower reflectance than roof
materials. Moreover, although it is noticed
that artificial ground surfaces have lower
amplitude values than natural ones, the dif-
ference is barely significant and does not
permit their discrimination. Feature ¢ is hel-
pful to enhance the building/vegetation sep-
aration but not for ground region segmen-
tation. Results are slightly worse for ground
points with o than without the integration
of this parameter for the Biberach data sets
(63.3% success without o for the natural
ground class), whereas this parameter vis-
ually improves the results over Le Brusquet
(see Fig. 5, no ground truth available for this
area). Finally, feature o slightly improves
point cloud classification by better discrimi-
nating building points. Although natural

Fig. 5: Classification results in a scattered urban area (Le Brusquet). Left: orthoimage of the region
of interest. Right: classified point cloud (yellow: buildings, red: vegetation, blue: artificial ground

and green: natural ground).
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Fig. 6: Classification results in a dense urban area (Biberach). Left: orthoimage. Right: classified

point cloud (same colours as in Fig.5).

and artificial ground surfaces can be visually
distinguished using such feature, the SVM
classifier fails in splitting these classes. This
result was partially expected since the his-
tograms of o values for the two classes are
very close (¢f. Fig. 2). Another attribute has
to be found to discriminate ground surfaces
better.

Fig.5 and 6 give examples of classified
point over the two surveyed areas. More-
over, by merging the two terrain classes, the
overall accuracy of the remaining three
classes reaches 0.92 for the Biberach area.
It shows that the SVM method is suitable
for lidar point classification in dense build-
up areas.

Similar accuracies have been reported for
instance in (MATIKAINEN et al. 2003, VOSSEL-
MAN et al. 2004), with multi-echo lidar data,
sometimes used jointly with aerial images.
It is not straightforward to compare the re-
sults since different data sets are classified
using different methodologies. For this pur-
pose, an optimal SVM classification using
only “multi-echo” features has first to be
performed on the data sets. Then, waveform
features can be introduced to assess the real
contribution of full-waveform lidar data.
Moreover, since results strongly rely on the
order of feature introduction, a feature dis-
criminant analysis has also to be carried out
to evaluate this contribution.

7 Conclusions and Perspectives

A flexible methodology for full-waveform
lidar data analysis and classification in ur-
ban areas has been proposed in this article.
In a first part, it has been shown that accu-

rately modelling waveforms improves signal
fitting and provides point clouds with addi-
tional useful parameters. Such parameters
can physically be interpreted and signifi-
cantly contribute to an appropriate classifi-
cation algorithm. The main limitation is that
the parametric expression of the waveform
functions has no longer a simple formula-
tion and new algorithms are needed to per-
form the optimization step. The Reversible
Jump Markov  Chain  Monte-Carlo
(RIMCMC) technique is one of them and
will be soon used to handle more complex
modelling functions.

In a second part, we can conclude that
the SVM is a suitable methodology to per-
form classification in urban areas since it can
handle classical geometric features like the
3D coordinates together with new features
extracted from the waveform processing
step. First results are promising; discrimina-
tion of buildings, vegetation, and ground re-
gions was achieved with 92% accuracy in
dense urban areas. Segmentation of differ-
ent kind of surfaces is also possible.

Many improvements are conceivable with
regards to the results. First, other generic
SVM kernels have to be tested. On the other
hand, a specific kernel can be formulated
dedicated to our specific task. For that pur-
pose, the number and kind of features has
to be adapted and therefore synthetic cues
must be found. Another solution is to iter-
atively process SVM classification focusing
at each step on a specific class and segment
it more precisely. A third possibility is to
skip the step of feature choice and to use
the vectors of the captured waveforms in-
stead.
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Finally, the classification results shall be
the foundation of higher-level reasoning
aiming at the 3D reconstruction of build-
ings. For this purpose geometric and
topologic object features will be modelled,
which are required for instance for object
grouping.
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