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3D Reconstruction and Visualization of Urban Scenes from
Uncalibrated Wide-Baseline Image Sequences

HELMUT MAYER, Neubiberg
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Summary: This paper focuses on the fully auto-
matic generation of basic ingredients for high
quality visualizations of urban areas character-
ized by vertical facade planes. We show that un-
calibrated wide-baseline image sequences without
using markers or ground control suffice for this
task. At the core of our algorithms are least-
squares matching, projective geometry based re-
construction, robust estimation based on random
sample consensus — RANSAC, direct auto-cali-
bration, projective and Euclidean bundle adjust-
ment, plane to plane homographies, as well as
the robust estimation of image mosaics. Results
for the Hradschin in Prague, Czechia, Plaza Real
in Barcelona, Spain, and the Zwinger in Dresden
show the potential and shortcomings of the em-
ployed algorithms.

Zusammenfassung: 3D Rekonstruktion und Visua-
lisierung von stddtischen Szenen auf der Grundlage
von unkalibrierten Bildsequenzen mit grofier Basis.
Dieses Papier zielt auf die vollautomatische Ge-
nerierung von grundlegenden Bestandteilen fiir
hochqualitative Visualisierungen von stédtischen,
durch vertikale Fassadenebenen charakterisierte
Szenen ab. Es wird gezeigt, dass fiir diese Aufgabe
unkalibrierte Bildsequenzen mit groBer Basis oh-
ne Verwendung von Messmarken oder Passpunk-
ten ausreichen. Den Kern der vorgestellten Algo-
rithmen bilden kleinste-Quadrate-Zuordnung,
Rekonstruktion auf Grundlage projektiver Geo-
metrie, robuste Schiatzung basierend auf random
sample consensus — RANSAC, direkte auto-Ka-
librierung, projektive und euklidische Biindel-
ausgleichung, Ebene-zu-Ebene Homographien,
sowie die robuste Schitzung von Bildmosaiken.
Ergebnisse flir den Hradschin in Prag, Tsche-
chien, den Plaza Real in Barcelona, Spanien und
den Zwinger in Dresden zeigen die Méglichkeiten
aber auch die Defizite der verwendeten Algorith-
men.

1 Introduction

Microsoft recently announced its Photo-
synth project (http://labs.live.com/photo-
synth/). Right now users can only view co-
lored Euclidean three-dimensional (3D)
point sets and images registered to average
planes of 3D scenes. Yet, the project aims
at that the user can include her/his photos
of an uncalibrated camera, orient them in
relation to the given 3D point sets and pos-
sibly also extend the 3D point sets. We are
following a similar trail, but we restrict our-

selves to high precision 3D points and ver-
tical planes in an urban setting.

Recent years have seen a couple of ap-
proaches for the fully automatic generation
of 3D Euclidean models from uncalibrated
image sequences, among the most advanced
of which is (POLLEFEYS et al. 2004). The ap-
proaches usually consist of the robust esti-
mation of a projective reconstruction and
n-fold correspondences followed by auto-
calibration and possibly dense depth estima-
tion, all usually restricted to small images with
a short baseline, e. g., from a video camera.
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Opposed to this, we aim at applications
where higher image resolutions in the range
of several Megapixels are given as input, ob-
tained, e. g., from consumer digital cameras
costing only several hundred Euros. Because
of the lower frame rates (one image can
usually be taken on a sustained basis only
about every second on average) and higher
data volumes per image it is natural to take
images with a wider baseline making the
matching of points between the images se-
verely more difficult. We show how employ-
ing high precision to become more reliable
it is possible to obtain 3D reconstructions
of rather difficult scenes with many occlu-
sions and partly close to no 3D structure.

The focus of this paper is on urban scenes.
Therefore, it is reasonable to use at least
partly planes for the modeling and visual-
ization of the scenes, particularly the vertical
planes of the facades. As larger parts of our
scenes are assumed to be captured in at least
three images, it becomes on one hand
necessary to fuse the information from the
individual images on the detected planes.
Yet, on the other hand, it gives us the op-
portunity, to separate by means of consen-
sus between pixels taken from different im-
ages the information on the plane from off-
plane information. This allows us to gener-
ate a “cleaned” version of the image on the
plane without many of the occlusions in the
individual images. This part has been in-
spired by (BoHM 2004). Yet, opposed to the
latter, we fully automatically and robustly
generate the planes and from them the two-
dimensional (2D) homographies, i. e., plane
to plane mappings. We also integrate the
planes into our 3D models and generate vis-
ualizations from them.

Impressive results in terms of visuali-
zation of urban scenes have been presented
by DEBEVEC et al. (1996) by taking the image
from the (real) camera closest to the current
(virtual) viewpoint. Yet, the 3D model em-
ployed has been generated manually. Then,
there is work for architectural scenes which
goes far beyond what we are presenting here
in the sense that much more knowledge
about the structures and regularities of ur-
ban scenes is used. The most sophisticated

example is probably (Dick et al. 2004) em-
ploying a statistical generative model based
on Markov Chain Monte Carlo (MCMC)
sampling. Closer to our work as it is more
geometry-based is (WERNER & ZISSERMAN
2002). Yet, compared to our work they em-
ploy perpendicular vanishing points for
auto-calibration and 3D reasoning which
restricts the work to scenes with three per-
pendicular main directions. They have also
only shown results for image triplets.

In the remainder of this paper, we first
present our approach for 3D reconstruction
from wide-baseline image sequences (cf.
Section 2). The obtained 3D Euclidean
model is the basis for deriving vertical fa-
cade planes. For them facade images at least
partly “cleaned” from occlusions are com-
puted by means of median or consensus be-
tween the pixels projected onto the planes
from different camera positions (cf. Section
3). In Section 4 we present additional results
and we end up with conclusions.

2 3D Reconstruction

Our approach aims at wide-baseline image
sequences made up of images of several
Megapixels. We make the following assump-
tions for 3D reconstruction:

® The camera constant (principal distance)
is constant. Yet this is not as restrictive
as it may sound because we found that
the influence of auto-focusing that one
cannot switch off for some cameras we
use can mostly be neglected for the dis-
tances typical for urban applications. We
also assume that the principal point is
close to the image center. This is the case
for practically all digital cameras, and
would only not hold if parts of images
were used.

® The images are expected in the form of a
sequence with at least three-fold overlap
for all images.

Our basic idea to obtain a reliable result is
to strive for a very high precision in the
range of 0.05 to 0.3 pixels by means of least-
squares matching and bundle adjustment. If
the value is higher or lower depends in first
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instance on scene geometry and geometrical
quality/stability of the camera, but in second
instance also on lighting conditions, etc. The
overall reasoning is that it is (extremely) un-
likely that a larger number of non-
homologous points conspire to achieve a
highly precise result by chance.

Based on this idea we start using Forstner
points (FORSTNER & GULCH 1987). They are
matched via cross-correlation. In color im-
ages the coefficient for the channel where
the variance is maximum is taken. To deal
with images rotated around the axis of the
camera, we rotate each patch according to
the direction obtained for the Forstner
points. From the points accepted by match-
ing we compute a histogram of the relative
directions between the matched points. The
angle for which the histogram is maximum
is used to rotate all patches of the second
image according to the reference image.
Point pairs checked via correlation are re-
fined via least-squares matching with an af-
fine geometrical model. The latter is also
used for three- and more-fold images. In all
cases we compute the complete covariance
information.

The highly precise points are the basis for
a projective reconstruction employing fun-
damental matrices F and trifocal tensors 7'
(HARTLEY & ZISSERMAN 2003). If calibration
information is available, we use (NISTER
2004) to determine the Euclidean 3D struc-
ture for image pairs. Asin spite of our efforts
to obtain reliable matches we obtain partly
less than 10 % of correct homologous points
for difficult scenes, we employ Random
Sample Consensus — RANSAC (FISCHLER
& BoLLEs 1981) for the estimation of F and
T. Because we do not only have rather low
numbers of correct matches (inliers), but as
these inliers are also partly very unevenly
distributed over the image and thus not all
of them lead to a correct model, i. e., a model
representing all inliers with the inherent, yet
unknown achievable geometric accuracy,
we employ a variant of the locally optimized
RANSAC scheme of CHuM et al. (2003).
While they take a larger number, i.e., 50 %,
of random samples from the maximum set
of inliers derived at a certain stage to derive

an improved estimate, we take the whole
maximum set and employ robust bundle ad-
justment (HARTLEY & ZISSERMAN 2003,
MIKHAIL et al. 2001). The latter is done two
times always using the outcome of the
bundle adjustment to derive new sets of in-
liers.

The employed bundle adjustment is suit-
able for the projective as well as the Euclid-
ean case. We model radial distortion with a
quadratic and a quartic term. Bundle adjust-
ment takes into account the full covariance
information derived by least-squares match-
ing. We estimate the precision of the resi-
duals and use them in two ways to make
the adjustment robust: First, we reweight
the observations based on the ratio of the
size of the residual and its variance. Second,
after convergence we throw out all points
with a ratio beyond three, a value found em-
pirically.

As our images are in the range of several
up to possibly tens of Megapixels, it is im-
portant to initially constrain the search
space for matching. Yet, because we do not
want to constrain the user more than given
in the assumptions at the begin of the sec-
tion, we cannot assume that the movement
is only vertically or horizontally or that it
is even in a certain range. Particularly for
urban scenes with very close and far away
objects disparities can be rather large, in the
extreme case the image size. We thus take
as initial search space the full image, but re-
duce the image in a pyramid and do the first
search on a pyramid level with a size of ap-
proximately 100 x 100 pixels. Here, full
search can be done efficiently. Matching and
projective reconstruction lead to fundamen-
tal matrices and thus epipolar lines on the
highest level, restricting the search on the
next level considerably. Once trifocal ten-
sors have been determined, the search space
becomes a small area in the third image.
Trifocal tensors are computed for the second
highest level in all cases and additionally on
the third highest level if the image size ex-
ceeds one Megapixel.

To orient whole sequences, we link triplets
based on 3D homographies computed from
projection matrices for images common be-



170

Photogrammetrie « Fernerkundung « Geoinformation 3/2007

Fig.1: Six images of the Hradschin in Prague, Czechia.

Fig. 2: 3D points, colored according to the pixels, and cameras (green pyramids, the tip symbolizing
the projection center and the base giving the direction of the camera) derived from the images

given in Fig. 1.

tween triplets. (E. g., the triplets (1,2,3) and
(2,3,4) have the images 2 and 3 in common.)
Additionally, we project already known 3D
points into the newly linked image to gen-
erate i+ 1-fold points, with i being the cur-
rent number of images a point is visible in.
After these steps we bundle adjust the se-
quence. Once all projection matrices and 3D
points have been computed, we track the
points generated on the second or third
highest level of the pyramid down to the
original resolution again via least-squares
matching in all images.

If no calibration information is given, we
directly auto-calibrate the camera employ-
ing the approach proposed by POLLEFEYS et
al. (2004), It uses only very weak and general
information about cameras to constrain the
solution, e. g., that the principal point cor-
responds to the center of the image and that
the camera constant is somewhere in-be-
tween one-third and three. Auto-calibration
is done only once a high quality projective
reconstruction has been obtained on the
original resolution via projective bundle ad-

justment. We found that the latter is man-
datory, as lower precisions lead to incoher-
ent implicit calibrations of the projective re-
constructions, often leading to unacceptable
results. Finally, we employ Euclidean
bundle adjustment to obtain a highly-pre-
cise calibrated 3D model consisting of
points and projection matrices including full
covariance information.

If the image sequence consists of a loop,
i.e., the first and the last images are the
same, we extend the end of the sequence up
to the second image. By this means, we get
a 3D overlap between the begin and the end
which we use to close the loop, thus avoiding
a gap between last and first image and evenly
distributing the deformation of the whole
sequence by error propagation.

An example is given in Fig. 1 and 2 show-
ing a part of the Hradschin in Prague,
Czechia. The back-projection error of the
calibrated bundle is 6, = 0.16 pixels in the
given 2 Megapixel images. Several hundred
six-fold points have been computed. One
can see that the right angles in the center of
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the building have been derived very accu-
rately.

3 Planes and Images on Planes

We assume that an urban scene consists of
a considerable number of vertical lines. We
can thus orient the 3D Euclidean model ver-
tically based on the vertical vanishing point
derived from the vertical lines and the given
calibration information. The vertical van-
ishing point is robustly detected again using
RANSAC, the user only providing the in-
formation if the camera has been been very
approximately held horizontally or verti-
cally, thus, avoiding to mix up the vertical
with a horizontal vanishing point. After de-
tecting the vanishing point, we polish it by
means of least-squares adjustment. To make
the computation of the vertical direction
more robust, we compute vanishing points
for a couple, usually if possible five images,
derive from all of them the vertical direction
of the whole model employing the known
rotation of the individual camera, and then
finally take the medians in x- and y-direction
as the vertical direction.

The vertically oriented model is the basis
for the determination of vertical facade
planes once again using RANSAC. For this
step one threshold defining the maximum
allowed distance of points from the plane
has to be given by the user. This is due to
the fact that we could determine meaningful
thresholds for approximating planes from
the covariance matrices via model selection,
but this would only take into account the
measurement accuracy and not the seman-
tically important construction precision of
facade planes.

To make it more robust and precise, we
employ the covariance information of the
3D points computed by bundle adjustment
by not counting the number of inliers as for
standard RANSAC, but testing the distanc-
es to a hypothesized plane based on the
geometric robust information criterion —
GRIC (Torr 1997). Additionally, we check
if the planes are at least approximately ver-
tical and we allow only a limited overlap of
about five percent between planes. The latter

is needed, because of points situated on in-
tersection lines between planes.

From the parameters for the facade
planes as well as the projection matrices we
compute homographies between the planes
and the images. A mapping by a homogra-
phy H between homologous points x and x’
in homogeneous coordinates on a given
plane and the image plane of a camera, re-
spectively, is given by

X’ = Hx. 1)
The camera is parameterized as

P1 1P1 2P1 3p14
P21P22P23P24 (2)
P31P32P33P34

P =

and the plane, the points lie on, with the
four-vector

n=n"d" (3)

We parameterize the plane in 2D by setting
that component of the first three compo-
nents of the plane with maximum value to
zero. By this means we obtain the mapping
in the direction closest to the normal. We
index the maximum value with m and the
other two with jand k. Then H is determined
as (i€ 1,2,3)

H; Pij'nj P/
H=|H;| =Py Pu/m, | 4)
H;, Py-1, - Pi/m,,

For the actual mapping of images to a plane
one needs to know from which images a
plane can be seen. For it, the information
is employed, which 3D points have led to a
particular plane, as for the 3D points it is
known from which images they were de-
rived. The plane is thought to be visible from
the union of the sets of images of all 3D
points belonging to a plane. We compute an
average image as well as the bias in bright-
ness for each image in comparison to it, also
accounting for radial distortion.

The final step is the generation of facade
images if possible “cleaned” from artifacts
generated by occlusions. The basic informa-
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Fig. 3: 3D points, colored according to the pixels, facade planes and cameras (green pyramids;
cf. Fig.2) derived from the images given in Fig. 1 and the 3D model in Fig. 2.

Fig. 4: Facade image derived from the six images given in Fig. 1 — left: average; center: median;
right: consensus.

tion are the projected images normalized via
the determined biases in brightness. The
cleaning is done by two means, first by sort-
ing the (gray- or color) values and taking
the median and second by utilizing the basic
idea of BOHM (2004). The latter consists in
determining an optimum value by means of
the consensus between the values for a par-
ticular pixel. As BOHM (2004) we do not ran-
domly select the values as in RANSAC, but
we take the value for a pixel for each image
it can be seen from as estimate and then take
as the inliers all values which consent with

it. The final result is the average of the in-
liers.

Results for our running example are given
in Fig.3 and 4. From the former one can
see that the planes nicely fit to the points.
The latter shows the advantages of median
and consensus over simple averaging where,
e.g., the flag pole at the right hand side is
shown several times as a ghost image. The
different characteristics of median and con-
sensus are shown more in detail in the ad-
ditional example in the next section.
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4 Additional Results

We took a set of 29 uncalibrated images of
Plaza Real in Barcelona, Spain with a Sony
P 100 5 Megapixel camera. The basic idea
was to walk around the fountain in the cen-
ter of Plaza Real. A 3D model is computed
(cf. Fig. 5) with 6, = 0.18 pixels after bundle
adjustment. As we did not mark our posi-
tions when taking the images, the circle
around the fountain is more a spiral. Op-
posed to previous results published in
MAYER, we now could close the loop. The
right angles have been determined very well
in spite of the relatively large areas where
we could not match due to occlusions mostly
by the palm trees.

The facade image for the left facade in
Fig.5 derived from the ten images shown
in Fig. 6 is given in Fig. 7. First, the average
image shown at the bottom makes clear by
means of the circular streaks how large the
influence of radial distortion is for some of
the images. (Please note that the images with
the largest distortions look onto the plane

from the side, strongly amplifying the ef-
fect.) Overall, one can see that the average
is not acceptable. This is due to the ghost
images of the occluding objects, but also be-
cause of a not precise enough estimation of
the bias of the brightness between the aver-
age image and the individual images. The
latter stems from the unmodeled occlusions
which lead to estimating wrong biases from
pixels representing different objects. The lat-
ter problem could only be dealt with by ro-
bustly recursively estimating biases and oc-
cluding objects, which is non-trivial and on
our agenda for further research.

Opposed to the average, the median and
the consensus do much better, even though
both are not able to penetrate the vegetation
in many instances. If the vegetation is dense,
this is not possible at all, but the problem
could partly be alleviated by means of more
images from different positions. Concerning
median and consensus, there are only some,
yet characteristic differences. One of the lar-
gest can be seen left of the center. The first
leaf of the palm tree is mostly eliminated by

Fig.5: 3D points, facade planes, and cameras (medium sized circle around the fountain in the
center) derived from nothing but uncalibrated images, ten of them showing the facade on the left

hand side given in Fig.6.
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the consensus, but not by the median, as the
former has a weaker basic assumption and
can thus deal with more than 50 % of outliers.

In Fig.8 an additional example is pres-
ented generated from ninety images of the
Zwinger in Dresden. It shows shortcomings

of using only planes for modeling the sur-
faces. The left and the right part consist of
curved surfaces and the gates on the left and
the right side are highly 3D structured and
thus cannot be adequately modeled by
planes.

Fig. 6: Ten images of Plaza Real in Barcelona from which the facade images given in Fig.7 have

been derived.

o A S SR T e O S VS R . S MU T S s W, e T e B
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Fig.7: Facade image derived from the ten images given in Fig. 6 — top: consensus; center: median;

bottom: average.
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5 Conclusions

We have shown how combining projective
reconstruction with robust techniques and
bundle adjustment propagating covariance
information can be used to fully automati-
cally generate textured 3D models of urban
scenes from nothing but (possibly uncalib-
rated) perspective images also for larger

numbers of wide-baseline images. These still
incomplete 3D models can be the basis for
high quality visualizations. Though, at the
moment lots of additional manual efforts
are needed for a practically satisfying out-
come.

One way to proceed is to add detailed
geometry by employing semantic infor-
mation, e. g., by 3D extraction of the win-

Fig.8: 3D model of Zwinger, Dresden: 3D points and cameras in red — the 90 cameras form a
circle with two bulges on the left and the right side in the center. Top: view from top, bottom: view

from the side.
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dows on the facades (MAYER & REZNIK
2006).

We have experimented with plane sweep-
ing (WERNER & ZISSERMAN 2002), here based
on least-squares, to improve the plane para-
meters derived by RANSAC, but found that
for stronger occlusions it is difficult to esti-
mate the bias in brightness. Robust estima-
tion combining, e. g., consensus, with bias
determination could be a way to proceed.

We also want to make better use of the
information of the planes, e. g., by extending
and intersecting planes and checking the
newly created planes via homographies,
thereby closing gaps. We plan to employ the
intersection lines to improve the determina-
tion of the vertical direction. Finally, we
have started to experiment with the ap-
proach by SCHNABEL et al. (2006), which
allows to model point clouds by additional
shapes such as cylinders, spheres, and cones.
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