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Summary: This article presents an approach for
spatio-temporal co-registration of dynamic ob-
jects in Synthetic Aperture Radar (SAR) and op-
tical imagery. Background of this work is the per-
formance evaluation of vehicle detection and vel-
ocity estimation from SAR images by comparison
with reference data derived from aerial image se-
quences. In terms of detection rates for individual
vehicles, the results of evaluation show the chal-
lenges of traffic monitoring with SAR. However,
it is also shown that general traffic flow parame-
ters can be derived with high quality.

Zusammenfassung: Bewertung der Verkehrsiiber-
wachung mittels raumezeitlicher Ko-Registrierung
von SAR-Daten und optischen Luftbildsequenzen.
Dieser Artikel erldutert einen Ansatz zur raum-
zeitlichen Ko-Registrierung von Synthetik Aper-
tur Radar (SAR) Daten und optischen Luftbil-
dern fiir Bewegtobjekte. Hintergrund dieser Ar-
beit ist die Qualitidtsbewertung der Fahrzeuger-
kennung und Geschwindigkeitsschitzung mittels
SAR Daten auf Grundlage von luftbildgestiitzten
Referenzdaten. Die Ergebnisse zeigen, dass gute
Erkennungsraten von Einzelfahrzeugen in SAR
Daten immer noch eine groe Herausforderung
darstellen. Die Bestimmung von daraus abgelei-
teten Verkehrsflussparametern gelingt jedoch mit
erstaunlich hoher Qualitét.

1 Motivation

Traffic monitoring is a very important task
in today’s traffic control and flow manage-
ment. The acquisition of traffic data in al-
most real-time is essential to swiftly react to
current situations. Stationary data collec-
tors such as induction loops and video
cameras mounted on bridges or traffic lights
are matured methods. However, they only
deliver local data and are not able to observe
the traffic situation in a large road network.
Hence, traffic monitoring approaches re-
lying on airborne and spaceborne remote

* A preliminary, condensed version of this article
has been presented at the PIAO7 workshop,
19.-21.9.07, Munich.

sensing come into play. Especially space-
borne sensors do cover very large areas. Sys-
tems like IKONOS and Quickbird as well
as the Synthetic Aperture Radar (SAR) sen-
sors mounted on TerraSAR-X and
RADARSAT-2 (late to be launched in
2007) deliver images in the (sub-)meter
range. Thanks to this high resolution, sig-
nificant steps forward towards spaceborne
traffic data acquisition are currently made
(see, e. g., LIVINGSTONE et al. 2002, CHIU &
LivINGSTONE 2005, BETHKE et al. 2006,
MEYER et al. 2006, LEITLOFF et al. 2006). Be-
cause of their relatively short acquisition
time and their long revisit period, such sys-
tems mainly contribute to the periodic col-
lection of statistical traffic data to validate
and improve traffic models. On the other
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hand, flexible systems are desired when traf-
fic monitoring on demand is necessary. Air-
borne optical and SAR sensors or future
HALE (High Altitude Long Endurance)
systems show great potential to meet the de-
mands of flexibility and mobility. While they
have the capability of covering large areas,
they can deliver both temporally and spa-
tially densely sampled data.

An extensive overview on current devel-
opments and potentials of airborne and
spaceborne traffic monitoring systems is
given in the compilation of (Hinz et al.
20006). It shows that civilian SAR is current-
ly not competitive with optical images in
terms of detection and false alarm rates,
since the SAR image quality is negatively
influenced by Speckle as well as layover and
shadow effects in case of city areas or rugged
terrain. However, in contrast to optical sys-
tems, SAR is an active and coherent sensor
enabling interferometric and polarimetric
analyzes making data acquisition indepen-
dent from weather and illumination condi-
tions. While the superiority of optical sys-
tems for traffic monitoring is in particular
evident when illumination conditions are ac-
ceptable, SAR has the advantage of being
illumination and weather independent,
which makes it to an attractive alternative
for data acquisition in case of natural haz-
ards and crisis situations. Hence, validating
the quality of SAR traffic data acquisition
is crucial to estimate the benefits of using
SAR in such situations. It is of particular
importance to observe in which way fair de-
tection results influence parameters of high-
er abstraction like mean velocity per road
segment. In this paper, an approach for
evaluating the performance of detection and
velocity estimation of vehicles in SAR im-
ages is presented, which utilizes reference
traffic data derived from simultaneously ac-
quired optical image sequences. While the
underlying idea of this approach is straight-
forward, the different sensor concepts imply
a number of methodological challenges that
need to be solved in order to compare the
dynamics of objects in both types of im-

agery.

2 Motion Detection in Airborne
Imagery

2.1 Vehicle Velocities from Optical
Image Sequences

The general methodology to derive vehicle
velocities from airborne image sequences is
sketched in Fig. 1. After image acquisition,
the images are co-registered and geo-refer-
enced. This process is commonly supported
by simultaneously recorded navigation data
of an INS-/GPS-System. Usually, GIS road
data is available, e. g. stemming from NAV-
TEQ or ATKIS data bases. These data are
mapped onto the geo-referenced images and
approximate regions of interest (Rol) are se-
lected. Thus, the search area for the follow-
ing vehicle detection can be reduced signifi-
cantly. It is in addition helpful for further
processing to extract the road as well as their
lanes, since geo-referencing might not be ac-
curate enough and GIS data rarely includes
the position of individual lanes.

Within the Rol, a car detection algorithm
is applied that is supposed to deliver posi-
tions and optionally additional attributes
such as boundary, direction etc. of the cars.
The detection approaches mostly incorpo-
rate some kind of image differencing or op-
tical flow to better identify image regions
where movements might have appeared.
Such procedures, however, limit the applica-
bility of an approach to strictly moving ob-
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Fig. 1: Work flow of vehicle detection and track-
ing.



Stefan Hinz et al., Evaluation of Traffic Monitoring 311

jects. After detection, the cars are tracked
through matching them over the following
images. In the simplest way, matching is per-
formed sequentially between consecutive
images, while advanced approaches include
multiple images to make the matching more
robust and to bridge temporal occlusions.
The tracking procedures usually inhere gen-
eral “‘smoothness” constraints regarding ve-
hicle shape, vehicle radiometry, and vehicle
trajectory, i.e., it is assumed that vehicles
move smoothly and, despite of changing
viewing and illumination geometry, their
imaged geometry and radiometry do not
vary very much from one image to the other.
Typical approaches based on terrestrial and
airborne images are found, for instance, in
(DRESCHLER & NAGEL 1982, TaN et al. 1998,
HaAAG & NAGEL 1999, ERNST et al. 2005,
KANG et al. 2005, YU et al. 2006, KIRCHHOF
& STILLA 2006, TOTH & GREINER-BRZEZINS-
KA 2006).

From the results of car tracking various
traffic parameters can be calculated, most
importantly individual vehicle speeds and
accelerations, vehicle density per road seg-
ment, and traffic flow, which is traffic den-
sity multiplied by average speed, eventually
yielding the number of cars passing a given
point on the road network within a certain
time interval. Fig.2 illustrates a tracking
example over image triplets taken from
(LENHART & Hinz 2007). White rectangles
indicate detected cars in the first image. Cor-
rectly tracked cars are marked green while
incorrect track results are marked red. Black

a b o)

Fig. 2: Tracking of vehicles over image triplets.

rectangles indicate cars which were correctly
matched in the second image but moved out
of the field-of-view of the third image. Blue
marked vehicles are correctly matched in the
second image but could not be tracked in
the third image even though they were pres-
ent. In this triplet, 16 out of 20 cars could
be tracked correctly. One car moved out of
sight in the third image, therefore the com-
parison with the third image failed. One car
was incorrectly tracked. Two cars could not
be found in the third image although they
were present, one of those was at least cor-
rectly found in the second image.

2.2 Vehicle Velocities from Dual-
Channel SAR data

In contrast to optical cameras, RADAR is
an active sensor that emits frequency
modulated signals — so-called chirps — with
a predefined “‘pulse repetition rate” (PRF)
in a side-looking, oblique imaging geometry
and records the echoes scattered at the ob-
jects on the ground; see Fig. 3 for illustration
of the RADAR imaging geometry. The
echoed chirps are correlated with the sent
(reference) chirp eventually yielding a com-
pressed pulse-shaped signal whose width is
mainly determined by the chirp’s band
width (see Fig. 4). The travelling time of the
signals is proportional to the distance to the

radar .-

Fig.3: RADAR imaging geometry.



312 Photogrammetrie « Fernerkundung « Geoinformation 5/2007

siqnﬂlF |
T

) ®fi|tering
reference chirp
MALAAA A A NN T
WYV vV NV VYTV
-

point scatterer

response >/« p, range resolution

T

Fig.4: Compression of sent chirp into pulse.

objects and defines the image dimension per-
pendicular to the flight direction, the so-
called range or across-track co-ordinates.
The second dimension, azimuth or along-
track, is simply aligned with the flight direc-
tion. While the resolution in range direction
pr 1s determined by the chirp band width
and is typically in the (sub-)meter area, the
resolution in azimuth direction of the raw
data depends on the antenna’s real aperture
characteristics (antenna length L, carrier
wavelength /, and range R) and is imprac-
tically coarse for geospatial applications.
Hence, to enhance the azimuth resolution,
the well-known Synthetic Aperture Radar

Y|
1

B=AL

L=10m§

R=850km

RA/L~5km

(SAR) principle is applied, i.e., the motion
of the real antenna is used to construct very
long synthetic antenna by exploiting each
point scatterer’s range history recorded dur-
inga point’s entire observation period. Since
the length of the synthetic aperture increases
proportional with the flying height, the res-
olution in azimuth direction pg, is purely de-
pending on the length of the physical anten-
na given a sufficiently large PRF to avoid
aliasing. Fig. 5 compares real aperture and
formation of synthetic aperture for a typical
spaceborne SAR configuration.

To identify and quantify movements of
objects on the ground, a thorough math-
ematical analysis of this so-called SAR fo-
cusing process is necessary:

The position of a Radar transmitter on
board a satellite is given by P, (1) = [x,,(?);
Viur(D); 2., ()] with x being the along-track
direction, y the across-track ground range
direction and z being the vertical (see Fig. 6).
A point scatterer is assumed to be at position
P(t) = [x(2); y(?); z(?)], and the range to an
arbitrarily moving and accelerating point
target from the radar platform is defined by
R(t) = P, () — P(¢). Omitting pulse envel-
ope, amplitude, and antenna pattern for
simplicity reasons, and approximating the
range history R(f) by an parabola, the mea-
sured echo signal u,,,(f) of this stationary
point scatterer can be written as u,, () =

.i Psa = L/2

factor 1/2 due to
doubling of phase
shifts in two-way

COC I S S S S s

Fig.5: Left — Example for resolution of real aperture. Right — Formation of synthetic aperture by

exploiting antenna motion.
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exp {jm FM ¢*} with FM being the frequency
modulation rate of the azimuth chirp:

2
2
FM = — z ER([) = — ﬁ Vsar VB
and v, and v, being the platform velocity

and the beam velocity on ground, respect-
ively. Azimuth focussing of the SAR image
is performed using the matched filter con-
cept (BAMLER & SCHATTLER 1993, CUMMING
& WONG, 2005). According to this concept
the filter must correspond to s(f) =
exp {—jn FM *}.

An optimally focused image is obtained
by complex-valued correlation of u,,(¢) and
s(2). To construct s(¢) correctly, the actual
range or phase history of each target in the
image must be known, which can be inferred
from sensor and scatterer position. Usually,
a time dependence of the scatterer position
is ignored yielding P(r) = P. This concept
is commonly referred to as stationary-world
matched filter (SWMF). Because of this defi-
nition, a SWMF does not correctly repre-
sent the phase history of a significantly mov-
ing object.

Moving point scatere

Vv

Fig.6: Geometry of along track moving object
while formation of synthetic aperture.

To quantify the impact of a significantly
moving object we first assume the point to
move with velocity v, in azimuth direction
(along-track, see Fig. 6). The relative veloc-
ity of sensor and scatterer is different for
the moving object and the surrounding sta-
tionary world. Thus, along track motion
changes the frequency modulation rate FM
of the received scatterer response. Focusing
the signal with a SWMF consequently re-
sults in a blurring of the signal. It is unfor-
tunately not possible to express the amount
of defocusing exactly in closed form.

Yet, when considering the stationary
phase approximation of the Fourier-Trans-
form, the width Az of the focused peak can
be approximated by

Vxo
At = 2T, —s]

Ve
with 7, being the synthetic aperture time.

As can be seen, the amount of defocusing

depends strongly on the sensor parameters.
A car traveling with 80 km/h, for instance,
will be blurred by approx. 30 m when insert-
ing TerraSAR-X parameters. However, it
has to be kept in mind that this approxi-
mation only holds if v, > 0. It is further-
more of interest, to which extent blurring
causes a reduction of the amplitude / at po-
sition ¢ = 0 (the position of the signal peak)
depending on the point’s along-track velo-
city. This can be calculated by integrating
the signal spectrum and making again use
of the stationary phase approximation:

with B being the azimuth bandwidth.

When a point scatterer moves with velo-
city v, in across-track direction (see Fig. 7),
this movement causes a change of the point’s
range history proportional to the projection
of the motion vector into the line-of-sight
direction of the sensor v, _ v, sin(f) with
0 being the local elevation angle. In case of
constant motion during illumination the
change of range history is linear and causes
an additional linear phase trend in the echo
signal.
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Fig.7: Geometry of across track moving object
while formation of synthetic aperture.

Correlating such a signal with a SWMF
results in a focused point that is shifted in
azimuth direction by

2 Vios

Lo =~
shift )», . FM [S]

in time domain, respectively by

A, = — R[]
v

sat

in space domain.

In other words, across-track motion leads
to the fact that moving objects do not ap-
pear at their “real-world” position in the
SAR image but are displaced in azimuth di-
rection — the so-called “‘train-off-the-track™
effect. Again, when inserting typical Ter-
raSAR-X parameters, the displacement
reaches an amount of 1.5 km for a car travel-
ing with 80 km/h in across-track direction.
Fig. 8 shows an example of the combination

c)

Fig.8: a) SAR image of a highway section with displaced car due to across track motion (green
arrow). b) Detail: Defocused car when processed with a SWMF. ¢c) Same part processed with filter
corresponding to the car’s along track velocity. Now the car is imaged sharply while the background

gets blurred.
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of both effects. Due to across track motion
a car is displaced from its real-word position
on the road (green arrow in Fig. 8a). In ad-
dition, the car is defocused because of the
along track motion when processed with a
SWMF (Fig. 8b). If it was filtered with the
correct reference signal, the point should be
sharp as shown in Fig. 8c.

Across-track motions not only influence
the position of an object in the SAR image
but also the interferometric phase in case of
an along-track interferometric data acquisi-
tion, 1. e., the acquisition of two SAR images
within a short time frame with baseline A/
aligned with the sensor trajectory. The in-
terferometric phase is defined as the phase
difference of the two co-registered SAR im-
ages ¥ =@, — @, and is proportional to
motions in line-of-sight direction. Hence,
the interferometric phase can also be related
to the displacement in space domain:

Vlo.r
A ——RM — _R
“ v W4n-Al

sat

[m]

In the majority of the literature, it is as-
sumed that vehicles travel with constant vel-
ocity and along a straight path. If vehicle
traffic on roads and highways is monitored,
target acceleration is commonplace and
should be considered in any processor or
realistic simulation. Acceleration effects do
not only appear when drivers physically ac-
celerate or brake but also due to curved
roads, since the object’s along-track and
across-track velocity components vary on a
curved trajectory during the Radar illumi-
nation. The effects caused by along-track or
across-track acceleration have recently been
studied in (SHARMA et al. 2006, MEYER et
al. 2006). Summarizing, along-track accele-
ration a, results in an asymmetry of the fo-
cused point spread function, which leads to
a small azimuth-displacement of the scat-
terer after focusing, whose influence can of-
ten be neglected. However, the acceleration
in across-track direction @, causes a spread-
ing of the signal energy in time or space do-
main. The amount of this defocusing is sig-
nificant and comparable with that caused by
along-track motion. We refer the interested

VAURIES

reader to (MEYER et al. 2006) where an in-
depth study about all the above mentioned
influences in TerraSAR-X data can be
found.

The effects of moving objects hinder the
detection of cars in conventionally pro-
cessed SAR images. On the other hand,
these effects are mainly deterministic and
thus can be exploited to not only detect ve-
hicles but also measure their velocity. Typi-
cal schemes for detection and velocity esti-
mation of moving objects rely on (a) the in-
terferometric phase and (b) the FM-rate
variation for detecting the across-track and
along-track velocities (GIERULL 2004,
BETHKE et al. 2006). To make the estimation
more robust (MEYER et al. 2006, HINz et al.
2007) include also GIS data from road
databases as a priori knowledge.

a) Detection using interferometric phase:

For classifying stationary and moving
points in interferometric data, e. g. through
aconstant false alarm rate detection scheme,
the probability density distributions of ve-
hicles and background need to be known.
For all stationary targets the interferometric
phase values are assumed to be statistically
distributed around the expectation value
E{y} =0. Using the underlying assump-
tion of jointly Gaussian-distributed data in
the two images, the joint probability density
function (pdf) f.{n, w} of amplitude » and
phase y of an interferogram is given by:

n+1.n

2n" y
n(1—IpP)-T'(n)

2nny
Kn1< 2>
1—1p

<2nnlplcos (V/)>
p (2ipicos w)

1—1pP?

where p is the coherence, n the number of
looks (effectively the amount of averaging),
I'(-)is the gamma function and K, (-) is the
modified Bessel function of the n™ order. In
case of public traffic, it can in addition be
assumed that vehicles travel on a known
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road network so that a similar pdf as above
can be derived depending on the vehicle
backscatter and velocity induced phase
(GerurL 2001, 2002). An analytic pdf

Somin, y} for vehicles has not been found yet.

However an approximation valid for n > 1
is given by:

S, w) =

2nn+1 7 [(’7 _ 5005(1// — 9))2 + 52 Sil’l(l// - ‘9)2] 2

n—1

- K

n—1

n(l—|pP) T
<2n]/(17 —dcos(y — 9))* + 6*sin(y — 9)2>
1—|pP

<2np(;7 cosy — 50059)>
1—1pf

with é = f/n while the moving target’s signal
is assumed to have a peak amplitude /.

Using this approximation as an alterna-
tive hypothesis, f.{n, w} and f,,,{n, w} allow
to defining a likelihood ratio to which a
threshold can be applied. Fig.9 shows an
example and a corresponding curve of sep-
aration.

b) Detection using FM rate variation

The scheme outlined so far can only be ap-
plied if displacement or interferometric
phase occurs at all. This does not happen
for objects moving purely in along-track di-
rection. A common strategy to estimate a

\

!

S R
(proportional to slong-track
velotity)

Fig. 10: Azimuth line x of moving object proces-
sed with varying FM rates and detected peak
(right: detail). SFM corresponds to along-track
velocity (w/o acceleration).

vehicle’s velocity in along-track direction re-
lies on hypothesizing a series of FM rates
corresponding to different vehicle velocities
and analyzing each pixel’s “‘sharpness func-
tion” over these FM rates (see Fig. 10). That
particular FM rate, which produces the
sharpest peak, corresponds to the correct es-
timate of the along-track velocity. Different
schemes for analyzing the sharpness func-
tion have been proposed. They include fea-
ture based methods (WEIHING et al. 2006,
Hinz et al. 2007) as well as time-frequency
analysis (GIERULL 2004, BETHKE et al. 2000).
Typical results for the detection of cars
are depicted in Fig. 11. The red boxes show
the detected (displaced) vehicles and the ar-
rows indicate their corresponding ‘“‘real-
world” position on the road. Colors corre-
spond to the vehicle velocity derived from
displacement and orientation of the road.

Fig.11: Typical detection result of vehicles is
SAR data.
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3 Matching moving vehicles in
optical and SAR data

To evaluate SAR based vehicle detection
and velocity estimation, it is reasonable to
make use of simultaneously acquired optical
image sequences. As described above, these
images allow to deriving vehicle velocities
and, when choosing an appropriate focal
length, they can also cover the same part of
a scene as SAR images. In addition, optical
images are rather easy to interpret for a hu-
man operator so that reliable reference data
of moving objects can be achieved. Yet
matching dynamic objects in SAR and op-
tical data remains challenging since the two
data sets do not only differ in geometric
properties but also in temporal aspects of
imaging. Hence, our approach for matching
vehicles consists of a geometric part (Section
3.1)and a time-dependent part (Section 3.2).

3.1 Geometric matching

Digital frame images, as used in our ap-
proach, inhere the well-known radial per-
spective imaging geometry that defines the
mapping [X, Y, Z] = [Xine Yimel from object
to image co-ordinates. As sketched in
Fig. 12, the spatial resolution on ground (py,
py) 1s mainly depending on the flying height
H, the camera optics with focal length ¢ and
the size of the CCD elements (p,, p,). On
the other side, the geometry of SAR results
from time/distance measurements in range

&y
Y

| M >» v

Y —

R = const

Loo.Y, == > v

Fig.13: Imaging geometry of SAR in range di-
rection.

direction and parallel scanning in azimuth
direction defining a mapping [X,Y,Z] =
[Xsar> Rsarl- 3D object co-ordinates are thus
mapped onto circles with radii Ry, parallel
aligned in azimuth direction xg,, (see
Fig. 13). As mentioned above, after SAR fo-
cusing, the spatial resolutions (py, pg,) of
range and azimuth dimension are mainly de-
pending on the bandwidth of the range chirp
and the length of the physical antenna.
Please note that the resolution p, of the view-
ing angle 0 is usually too coarse to derive
the 3" dimension so that SAR remains a 2D
imaging system.

The different imaging geometries of frame
imagery and SAR require the incorporation
of differential rectification to assure highly
accurate mapping of one data set onto the
other. To this end, we employ a Digital El-
evation Model (DEM), on which both data
sets are projected®. Direct georeferencing
the data sets is straightforward, if the ex-
terior orientation of both sensors is known
precisely. In case the exterior orientation
lacks of high accuracy — which is especially
commonplace for the sensor attitude — an
alternative and effective approach is to

Ll

Fig.12: Imaging geometry of optical images.

* We use an external DEM; though, it could be
derived directly from the frame images.
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transform an existing ortho-image into the
approximate viewing geometry at sensor po-
sition C:

[XC’ yC] = .f(portho’ Xortho’ Yortho’ Zarlha)

where p,,,., 1s the vector of approximate
transformation parameters. Refining the ex-
terior orientation reduces then to finding the
relative transformation parameters p,, be-
tween the given image and the transformed
ortho-image, i.e.

[ximg’ yimg] = f(prel’ xC’ yC)’

which is accomplished by matching interest
points. Due to the large number of interest
points, p,, can be determined in a robust
manner in most cases. This procedure can
be applied to SAR images in a very similar
way — with the only modification that, now,
Poruno describe the transformation of the
ortho-images into the SAR slant range ge-
ometry. The result of geometric matching
consists of accurately geo-coded optical and
SAR images, so that for each point in the
one data set a conjugate point in the other
data set can be assigned. However, geomet-
rically conjugate points may have been im-
aged at different times. This is crucial for
matching moving vehicles and has not been
considered in the approach outlined so far.

3.2 Temporal matching

The different sensor principles of SAR and
optical cameras lead to the fact that the time
of imaging a moving object would differ for
both sensors — even in the theoretical case
of exactly coinciding trajectories of the SAR
antenna’s phase center and the camera’s
projection center. Frame cameras take snap-
shots of a scene at discrete time intervals
with a frame rate of, e. g., 0.3—3 Hz. Due to
overlapping images, most moving objects
are imaged at multiple times. SAR, in con-
trast, scans the scene in a quasi-continuous
mode with a PRF of 1000-6000Hz, 1i.e.
each line in range direction gets a different
time stamp. Due to the parallel scanning
principle, a moving vehicle is imaged only

images

Fig. 14: Imaging moving objects in optical image
sequences.

once, however, as outlined above, possibly
defocused and at a displaced position.

Fig. 14 compares the two principles: It
shows the overlapping area of two frame im-
ages taken at position C, at time ¢, and po-
sition C, at ¢, respectively. A car travelling
along the sensor trajectory is thus imaged
at the time-depending object co-ordinates
X(t=ts) and X(t=t.). On the other
hand, this car is imaged by the SAR at
Doppler-zero position X(f = tg,p,), 1.€.
when the antenna is closest to the object.
Fig. 14 illustrates that exact matching the
car in both data sets is not possible because
of the differing acquisition times. Therefore,
a temporal interpolation along the trajec-
tory is mandatory and the specific SAR
imaging effects must be considered. Hence,
our strategy for matching includes following
steps:

a) Reconstruction of a continuous car tra-
jectory from the optical data by piecewise
interpolation (e.g. between control
points X(t=t.) and X(t=t.) in
Fig. 14). Fig. 15 depicts an example of re-
constructing the trajectory using Her-
mite splines. Alternatively, GIS road
axes could be used if they were accurate
enough.

b) Calculation of a time-continuous velo-
city profile along the trajectory, again us-
ing piecewise interpolation.

¢) Derivation of a maximum velocity-vari-
ance profile. The velocity variance at the
control points depends purely on the
imaging and measurement accuracy (see
Section 4.1). To propagate the variance
into the interpolated regions, we employ
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Fig.15: Spatlal interpolation between control ance depending on distance between control
points (circles): Cubic splines (dashed) vs. Her-  points (on horizontal axis).

mite splines.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
LTS [m]

Fig.17: Matching: highway section (magenta line), corresponding displacement area (color coded
iso-velocity surface), displaced track of a decelerating car (green line), local RADAR coordinate
system (magenta arrows). Cut-out shows detail of uncertainty buffer. Cars correctly detected in
the SAR image are marked by red crosses.
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a simple and empirically tested dynamic
model defining that the variance between
control points follows a parabolic shape
as exemplified in Fig. 16. This model ac-
commodates the fact that velocity inter-
polation gets less accurate with greater
distance to the adjacent control points.
Together with the velocity profile, it de-
fines an uncertainty buffer, i.e. a mini-
mum and maximum velocity for each
point along the trajectory.

d) Transforming the trajectory into the
SAR image geometry and adding the dis-
placement due to the across track velo-
city component. In the same way, the un-
certainty buffer is transformed.

e) Intersection/matching of cars detected in
the SAR image with the trajectory by ap-
plying nearest neighbour matching. Cars
not being matched are defined as false
alarms.

As result, each car detected in the SAR data
(and not labeled as false alarm) is assigned
to a trajectory and, thereby, uniquely
matched to a car found in the optical data.
Fig.17 visualizes intermediate steps of
matching: a given highway section (magenta
line); the corresponding displacement area
color coded by an iso-velocity surface; a dis-
placed track of a smoothly decelerating car
(green line); and a cut-out of the displaced
uncertainty buffer. Two cars correctly detec-
ted in the SAR image are marked by red
crosses in the cut-out. The local RADAR
co-ordinate axes are indicated by magenta
arrows.

4 Accuracy Aspects, Validation and
Results

In order to validate the matching and esti-
mate the accuracy, localization and velocity
determination have been independently
evaluated for optical and SAR imagery.

4.1 Accuracy of vehicle
measurements in optical images

The basic concept of determining the accu-
racy of vehicle measurements in optical im-

ages is the comparison of theoretically de-
rived accuracies with empirical accuracies
measured with airborne images of reference
cars.

Vehicle velocity v,,, derived from two
consecutive co-registered or geo-coded op-
tical images 7/ and 12 is simply calculated
by the displacement As over the time elapsed
At. Two ways of calculating the displace-
ment are possible, first based on the trans-
formed coordinate differences in the object
space in geo-coded images and second based
on the pixel differences multiplied with a
scale factor m in co-registered images.

As
Vioa = Al
VX=X + (Y= Yy)
Inp—1In
. ]/(”12 —rp) +(cp—cp)
=m
Ip—1In

where X; and Y, are object coordinates, r,
and ¢, the pixel coordinates of moving cars,
and ¢, the acquisition times of images
i=12.

The advantage of the second way is the
separation of the image geo-coding process
(represented by factor m) from the process
of car measurements, which simplifies the
calculation of theoretical accuracies. Thus,
three main error sources on the accuracy of
car velocity are spotted: the measurement
error G, in pixel units, the scale error o, as-
sumed to be caused mainly by DEM error
Gy, and finally the time error o, of the image
acquisition time.

Fig. 18 shows accuracies of vehicle veloc-
ities derived from positions in two consecu-
tive acquired images based on calculation
of error propagation. For this, different as-
sumptions about the error sources must be
made. The measurement error o, is defined
as 1.0 pixel including co-registration errors,
the time distance error o, as 0.02s, which
corresponds to the registration frequency of
the airplane navigation system, and finally
a DEM error oy of 10m is assumed. The
simulation in Fig. 18 shows decreasing accu-
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Fig. 18: Accuracy of vehicle velocities derived from positions in two consecutive acquired images
for three time differences 0.3s, 0.7 s, and 1.0s. For each time distance, four airplane heights from

1000 m up to 2500 m and car velocities from 0 to 80 km/h were considered.

racy at higher car velocities and shorter time
distances, as the influence of the time dis-
tance error gets stronger. On the other hand,
the accuracies decrease with higher flight
heights as the influence of measurement er-
rors increases. Last is converse to the effect,
that with lower flight heights the influence
of the DEM error gets stronger.

Given three consecutive images, the ve-
hicle accelerations a,;,, can be calculated
by the quotient of measured vehicle velocity
difference and the time distance. For equi-
distant acquisition times, the time difference
is half the time distance between image 3
and 1.

u _ V32— Vi
B 0.5t — 1)

The simulation was performed based on
three accelerations 1.0m/s’, 2.0m/s’, and
3.0 m/s? and car velocities from 0 to 60 km/h.
The rest of the parameters are the same as
before. In general, the accuracy level of ac-
celeration measurements is unsatisfying, as
the standard deviation is over 1.0m/s’ for
nearly all configurations.

The theoretically calculated accuracies
were validated with measurements in real
airborne images and with data from a ref-
erence vehicle equipped with GPS receivers.
The time distance between consecutive im-
ages was 0.7 s. Exact assignment of the im-
age acquisition time to GPS track times was
a prerequisite for this validation and was
achieved by connecting the camera flash in-

terface with the flight control unit. Thus,
each shoot could be registered with a time
error less than 0.02s. Based on onboard
GPS/IMU measurements, the images were
geo-coded and finally resampled to a ground
pixel size of 30 ¢m. Fig. 19 illustrates the re-
sults of the validation for one car track. The
empirically derived accuracies are slightly
worse than theoretical values due to inaccur-
acies in the GPS/IMU data processing. Yet,
it also shows that the empirical standard de-
viation is below 5 km/h which provides a rea-
sonable hint for defining the velocity uncer-
tainty buffer in Section 3.2. The validation
exemplifies on the other hand that vehicle
accelerations cannot be derived from these
image sequences with sufficient accuracy.

Aerial image

GBS measurement

G, km/h]

6. [m/s7]

Fig.19: Vehicle positions (projected tracks), ve-
hicle velocities (top figure), and accelerations
(bottom figure) derived from airborne images
and GPS measurements. Empirically measured
and theoretically calculated accuracies are list-
ed in the table.
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4.2 Accuracy of vehicle
measurements in SAR images

Several flight campaigns have been conduct-
ed, to estimate the accuracy of velocity de-
termination from SAR images, thereby also
verifying the validity of the above derived
theory. An additional goal of the flight cam-
paigns is to simulate TerraSAR-X data for
predicting the performance of the extraction
procedures. To this end, an airborne Radar
system has been used with a number of
modifications, so that the resulting raw data
is comparable with the future satellite data.
During the campaign 8 controlled vehicles
moved along the runway of an airfield. All
vehicles were equipped with a GPS system
with a 10 Hz logging frequency for measur-
ing their position and velocity. Some small
vehicles were equipped with corner reflec-
tors to make them visible in the image. The
experiments have been flown with varying
angles between the heading of the aircraft
and the vehicles. The vehicles have been
driven with such velocities v, that their ap-
pearance in the (airborne) SAR data appro-
ximately matches traffic scenarios as re-
corded by satellites (see Tab. 1).

To estimate the accuracy, the predicted
image position of a moving object is derived
from the object’s GPS position and its meas-
ured velocity and compared with the posi-
tion measured in the image. The positions
of displaced vehicles detected in the image
(yellow dots in Fig.20) are compared with

Tab.1: Comparison of velocities from GPS and
SAR.

Target # |3 [km[h] | v [km|h] | Av [km[h]
4 5.22 5.47 0.25
5 9.24 9.14 0.1
6 10.03 9.45 0.58
8 2.16 2.33 0.17
9 4.78 4.86 0.08
10 3.00 2.01 0.01
11 6.31 6.28 0.03

Fig. 20: True GPS positions (green) of cars, dis-
placed positions derived from GPS velocity
(red), displaced position measured in the image
(yellow).

their true GPS-position (green dots) and the
theoretical displacement computed from the
GPS-velocities (red dots). As can be seen,
yellow and red dots match very well, so that
the theoretical background of detection and
velocity estimation seems justified. Al-
though there might be some inaccuracies in-
cluded in the measurements (varying local
incidence angle, GPS-time synchronization,
etc.) the results show a very good match of
theory and real measurements.

To obtain a quantitative estimate of the
quality of velocity determination SAR im-
ages, the velocity corresponding to the
along-track displacement in the SAR images
v§% has been compared to the GPS velocity
v$PS (see Tab. 1). The numerical results show
that the average difference between the vel-
ocity measurements is significantly below
1 km/h. When expressing the accuracy of
velocity in form of a positional uncertainty,
this implies that the displacement effect in-
fluences a vehicle’s position in the SAR im-
age only up to a few pixels depending on
the respective sensor parameters, as can be
seen from Fig. 20.
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4.3 Results from flight campaign

The approach has been tested on real data
stemming from DLR’s E-SAR and 3K op-
tical system. The flight campaign aimed at
monitoring a freeway nearby Lake Chiem-
see, approx. 80km in the south-east of
Munich. The freeway is heading nearly in
across-track leading to large displacements
of the cars in the SAR image. During the
flight, also optical images of the same scene
have been acquired to enable the verification
of the detection results. For ensuring error-
free reference data, vehicle detection and
tracking has been carried out manually.
Some track sections are exemplified in
Fig. 21.

To detect vehicles in the SAR data, an
existing modular traffic processor has been
applied, which processes SAR data specifi-
cally with the objective of moving vehicle
detection, see (SUCHANDT et al. 2006, WEIH-
ING et al. 2007) for details. Different de-
tectors (ATI, DPCA, likelihood ratio de-
tector) are integrated for finding vehicles
and can be selected individually or can be
combined. Fig. 22 shows an example of ve-
hicle detection with the likelihood ratio de-
tector (WEIHING et al. 2007). Detected ve-
hicles are marked with red rectangles at their
displaced positions. The triangels represent
the positions of these vehicles when back-
projected to the assigned road. These tri-

P . '

Fig. 21: Example of vehicles tracked in optical
image sequence.

Fig.22: Cars detected in SAR image. Displaced
position of detection (rectangle), backprojection
onto road (triangle), estimated velocity (color
of triangle).

angles are color-coded regarding their es-
timated velocity ranging from blue to red
(0 to 170km/h). Having these detections
projected back onto the road axis, it is pos-
sible to derive parameters describing the
situation on the road and feeding them into
traffic simulations and traffic prediction
models.

The traffic data from the optical and the
SAR system have been co-registered as de-
scribed above to evaluate the performance
of vehicle detection and velocity estimation.
In Tab. 2 the traffic flow parameters derived
from the detections with the likelihood ratio
detector are compared to those estimated
from the reference data. The vehicles mov-
ing on the upper lane from right to left are
considered in this case. On the opposite lane

Tab.2: Traffic parameters for vehicles moving
on the upper lane from right to left.

Traffic parameters | SAR data optical data
mean velocity 104 km/h 100 km/h
velocity range 29-129km/h | 81-135km/h
number of vehicles | 12 31

detection rate 39% 100%
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only two vehicles have been detected which
makes the derivation of reliable parameters
impossible.

It can be seen from Tab. 2 that the detec-
tion rate is quite fair, as expected from other
studies (e. g., MEYER et al. 2006). However,
the results obtained for more generic traffic
parameters are very encouraging, e. g. when
comparing the values of the estimated mean
of velocity, a good correspondence can be
seen. Hence, even for a lower percent of de-
tections in the SAR data, reliable para-
meters can be extracted. As has been shown
in (SucHANDT et al. 2006) one can derive,
for instance, drive-through times for a road
section from these data with high accuracy.
Such information is highly useful for near-
realtime traffic management since it allows
to advising the drivers in choosing the best
route.

Possible false detections, like the vehicle
marked blue (estimated velocity is 29 km/h),
could be eliminated, if considering addi-
tional information. In case of free traffic
such a low velocity is very unlikely so that
it could be rejected by an outlier test based
on the velocity distribution in a certain
neighborhood.

4 Summary and Conclusion

In this article, an approach for spatio-tem-
poral co-registration of dynamic objects in
SAR and optical imagery has been pres-
ented. It was used to evaluate the perform-
ance of vehicle detection and velocity esti-
mation from SAR images compared to re-
ference data derived from aerial image se-
quences. The evaluation shows the chal-
lenges of traffic monitoring with SAR in
terms of detection rate. However, the traffic
flow parameters derived from these results
show a good correspondence with the refer-
ence data, even for a low detection rate.
Hence, traffic models can make use of such
data to simulate and predict traffic or to
even verify certain parameters of models.
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