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Summary: In recent years national mapping agen-
cies have increasingly integrated automatic map
generalization methods in their production lines.
This raises the question of how to assess and as-
sure the quality of mapping products such as
digital landscape models. Generalization must
not only ensure specified standards for an output
scale, but also needs to keep semantics as similar
as possible under these given requirements. In or-
der to allow for objective comparisons of different
generalization results we introduce a semantic dis-
tance measure. We present results that optimize
this measure subject to constraints reflecting
database specifications and show how this mea-
sure can be used to compare the results of different
methods, including exact and heuristic ap-
proaches.

Zusammenfassung: Gewdhrleistung logischer Kon-
sistenz und semantischer Genauigkeit in der Gene-
ralisierung. In zunehmendem Mal werden auto-
matische Generalisierungsverfahren fiir die Pro-
duktion amtlicher digitaler Landschaftsmodelle
eingesetzt. Dadurch entsteht ein wachsender Be-
darf nach Verfahren zur Qualititskontrolle und
Qualitédtssicherung. Generalisierung muss nicht
nur fiir den ZielmaBstab definierte Standards rea-
lisieren, sondern dabei auch die Semantik repri-
sentierter Objekte nach Moglichkeit erhalten. Wir
definieren ein semantisches Distanzmal, um ei-
nen objektiven Vergleich unterschiedlicher Gene-
ralisierungsergebnisse zu ermoglichen, préisentie-
ren Ergebnisse, die unter Nebenbedingungen aus
existierenden Spezifikationen hinsichtlich dieses
MaBes optimal sind, und zeigen Vergleichsmog-
lichkeiten von Ergebnissen exakter und heuristi-
scher Verfahren auf.

1 Introduction

According to MORRISON (1995) there are
seven elements of spatial data quality: Line-
age, positional accuracy, attribute accuracy,
completeness, logical consistency, semantic
accuracy and temporal information. Most
of them are affected by map generalization,
for example, when applying displacement or
simplification algorithms to lines, their po-
sitional accuracy is reduced; selection of ob-
jects affects completeness. The assessment
and assurance of these quality criteria are
important problems, especially, when heu-
ristic generalization methods are applied. In
this article we discuss how to assure seman-
tic accuracy and logical consistency, that is,
compliance with database specifications.

Following this aim, we have developed a
method for area aggregation by optimiz-
ation, more precisely, mixed-integer pro-
gramming (HAUNERT & WOLFF 2006). Our
method has technically been presented in
sufficient depth: we have proven the NP-
hardness of the problem, tested multiple op-
timization criteria (HAUNERT 2007a), and
developed specialized heuristics to obtain a
better performance (HAUNERT 2007Db). This
method yields very good results, especially
compared with commonly used iterative ap-
proaches that locally merge too small ob-
jects with their best compatible neighbors
(HAuNEgrT 2007b). However, we have not
sufficiently elaborated the usefulness of this
method for quality assurance and quality as-
sessment. This article focuses on these
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issues. In an optimization approach, a glo-
bal quality measure becomes part of the gen-
eralization method: Basically, there should
not be any difference between a quality mea-
sure for the assessment of the generalization
result and the objective function in the op-
timization approach. Nevertheless, research
on the quality assessment of generalization
and research on optimization approaches to
generalization have seldom been con-
solidated.

The issue of semantic accuracy is especial-
ly relevant, when map objects change their
classes. In map generalization this happens
in two cases: class abstraction and object ag-
gregation. The latter case leads to class
changes, when multiple objects of different
classes are replaced by a single composite
object. Class abstraction means, for examp-
le, to replace all churches and all post offices
by objects of type public building. This only
needs to be done one time by an expert on
a conceptual level and thus it can easily be
implemented. In contrast, object aggrega-
tion is a labor-intensive problem that needs
to be automated. When masses of data are
processed, also the quality assessment be-
comes difficult. CHENG & L1 (2006) suggest
to measure the semantic accuracy according
to the area that changes its class in general-
ization. YAOLIN et al. (2002) introduce a
symmetric semantic similarity matrix to
compare object types of areas before and
after reclassification. RODRIGUEZ & EGEN-
HOFER (2004) propose an asymmetric simi-
larity measure. Similarity values are derived
from the given data model, taking class hi-
erarchies into account and comparing attri-
bute definitions. AHLQUIST (2005) uses a si-
milarity measure based on fuzzy member-
ship functions to assess land cover changes
over time.

The quality of map generalization is nor-
mally defined by comparison of input and
output data sets (BARD 2004 and FRANK &
EsTER 2006). These methods mainly depend
on measures that characterize the shapes of
objects and their spatial relationships. Basi-
cally, observed changes are penalized in the
assessment. However, generalization nat-
urally cannot always preserve the original

situation: there are driving forces to change
the data set, for example, minimal allowed
sizes for the target scale. Thus, we compare
the results of heuristic generalization
methods with results that are optimal under
given constraints. These results can be ob-
tained with our mixed-integer program.
Though this is only possible for small
samples, these offer new possibilities to de-
tect shortcomings of heuristics.

In the sequence of the article, we first ex-
plain our conceptions of logical consistency
(cf. Section 2) and semantic accuracy (cf.
Section 3) and then present our approach
to assure and assess these elements of quality
(cf. Section 4).

2 Logical Consistency

KAINz (1995) defines logical consistency as
follows:

“A spatial data set is said to be logically
consistent when it complies with the struc-
tural characteristics of the selected data
model and when it is compatible with the
attribute constraints defined for the set.”

The data model in our work is a planar
subdivision, that is, an exhaustive coverage
of the plane by areas that must not overlap.
This representation is often used for land
cover data in topographic databases. The
generalization of such data sets is a well
known problem (GaLANDA 2003). Often ad-
ditional requirements are defined, for
example, the shapes of features need to be
contiguous. Formally it means that for each
two points in a contiguous area, there is a
connecting path that is totally contained in
the area. These structural requirements are
independent of scale and we need to ensure
their preservation during generalization. In
contrast, requirements on attributes and
geometries are often different for the input
and output scale, thus we need to change
the map. Tab. 1 compares the definitions of
forest areas in three different countries. In
each example, a minimal size is defined as
criterion for selection, which naturally in-
creases for smaller scales. The term
“Guaranteed size”’, which is used in the Ca-
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nadian specifications, unmistakably states
that the defined thresholds must not be vi-
olated in any case. This is described accord-
ingly in the other specifications. These
strong claims are needed to reduce the in-
fluence of subjectivity in map generalization
and to provide standardized map products.

Since areas below threshold in the target
scale are not allowed, they need to be ag-
gregated with others in order to keep the
coverage exhaustive. As all other aims of
generalization need to be subordinated,
class changes need to be accepted, for
example, if there is no neighbor of the same
class. Formally, we define the area thresh-
olds for different classes by 0: ' — R*, with
I' being the set of all classes. The term con-
straint fits well for the requirements given
by database specifications. However, this
must not be mixed up with constraints that
allow for a gradual degree of satisfaction.
Most researchers in the field of map gene-

ralization point out that constraints are of-
ten conflicting and compromises need to be
found (WEIBEL & DuTTON 1998 and HARRIE
1999). As constraints that ensure logical
consistency do not allow any compromise,
we distinguish hard constraints and soft
constraints.

If the input data set is logically consistent,
we normally can define simple generaliz-
ation algorithms that produce logically con-
sistent results. For instance, we can apply
merge or collapse procedures to resolve size
and proximity conflicts (BADER & WEIBEL
1997 and HAUNERT & SESTER 2008). How-
ever, at this early stage of our discussion we
should not commit too much to particular
algorithms. Database specifications define
the feasibility of solutions, but there remains
much freedom in deciding for different op-
tions. Thus, we need to formalize additional
aims of generalization.

Tab.1: Selection criteria for forest areas in three different national databases. The Canadian spec-
ifications use the term “Guaranteed size’’. In the Australian specifications this is called “Minimum

size for inclusion’’.

Germany Canada Australia

ATKIS National Topographic Data- National Topographic Data-

(ADV 2003) base (NATURAL RESOURCES base (GEOSCIENCE AUSTRALIA
CANADA 1996) 2006)

Wald, Forst Wooded Area Forest or Shrub

,,Fldche, die mit Forstpflanzen
(Waldbdume und Waldstriu-
cher) bestockt ist.*

,,Anarea of atleast 35 % cover-
ed by trees or shrubs having a
minimum height of 2m.*

,,An area of land with woody
vegetation greater than 10 %
foliage cover (includes trees
and shrubs).*

scale selection criterion scale selection criterion scale selection criterion

1:25k area >0,1 ha 1:50k area > 1ha AND 1:25k area > 0.25ha
width > 50m

1:50k area > 1 ha 1:100k area >4ha

1:250k area > 40 ha 1:250k area >25ha AND | 1:250k area >25ha
width >250m

1:1000k | area > 500 ha

Tab. 2: Semantic distance matrix. Colors and shades are used in Fig. 1 and Fig. 2.

original class \ new class

Farmland

Grassland

Farmland | Grassland
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3 Semantic Accuracy

SALGE (1995) gives the following definition
of semantic accuracy:

“The purpose of Semantic Accuracy is to
describe the semantic distance between
geographical objects and the perceived re-
ality.*

Formally we express the semantic dis-
tance between classes as a function d:
I'? > R,". Given a real value s (between 0
and 1) that measures the semantic similarity
of two classes, for example, as it can be ob-
tained with the method proposed by YAOLIN
et al. (2002), we can define the correspond-
ing value of d simply as 1-s.

Tab.2 shows a distance matrix that we
generated with a less objective approach,
that is, we defined the semantic distance
values at our own discretion. We considered
hierarchies in the data model and textual de-
scriptions (as given in Tab. 1) for this task.
For example, since farmland and grassland
are classes of cultivated vegetation, we de-
fined a relatively small semantic distance in
between. This means that we would rather
accept a change of a grassland area into
farmland than into settlement. As a global
measure of semantic accuracy we introduce
the weighted average of the distances that
are measured between original classes and
classes after generalization. Let V" be the set
of all areas in the input map, w: V — R*
denote the sizes of areas, y: V' — T' their
original classes, y: V' — I their new classes,
we globally measure the semantic distance
by

2w - d@),y' ()

ve Z W(V) (1)

velV

In the same way, we can measure the sem-
antic distance for a single area in the input
data set, for a single area in the output data
set, or for all areas of a certain class.
Though the matrix in Tab. 2 is symmetric,
symmetry is not a general requirement for
the function d. For example, we can define
d(y, 7,) = 0.1 and d(y,, y,) = 1, meaning
that a class change from y, to y, is more ac-

cepted than vice versa. This model is useful,
as important classes like, for example, water
often should not be lost. Because of this,
we do not assume that d meets the formal
definition of a metric, which requires sym-
metry.

In order to measure semantic accuracy,
we should not only focus on classes but also
consider shapes. Consider two lakes and a
long, narrow river that connects both: Ag-
gregating the three objects into a single ob-
ject of class lake only requires to change the
class of the river. Though this will be a good
solution in terms of class distances, the
shape of the resulting aggregate would be
very uncommon for a lake. We therefore pe-
nalize shapes that are not geometrically
compact. Different measures of compact-
ness have been discussed in an earlier work
(HAUNERT 2007a). We ignore this additional
criterion in the sequence of this article.

We use the result of the exact optimization
approach as a benchmark for quality, as it
is able to satisfy our general goal of semantic
accuracy in terms of a semantic distance.

4 Optimization Approach

4.1 Problem formulation

In terms of optimization, each logically con-
sistent map is a feasible solution. The opti-
mal feasible solution is the one that mini-
mizes the global semantic distance measure
from Section 3. We refer to this measure as
cost function. The problem is to partition
the set V' into mutually disjoint subsets
V,uV,u...uV, =V, where k is an un-
known integer. Each of these subsets defines
a composite area for the target scale. Thus,
for each i = 1...k, we define the following
hard constraints:

e there is a single class y/ € I, such that each
area ve V, receives class y;, that is, y'(v)
=y

e the composite area has sufficient size, that
is, 2,00 w(r) > 0/)

e the composite area is contiguous

e there is an area ve V; of unchanged class,
i.e., y'(v) = y(v). This is referred to as
centre
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The last requirement simply avoids that
classes appear in the generalized map, which
have not been present at all. Generally, we
do not assume that the set of centers is given
in advance.

4.2 Approach by mixed-integer
programming

Normally, combinatorial optimization
problems in map generalization are ap-
proached by meta-heuristics such as hill-
climbing or simulated annealing (WARE &
Jongs 1998). Several theoretical achieve-
ments have been made, proving asymptoti-
cal convergence of simulated annealing un-
der certain conditions. For example, the
graph that is defined by the applied neigh-
borhood structure must be strongly con-
nected (MicHIELS et al. 2007). Though
simulated annealing cannot be used in prac-
tice to find the exact optimum, it often pro-
duces solutions of sufficient quality. We
therefore developed a simulated annealing
approach for the aggregation problem
(HAUNERT 2007c). However, we needed to
relax hard size constraints to reach suffi-
ciently good solutions via feasible paths. In
view of database specifications that strictly
forbid too small regions, this approach is
risky, as we might end up with a result that
is not logically consistent. We therefore fo-
cused on mixed-integer programming and
specialized heuristics, which better allow to
consider hard constraints.

Mixed-integer programming is an exact
approach to constrained, combinatorial op-
timization problems (PAPADIMITRIOU &
STeIGLITZ 1998). Generally, algorithms for
the solution of mixed-integer programs
(MIPs) have an exponential time perform-
ance. It is unlikely that we can find a poly-
nomial time algorithm, as the aggregation
problem is NP-hard. This fact was proven
in an earlier publication (HAUNERT & WOLFF
2006). We also presented and tested different
MIP formulations. Due to the high com-
plexity we were only able to optimally solve
small instances (up to 50 areas) with our
exact MIP, but we greatly improved the per-
formance with three heuristics:

1. A strong definition of contiguity accord-
ing to ZOLTNERS & ZINHA (1983) is ap-
plied, which excludes certain non-com-
pact composite areas.

2. Large areas are fixed as centers, small
areas are excluded from the set of poten-
tial centers.

3. Areas with a large distance in between are
not merged in the same composite area.

The first heuristic leads to an alternative
MIP formulation that can be solved much
more efficiently by existing solvers. Both
other heuristics are used to eliminate vari-
ables in this MIP. A further heuristic has
been developed that allows to decompose a
dataset of arbitrary size into manageable
pieces (HAUNERT 2007b). The basic idea of
this method is to introduce intermediate
scales whenever needed to break down the
complexity of the problem.

4.3 Quality assessment

Without heuristics our optimization ap-
proach is too slow for cartographic produc-
tion. However, as it yields the exact opti-
mum for small problem instances, it can be
used to test heuristic methods. For example,
applying heuristics 1-3 we usually obtain
results not worse than 10 % from optimum.
Such objective statements about the per-
formance of generalization procedures are
very rare in the literature. Often results are
only visually assessed by test persons, but
this approach is questionable, if the spatial
data set is not only to be used for visuali-
zation, but also for statistics or other ana-
lyses. On the other hand, visualization is still
the most important method to assess the
quality of spatial data sets. How do 10%
affect the understanding of the map content?
We can only answer this question when vis-
ualizing the results.

Fig. 1 shows a sample from the German
ATKIS data set at scale 1:50.000 (DLM50)
with two results satisfying specifications for
scale 1:250.000 (DLM250): the optimal so-
lution and a solution, which was obtained
with our heuristic approach. Some classes
were changed, in order to end up with con-
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Fig. 1: A sample from the ATKIS DLM 50 (left), an optimal result satisfying specifications for ATKIS
DLM 250 (center) and a result with 9% higher costs obtained with heuristics 1-3 (right). Boundaries
of regions are bold, colors correspond to classes as shown in Tab. 2.

22

Fig. 2: Semantic distances for classes of single areas before and after generalization. Left: Optimum.
Center: Result obtained with heuristics. Right: Difference of both (center-left). Grey shades cor-

respond to values as given in Tab. 2.

tiguous regions of sufficient size. In both
cases, this was done in an apparently intel-
ligent way: In order to keep the settlement
area in the lower left part of the sample, a
small forest area was sacrificed; this results
in a connecting bridge to the large settle-
ment. The first solution has an average sem-
antic distance of 0.0519 from the input map.
For the second solution this cost is 0.0564,
which is approx. 9 % higher. In fact, we ob-
serve some differences between both solu-
tions, for example, on the rightmost settle-
ment in the input: in the optimal result it
changes to forest, but in the second solution
it changes to farmland. If we check the dis-
tance matrix (Tab.2), which was applied
here, we see that the same distance of 1 unit
is defined for both changes. It turns out that
it is relatively difficult to visually detect
those areas that were not optimally ag-
gregated by the heuristic method.

In order to identify the reason for the dif-
ference in costs, we need to visualize the dif-
ferences of semantic distances for single

areas. Fig.2 displays distances of class
changes as grey shades of areas, dark grey
corresponds to expensive changes. In Fig. 2
(right) we see the difference of both solu-
tions: Only for four small areas the reclas-
sification done by the heuristic approach is
suboptimal.

Normally, we do not have the optimal so-
lution to compute the differences as shown
in Fig. 2 (right). There would not be any rea-
son to apply heuristics, if we generally could
exactly solve the problem. However, similar
to comparisons with optimal solutions for
small samples, we can visually compare re-
sults of different heuristics. Fig.3 shows a
sample that was processed with our heuristic
approach based on intermediate scales
(HAUNERT 2007b) and with the common ite-
rative merging procedure, which, for
example, is explaind by CHENG & L1 (2006).
Both objectives were considered: class simi-
larity and compactness. In each iteration of
the merging procedure, the smallest area
was assigned to one of its neighbours. Each
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time, this neighbour was selected to mini-
mize the cost function; of course, this does
not lead to the global optimum. Considering
compactness, both procedures performed
similarly. Using our optimization method,
we only obtained an improvement by 2%
of costs for non-compact shapes. However,
we obtained 20% less costs for class

changes. In Fig.3 we observe that several
settlement areas are lost with the simple it-
erative procedure. This is due to the fact that

the algorithm does not foresee consequences
of merge actions for further processing
steps. Thus it is not able to sacrifice small
areas in order to safe bigger ones.

In Fig. 2 we investigated the quality mea-
sure for the original areas; these are minimal
mapping units in the aggregation problem.
We can do the same analysis on a less de-
tailed level, that is, for each area of the target
scale; this is shown in Fig. 4 (left) and (cen-
ter). A comparison of both results is only

Fig.3: A sample from the ATKIS DLM 50 (left), a result of the heuristic developed by HAUNERT
(2007b), and a result of a simple iterative merging procedure (right). Both results satisfy the spe-

cification for the ATKIS DLM 250.
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Fig.4: Semantic distances for regions in Fig.3. Left: Result from Fig.3 (center). Center: Result
from Fig. 3 (right). Right: Difference of both for areas of input scale (center-left).
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possible on the highest level of detail, as the
regions in both solutions are different. Fig. 4
(right) reveals those areas whose semantics
were kept more similar with the optimiz-
ation approach (red) and those that were
kept more similar with the iterative ap-
proach (green). We clearly observe the domi-
nance of red areas. Also we can see that red
and green areas are often in vicinity. This
confirms our assumption that, in contrast
to the simple iterative procedure, the opti-
mization approach can sacrifice unimpor-
tant areas, in order to safe more important
ones.

5 Conclusions

The definition of semantic similarity or dis-
tance measures is considered as the key to
quality assessment in map generalization.
We have shown that, with given semantic
distance values for classes, we can optimally
solve the area aggregation problem in map
generalization for small instances. With
such theoretically proven optima, we have
found the “absolute zero” for the degree of
badness. This allows to make objective,
quantitative statements about the perform-
ance of heuristic methods. Additionally, we
can compare the performance of heuristics
relative to each other. In both cases we have
seen that shortcomings of heuristic methods
can be detected by visualization. In particu-
lar, we have seen that our heuristic based
on intermediate scales results in 20% less
costs for class change than the simple iter-
ative method. We observed that its relatively
good performance is due to its capabilty of
sacrificing smaller areas, such that bigger
ones can be safed. Future research should
focus on better semantic distance measure,
not only considering the class memberships
of objects. Semantics can also be carried by
shapes and patterns of objects. This be-
comes relevant for other generalization ope-
rators, such as typification. In fact, pattern
recognition techniques are often applied in
map generalization. However, metrics are
missing that measure the semantic distance
between patterns. Additional research is
needed to test the effect of asymmetric class

distances. Concerning local search methods
for optimization such as simulated anneal-
ing we see the need to improve techniques
to handle hard constraints, which are
needed for logical consistency in map gene-
ralization. Future research is also needed to
consider additional elements of quality, for
example, positional accuracy and complete-
ness. So far we have interpreted the size
thresholds in the specifications as prohi-
bition to keep too small areas in the target
scale, but there might be size thresholds or
other criteria that define which areas must
be kept in the generalized map to ensure
completeness. In fact classes of areas can be
fixed in our optimization approach
(HAUNERT & WOLFF 2006), thus the method
can ensure completeness, if we define which
areas to keep.
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