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Grammar Based Facade Reconstruction using riMCMC

NORA RIPPERDA, Hannover
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Summary: These days 3D models are used in a
huge variety of applications and the demands in
quality and quantity are steadily growing. At the
same time, the extraction of man-made objects
from measurement data is quite traditional. Of-
ten, the processes are still point based, with the
exception of a few systems which allow to auto-
matically fit simple primitives to measurement
data. The need to be able to automatically trans-
form object representations, for example, in order
to generalize their geometry, enforces a struc-
turally rich object description. Likewise, the trend
towards more and more detailed representations
requires to exploit structurally repetitive and sym-
metric patterns present in man-made objects, in
order to make extraction cost-effective. In this pa-
per, we address the extraction of building facades
in terms of a structural description. Our recon-
struction is based on a formal grammar to derive
a structural facade description in the form of a
derivation tree and uses a stochastic process based
on reversible jump Markov Chain Monte Carlo
(jMCMCQ) to guide the application of derivation
steps during the construction of the tree.

Zusammenfassung: Grammatik-basierte Fassa-
denrekonstruktion mittels riMCMC. 3D-Modelle
werden heutzutage in vielen Anwendungen ge-
braucht und die Anforderungen an sie steigen
stindig an. Gleichzeitig werden aber grofteils
noch die klassischen Extraktionsverfahren ver-
wendet, die meist punktbasiert arbeiten. Fiir viele
Anwendungen wird ein Modell in unterschiedlich
detailreichen Darstellungen benétigt. Die hierzu
hilfreiche automatische Transformation des Mo-
dells in verschiedene Darstellungen kann durch
eine strukturelle Beschreibung des Objekts er-
moglicht werden. Zusdtzlich kann die Beschrei-
bung von sich strukturell wiederholenden oder
symmetrischen Mustern eine effektive Modellie-
rung begiinstigen. In diesem Artikel wird eine Me-
thode zur automatischen Rekonstruktion von
Fassaden aus Bild- und Entfernungsdaten vorge-
stellt. Das strukturelle Modell ist durch eine Fas-
saden-Grammatik gegeben und der Modellie-
rungsprozess wird durch ein yjMCMC-Verfahren
gesteuert.

1 Introduction

The extraction of man-made objects from
sensor data has a long history in research
(BALTSAvias 2004). Especially for the
modelling of 3D buildings, numerous ap-
proaches have been reported, based on
monoscopic, stereoscopic, multi-image, and
laser scan techniques. While most of the ef-
fort has gone into sensor-specific extraction
procedures, very little work has been done
on the structural description of objects. Mo-
delling structure though is very important
for downstream usability of the data, es-

pecially for the automatic derivation of
coarser levels of detail from detailed models.
Representing structure is not only import-
ant for the later usability of the derived data,
but also as a means to support the extraction
process itself. A fixed set of structural pat-
terns allows to span a certain subspace of
all possible object patterns, thus forms the
model required to interpret the scene.
Grammars have been extensively used to
model structures. For modelling plants, Lin-
denmayer systems were developed by
PRUSINKIEWICZ & LINDENMAYER (1990).
They have also been used for modelling
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streets and buildings (PARISH & MULLER
2001, MARrVIE et al. 2005). But Lindenmayer
systems are not necessarily appropriate for
modelling buildings. Buildings differ in
structure from plants and streets, in that
they don’t grow in free space and modelling
is more a partition of space than a growth-
like process.

For this reason, other types of grammars
have been proposed for architectural ob-
jects. STINY & G1ps (1972) introduced shape
grammars which operate on shapes directly.
The rules replace patterns at a point marked
by a special symbol. MITCHELL (1990) de-
scribes how grammars are used in architec-
ture. The derivation is usually done man-
ually which is why the grammars are not
readily applicable for automatic modelling
tools.

ALEGRE & DALLAERT (2004) use a
stochastic context free attribute grammar to
reconstruct facades from image data by app-
lying horizontal and vertical cuts. WONKA
et al. (2003) developed a method for auto-
matic modelling which allows reconstruct-
ing different kinds of buildings using one
rule set. The approach is composed of a split
grammar, a large set of rules which divide
the building into parts, and a control gram-
mar which guides the propagation and dis-
tribution of attributes. During construction,
a stochastic process selects among all appli-
cable rules. VAN GooL et al. (2007) discuss
different facade reconstruction algorithms
and show the use of repetitions in the struc-
ture for the reconstruction with shape gram-
mars.

Our aim is to extract facade elements from
image and range data automatically. The fa-
cade model is defined by a grammar which
comprise the structure of facades. Each
grammar rule subdivides a part of the facade
in smaller parts according to the layout of
the facade. The derivation process is guided
by a reversible jump Markov Chain Monte
Carlo (jMCMC) process.

Dick et al. (2004) introduce a method
which generates building models from mea-
sured data, i.e. several images. This ap-
proach is also based on the jMCMC me-
thod. In a stochastic process, 3D models

with semantic information are built. MAYER
& REZNIK (2006) also use a MCMC method
for the facade reconstruction from images.

The ryfMCMC algorithm is used for other
applications e. g. detection of road marks
(TOURNAIRE et al. 2007) as well. In general
fMCMC is a top-down-approach, but Tu
(2005) integrated generative and discrimina-
tive methods and used a data driven MCMC
(DDMCMC) for image parsing.

We also present a way to use information
about the facade structure from the data.
We derive distributions of facade attributes
like the position of windows. These distri-
butions are used for the rule proposal ad-
ditionally to the general prior knowledge,
which was used in our previous work on fa-
cade reconstruction (RIPPERDA & BRENNER
2006). The extra information from the data
causes to evade the large number of wrong
proposals which occur using only general
prior knowledge on facades.

For the facade reconstruction we need a
structural model that describes the facade.
In the presented approach the model is given
by a facade grammar. A derivation tree of
aword of the grammar represents the model
of a given facade.

A stochastic process, the jMCMC pro-
cess, guides the reconstruction process. Sec-
tion 2 introduces the facade grammar and
Section 3 gives an idea of the jMCMC pro-
cess and shows how to adapt it to the gram-
mar.

2 The Facade Grammar

A formal grammar G consists of an alphabet
of terminal 7 and nonterminal N symbols,
a start symbol S and a set of production
rules P. We use a context-free grammar, this
means that P contains rules of the form
N—(TuN)*. All words that can be derived
from S with rules from P build the language
L(G) of the grammar G.

For facade reconstruction we define a
grammar G, which language L (G ) con-
tains possible facades (for details see Rip-
PERDA & BRENNER 2006). In the derivation
process the model of the facade should be
developed further in each step. Therefore
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each rule splits the part of the facade cor-
responding to the left side symbol in a vari-
able number of facade parts corresponding
to the right side symbols. So the derivation
process is a partitioning process of the fa-
cade. The start symbol S'is an empty facade.
This is subdivided in further derivation
steps.

A split can be caused by different reasons.
The first is a difference in the facade struc-
ture. If a facade contains different structural
parts it is split into part facades according
to the structure and the parts are modelled
individually. This change in structure often
occurs in ground floor and upper floors.

The other reason for a split is similarity
or repetition. If a facade is symmetric or
contains repetitions the repeated pattern
needs to be stored only once. Additional in-
formation like number of repetitions com-
pletes the model.

Fig. 1 illustrates an example of a facade
reconstruction. Part a) shows the image of
the facade and part b) a partitioning accord-
ing to the facade grammar. The correspond-
ing derivation tree c¢) and additional at-
tributes build the reconstruction of the fa-
cade. The example contains splits of both
kinds, based on similarities and based on
differences. Similarities are arising in the
symmetric part and in the arrays of win-
dows. So for example the rules SYMMETRIC-
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Fig. 1: Example facade (a) with a partition ac-
cording to the facade grammar (b) and the cor-
responding derivation tree (c).

<

Fig. 2: Structure of the facade grammar.

FACADESIDE—>ARRAY and FACADEELE-
MENT—Array are based on the repetitions
of the facade elements. The rule
FACADE—SYMMETRICFACADESIDE SYMMET-
RICFACADEMIDDLE contains a bit of both.
The SYMMETRICFACADESIDE is the similarity
part but the additional SyMMETRIC-
FAcADEMIDDLE is due to differences in the
middle of the facade. Another rule based on
differences is SYMMETRICFACADEMIDDLE—
FACADEELEMENT FACADEELEMENT.

The structure of the grammar is shown
is Fig. 2. There are three levels in the gram-
mar. The first one contains the symbols
which have no information about the struc-
ture of the facade. For example the start
symbol Facape. The only information at
this stage is the outline of the building. In
the second level structural information is ad-

Fig. 3: Subdivision of a facade in an upper and
a lower part.
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ded. The symbols can express symmetries,
repetitions and so on. The terminal symbols,
which are the real facade elements like WiN-
DOW or DOOR, belong to the third level.

The model is described by a parameter
vector O which contains the derivation tree
and the attributes of the symbols. E. g. the
parameter vector of the configuration in
Fig.3 is represented by the hierarchic
structure 0 = FACADE(0,0,w,4,(PARTFACADE
(0,0,w,h,),PARTFACADE(0,h,w,h-h,))), where
w and /& are the width and height of the fa-
cade and /4, is the height of the split.

3 Facade Reconstruction using
RjMCMC

We obtain the model of the facade using a
stochastic process. We are searching for the
model given by parameter vector 0 with the
highest probability p(6|D¢D,) under given
scan (Dg) and image data (D,) where the pa-
rameter vector 0 encodes the current state
of the derivation tree, including attributes.

So we search for an unknown probability
distribution p(6|DgD,;). To sample from
such a distribution MCMC methods are of-
ten used. A Markov Chain that simulates a
random walk in the space of 0 is constructed.
The transition kernel assigns a probability
to each change from one state to another.
After a proposed change an acceptance
probability decides whether the change is ac-
cepted or not. The acceptance probability
is defined in a way that the system converges
to the target distribution p(6|DgD;). In our
case the dimension of 0 changes during the
process. This is not possible in the basic
MCMC method. Therefore we use
JMCMC which contains jumps (dimen-
sions changes) of 6. The probability of a di-
mension change is added to the transition
kernel.

For the jMCMC process with target dis-
tribution p(6|D¢D,) we have to define a
transition kernel J(0,/0,,) and the accept-
ance probability o.

The transition kernel J(0,]0,,) assigns a
probability to each rule and is made up from
the commonness of the result in a dataset

of facade images and some functions of the
processed facade, which are described be-
low. With the transition kernel in each ite-
ration a rule is proposed. This is accepted
with the acceptance probability

. { p0,|DsD)) 'J(ﬁmlﬂ,)}
o=min<1, (1
p0.41DsD)) - J (0,10, )

This depends on the unknown distribution
p(6,/|Dg¢D)). Using Bayes’ law, this is propor-
tional to p(D¢D,|0) - p(0), a product of
likelihood and prior of the facade. In the
following sections the jumping distribution
and the acceptance probability are described
in detail.

3.1 Jumping Distribution

The jumping distribution assigns a probabil-
ity to each possible change in the facade
structure. According to this probability a
change is proposed. The method contains
changes of different kinds. The first one is
the application of a grammar rule. This
splits the facade in different parts based on
differences or repetitions in the facade. For
this kind of change additional parameters
must be proposed as well. These are for
example the cut position or the number of
parts in the facade. The distribution of these
parameters is important for the acceptance
of the change. To ensure reversibility, each
rule can be applied from left to right and
vice versa. This is a difference to the way
split grammars are used, but is a require-
ment for the fMCMC approach.

The second kind of change is a rearran-
gement in the structure. The symbols stay
the same but the parameters are modified.
The position of a parting line can change
or the size or number of windows alters.

To build the transition kernel two kinds
of distributions have to be defined. The first
one is the probability to choose a rule and
the second one defines the parameter like
the position of a split line or the number of
windows. Presently the probability for rules
is assigned manually depending on an as-
sumed likelihood of the result. For example,
a change FACADE—IDENTICALFACADEAR-
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Fig. 4: Smoothed image maintains only large changes in facade structure (left). Clustered facade

calculated by colour value and depth (right).

RAY is more likely than FacCADE— Fa-
CADEARRAY because facades build regular
structures of similar elements. Some hints
for the assumptions are taken from a
database of facade images from Hannover.

We need information about the distribu-
tion of colour or depth on the facade to con-
trol the split operation and to determine the
distribution of the windows. Both depend
on regularities and differences. For window
grids we use autocorrelation and for splits
a function based on a norm.

For splitting the facade into parts a
change in colour or depth on a large part
of the facade or irregularities in structure
are needed. The changes of colour and depth
occur in different scales. We search for
changes which influence a large part of the
facade, for example a horizontal colour
change is often associated with a change in
the window structure, or alternatively
changes caused by windows. Smaller arte-
facts in the facade may disturb the result.
So we have different ways to score splits but
in each we have to mask the small changes
which falsify the result. One way to suppress
such unwanted changes is to use a smoothed
image (see Fig. 4, left). Another possibility
is to cluster the facade depending on the col-
our value and in another step depending on
the depth value. The colour and depth image
are clustered with k-means with manually
chosen k are shown in Fig. 4 (right). From
these images we can derive distributions for
the additional parameters.
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Fig.5: Two regions above and below the tested
split line were moved over the facade.

To get the distribution of a split line we
move the proposed split line from bottom
to top of the facade (see Fig.5) and look at
the regions above R, and below R, the line.
Differences between the regions score for the
split. To evaluate the split line we compute
the norm of the difference of both regions

IR, — R/ll, = /Y (R,(x.0) — R(x,»)% (2)

X,p
where R (x,y) is the rgb value at position
(x.y).

The results are shown in Fig. 6. For a better
visual understanding the original facade im-
age is overlaid to the resulting graph. With
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Fig. 6: Facade image overlaid with the probability of splits evaluated by a scaled image and cluster
image. Additionally the probability derived from the clustered image is combined with a general
assumption to reduce high scores at false positions.
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Fig. 7: Autocorrelation coefficient of a facade in horizontal and vertical direction.

the cluster image (blue line) we achieve bet-
ter results than with the scaled image (red
line) because on the scale image lines at top
edges of windows are scored better than col-
our changes throughout the entire facade.
This is because the colour differences be-
tween black window area and grey or red
wall area is greater than the difference be-
tween grey and red wall area. This happens
for many facades with different colours in

ground floor and upper floors. Therefore we
use the norm of cluster images to get the
split line distribution.

To reduce the number of false proposals
we integrate a general assumption to the dis-
tribution. The split occurs between the
ground floor and the upper floors and most
of the facades in the test area have four or
five floors. So we introduce the assumption
that the position of the split line is normally
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distributed with a mean at one quarter of
the height of the facade. This masks the high
scores in the upper part of the facade out
(see Fig. 6 green line).

To predict the distribution of windows we
use autocorrelation. We correlate the over-
lapping parts of the facade image and a copy
of it which we shift horizontally resp. ver-
tically. Fig. 7 shows the resulting graphs. In
the case of a regular window grid the cor-
relation values show peaks in a regular dis-
tance. The number of peaks is the number
of window rows resp. columns including one
peak for the identical image. If the margins
of the image are alike one additional peak
for the case when the overlap tends towards
zero arises. In the example the horizontal
correlation shows nine peaks because of the
eight window columns plus one for identical
and border case. This pattern is not so clear
for the vertical correlation because of the
different ground floor.

3.2 Scoring Functions

The evaluation if a change is accepted is
based on the scan and image data as well
as the general knowledge of facades. The
scoring functions affect the acceptance pro-
bability (1) in the term p(D¢D,|6,) - p(,) re-
spectively p(DsDy[6,,) - p(6.).

The general plausibility of the model of
the facade is given by the second term p(8,),
the prior. It depends on the alignment, the
extent and the position of the facade el-
ements. Here we use the same scoring func-
tions as given in (Dick et al. 2004) which
where described in (RIPPERDA & BRENNER
2006) as well.

The second group evaluates how good the
model fits the data by comparing it to range
and image data. This corresponds to the
likelihood term p(Dg¢D;|6,). In any case, the
evaluation functions return a score which
builds an acceptance probability for the
change.

To determine p(D¢D,|0,) we have differ-
ent possibilities which use scan and image
data. We develop measures for depth and
colour and use correlation, entropy and
variance as well.

First we look at a method to score a single
window. For colour images we use the fact
that windows have a different colour from
facades. Typically they appear darker than
the facade but in some cases also brighter
because of reflections. If we use depth im-
ages we have the information that the win-
dows typically lie behind the facade. This
leads us to a method working on the clus-
tered images. Therefore we consider one re-
gion for the window and one for the bound-
ary (see Fig.9 left) and look at the clusters
inside these regions. Let N, be the number
of pixels of the largest cluster inside the pro-
posed window region, N, the number of un-
classified pixels, 4, the area of the window,
Apoung the area of the boundary and N, 4
the number of pixels of the boundary which
belong to the largest cluster inside the win-
dow. o gives a measure for the window.

1 + Nmax + NO o Nboum/
_ A win A bound 3
ac = 5 3)

To test this method separately we cut out a
single window from a facade. For this small
data set we compute the score a. for each
possible position of the window (see
Fig.8a). Width and height are usually es-
timated in the process as well, but we show
only the position here because of the 2D vi-
sualisation. The position is the lower left
corner of the window and the plot of the
score shows the lower left part of the test
area where the possible positions are locat-
ed. Then we run the MCMC process for a
single window (see Fig. 8b) and compare the
results with the distribution given by the
score function. In both plots red colour
means high values and blue colour low
values. To give an idea of the changes be-
tween two states Fig. 8¢ shows a part of the
random walk. Fig.8d shows the most fre-
quent window position marked in the colour
cluster image where different colours indi-
cate different clusters.

To score the distribution of windows we
use a homogeneity measure. Here we give
the priority to the similarity within a region
instead the difference of two regions. We de-
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d)

Fig. 8: Reconstruction of a single window from a colour cluster image. a): Score function for all
possible positions, b): Frequency of positions sampled with MCMC, c): Extract of the random walk,
d): Most frequent window position drawn in the colour cluster image.

Fig.9: Mask for a single window (left) and an
array of windows (right). The window area is
white and the boundary area grey.

fine one region for all windows and one for
the surroundings (see. Fig. 9, right). If both
regions are homogeneous the score for the
window distribution is high. As a measure
for homogeneity we use entropy or variance.
Here we discuss entropy in detail.

Entropy is
ayfel A

I=)> —log,—, 4
S Eare) @

where n is the number of clusters, 4 the total
area and |C;| the number of points in the
i-th cluster. We calculate the entropy for the
proposed window area and the surrounding
separately and use the sum for the score
function. Fig. 10a shows the score function
for different grid positions. We fix the num-
ber of grid points and the distance between
them for a better visualisation.

Because entropy gives high values for dis-
order and low values for homogeneous re-
gions we invert the function. Before that we
normalize it by log,n which is the highest
possible value. So the probability is given
by o, = 1-I/log, (see Fig. 10b).

Fig.10: Sum of entropy of window and boundary area for different grid positions (a) and the pro-
bability function derived from the entropy (b).
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4 Results

We've tested the method on facades of
dwelling houses. The input data are the
point cloud and an orthophoto which is gen-
erated with the RiScanPro software. The
other required data are computed in a first
step.

Fig. 11 shows some results of the recon-
struction. In the facade on the left the model
consists of a regular grid of window pairs.
The size of the windows is modelled proper-
ly but not all windows are modelled at the
right position. This is because the windows
are not exactly arranged in a regular grid.
In the second facade the vertical split line
(green line) between ground floor and upper
floors is modelled at the correct position.
For a similar reason as in the first facade
not all windows are at the right position.
But after a vertical split the windows in the
regular region are modelled correctly (cf.
Fig. 11, right).

5 Conclusions and Outlook

In this paper, we have presented a method
for automatic facade reconstruction from
scan and image data. It combines the gene-
ration of artificial facade structures using
grammars, and the reconstruction of faca-
des using ryjMCMC. Compared to existing
grammar-based approaches, we gain the
ability to reconstruct facades based on mea-
surement data. Compared to existing
rJMCMC approaches, by using a grammar,
we obtain a hierarchical facade description

h Fi ﬁ“mwr

and the ability to evaluate superstructures
such as regularity and symmetry at an early
stage, i.e., before terminal symbols such as
WINDOW are instantiated.

For further work we want to enlarge our
knowledge of facades to improve the propo-
sal of facade elements. Therefore we analyse
a set of facade images to get information
about average window size, distance or
style. Furthermore we plan to extend the fa-
cade grammar in order to be able to model
a wider class of facade elements like balco-
nies or ornaments.
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