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Zusammenfassung: Berechnung der Fundamental-
und der essentiellen Matrix mittels Korresponden-
zen zwischen Wahrscheinlichkeitsverteilung statt
Punktkorrespondenzen. Traditionell werden zur
Bestimmung der Fundamental- bzw. essentiellen
Matrix Punktkorrespondenzen in Bildpaaren ge-
funden und auf deren Basis die Kamerageometrie
bestimmt. Die Schitzung der Geometrie ist gut
verstanden, versagt in der Praxis jedoch haufig.

Diese Arbeit verfolgt daher eine andere Stra-
tegie. Zu Beginn wird die Wahrscheinlichkeitsver-
teilung von Punktkorrespondenzen geschitzt, aus
der anschlieBend die Kamerageometrie bestimmt
wird. Dadurch ist der Schritt der Korrespondenz-
findung wesentlich vereinfacht, was allerdings zu
Lasten des Schitzprozess der Kamerageometrie
geht. Ein auf dieser Basis entwickelter Algorith-
mus bestétigt jedoch dieses Vorgehen in umfang-
reichen Untersuchungen.

Abstract: We suggest altering the fundamental
strategy in Fundamental or Essential Matrix esti-
mation. The traditional approach first estimates
correspondences, and then estimates the camera
geometry on the basis of those correspondences.
Though the second half of this approach is very
well developed, such algorithms often fail in prac-
tice at the correspondence step.

Here, we suggest altering the strategy. First, es-
timate probability distributions of corresponden-
ce, and then estimate camera geometry directly
from these distributions. This strategy has the ef-
fect of making the correspondence step far easier,
and the camera geometry step somewhat harder.
The success of our approach hinges on if this
trade-off is wise. We will present an algorithm
based on this strategy. Fairly extensive experi-
ments suggest that this trade-off might be profit-
able.

1 Introduction

The problem of estimating camera geometry
from images lies at the heart of both Pho-
togrammetry and Computer Vision. In our
view, the enduring difficulty of creating fully
automatic methods for this problem is due
to the necessity to integrate image proces-
sing with multiple view geometry. One is
given images as input, but geometry is based
on the language of points, lines, etc. Bridg-
ing this gap — using image processing tech-
niques to create objects useful to multiple
view geometry — remains difficult. In both
the Photogrammetric and Computer Vision
literature, the object at interface between
image processing and geometry is generally

correspondences, or matched points. This is
natural in Photogrammetry, because corres-
pondences are readily established by hand.
However, algorithmically estimating corres-
pondences directly from images remains a
stubbornly difficult problem.

One may think of most of the previous
work on Essential or Fundamental matrix
estimation as falling into one of two cate-
gories. First, there is a rather mature litera-
ture on Multiple View Geometry. This is
well summarized in HARTLEY & ZISSERMAN’S
recent book (HARTLEY & ZISSERMAN 2004),
emphasizing the uncalibrated techniques
leading to Fundamental Matrix estimation.
Specifically, there are techniques for esti-
mating the Fundamental Matrix from the
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minimum of seven correspondences (BAR-
TOLI & STURM 2004). In the calibrated case,
the Essential Matrix can be efficiently es-
timated from five correspondences (NISTER
2004). Given perfect matches, it is fair to
say that the problem is nearly solved.

The second category of work concerns the
estimation of the correspondences them-
selves. Here commonly a feature detector
(e. g. the Harris corner detector, HARRIS &
STepHENS 1988) is first used to try to find
points whose correspondence is most easily
established. Next, matching techniques are
used to find probable matches between the
feature points in both images (e. g. normal-
ized cross correlation, or SIFT features,
(Lowe 2004). These are active research
areas, and progress continues up to the pre-
sent.

Nevertheless, no fully satisfactory algo-
rithm exists. Current algorithms often suffer
from problems such as change in scale or
surface orientation (ScHMID et al. 2000).
Furthermore, there are many situations in
which it is essentially impossible to estimate
correspondences without using a higher-
level understanding of the scene. These in-
clude repeated structures in the image, the
aperture effect, lack of texture, etc. When
humans estimate correspondences, they use
this high-level information. Nevertheless, it
is unavailable to algorithms.

Research in multiple view geometry, of
course, has considered the difficulties in the
underlying algorithms for correspondence
estimation. As such, robust techniques such
as RANSAC (FiscHLER & BOLLEs 1981) are
traditionally used to estimate a camera geo-
metry from a set of correspondences known
to include many incorrect matches. These
techniques are fairly successful, but because
even ‘inlying’ correct matches include noise
there is a difficulty in discriminating be-
tween inlying matches with noise, and out-
lying, ‘wrong’, matches. When simulta-
neously adjusting the camera geometry, and
3-D points in a final optimization, bundle
adjustment methods frequently use more
sophisticated noise models which smoothly
account for error due to both noise, and
‘outlying’” matches (TRIGGS et al. 1999).

In this paper, we suggest that it is worth
stepping back and reconsidering if corre-
spondences are the correct structure to use
at the interface between image processing
and multiple view geometry. Point corre-
spondences are natural in Photogrammetry
because they are easily estimated by hu-
mans. Nevertheless they are very difficult to
estimate algorithmically. Here, we suggest
instead using correspondence probability dis-
tributions. We can see immediately that this
makes the image processing side of the prob-
lem much easier. If repetitive structure or
the aperture effect presents itself, it is simply
incorporated into the probability distribu-
tion. We will present a simple, contrast in-
variant, technique for estimating these cor-
respondences from the phase of tuned Ga-
bor filters.

The more difficult side of this strategy
concerns multiple view geometry. One must
estimate the camera geometry from only dis-
tributions of correspondence. As we will see,
one can quite easily define a probability for
any given camera motion, from only these
distributions of correspondence. We then
present a heuristic non-linear optimization
scheme to find the most probable geometry.
In practice, this space has a similar structure
to the least-squares epipolar error space
(OLIENSIS 2005), in that it contains relatively
few local minima.

1.1 Previous Work

Other work has asked similar questions.
First, there are techniques which generate
from images feature points, and local image
profiles, without estimating an explicit cor-
respondences (MAKADIA et al. 2005). These
techniques then find motions which are
compatible with these features, in the sense
that each feature tends to have a compatible
feature along the epipolar line in the second
image.

Other work has created weaker notions
of correspondences, such as the normal
flow. If a point is along a textureless edge
in one image, local measurements can only
constrain it to lie along the same edge in
the second image. This constraint is essen-
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Fig. 1: Correspondence Probability Distributions. Left: First image, with point in consideration mar-
ked. Center: Second image: Right: Probability distribution over the points in the second image,
with probability encoded as color.
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tially the normal flow, and algorithms exist
to estimate 3-D motion directly from it
(BropDskY et al. 2000). Though these tech-
niques will not suffer from the aperture ef-
fect, they cannot cope with situations such
as repeated structures in the images. It is
also important to notice that the normal
flow will give up information unnecessarily
at points which do not happen to suffer from
the aperture effect.

2 Correspondence Probability
Distributions

Given a point s in the first image, we would
like the probability that this corresponds
most closely to each pixel ¢ in the second
image. It is important to note that there is
no obvious way to use traditional matching
techniques here. Whereas traditional techni-
ques try to find the most probably point cor-
responding to s, we require the relative prob-
abilities of all points.

Our approach is based on the phase of
tuned Gabor filters. Let ¢, (s) denote the
phase of the filter with scale /and orientation
y at point s. Now, given a single filter, (/, y),
we take the probability that s corresponds
to a given point § to be proportional to

exp(—I[d,,(s) — ¢,.(DP) + 1 )

The notation [¢], here indicates taking the
principal angle of ¢, in the range from —n
to m. This is necessary to deal with phase
wrapping. Combining the probability dis-
tributions given by all filters then yields the
probability that s corresponds to ¢, which
we denote by p,(g).

py(@) o [ (exp (= [y, () — ¢, (D) + 1)(2)

Note, here that § corresponds to a particular
pixel in the second image. Since we are com-
puting probabilities over a discrete grid, we
approximate the probability that s corre-
sponds to an arbitrary point, having non-
integer coordinates, though the use of a
Gaussian function.

p,(q) oc o+ max p(@exp(—lg—4l)  (3)

Here, o represents the probability that the
information given by the Gabor filters is
misleading. This would be the case, for ex-
ample, were the point s to become occluded
in the second image. Notice that adding the
constant of o is equivalent to combining the
distribution with the ‘flat’ distribution in
which all points ¢ are equally likely. In all
experiments described in this paper, we have
used o = 1.

Correspondence distributions for several
images are shown in Fig. 2.

3 Essential and Fundamental
Matrix Estimation

Given the correspondence distributions, we
will define natural distributions over the
space of the Fundamental and Essential
Matrices. Because the space of these matri-
ces are of high dimension (7 and 5 respec-
tively), it is impractical to attempt to calcu-
late a full distribution, by sampling. It is
possible that future work will directly use
these distributions. Nevertheless, we use a
simple heuristic optimization to maximize
the probability in the Essential or Funda-
mental Matrix space. This makes it possible
to examine the behavior of these distribu-
tions more easily.

3.1 Fundamental and Essential
Matrix Probability

Given the correspondence distribution for
a single point s, p,(-), we define a distribu-
tion over the space of fundamental matrices.

p(F) o max NAC 4)

Thus, the probability of a given Fundamen-
tal Matrix Fis proportional to the maximum
probability correspondence compatible with
the epipolar constraint. Now, to use all cor-
respondence distributions, simply take the
product of the distributions given by each
point s.

5 q:q"Fs=

p(F)oc[] max p,(q) 5
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Substituting our expression for p (g) from
Equation (3), we obtain

p(F) o
I [oc + max maxp,(q) exp(—Ig—qP)
B q:q" Fs= q
(6)
Rearranging terms, this is
p(F) oc
I1 [oc +maxpy(¢) max exp(—|g—q[)
R q q:q"Fs=0
(7

Notice here, that we do not need to explicit-
ly find the point ¢g. Only required is
max,. - |q — q|. Notice that this is exactly
the minimum distance of the point ¢ from
the line Fs. Therefore, we can write the
probability of F in its final form.

p(F) o l_[ [m?X (@) exp(—(q" 1y + 06]
®)

Here, [ ;, is the line s normalized such that
"l gives the minimum distance between
r and the line Fs on the plane z =1. If F;
is the ith row of F, then

Fs
I(F,s) B e ]
I/ (Fys)* + (Fys)

When searching for the most probable F, a
parameterization of the fundamental ma-
trices is required. We found it convenient to
use three parameters f, p,, and p, represent-
ing the focal length, and x and y coordinates
of the principal point. Next, keeping the
magnitude of the translation vector ¢ fixed
to one, we took two parameters to para-
meterize its axis and angle. Finally, we used
3 parameters to represent the rotation vec-
tor w. This corresponds to a rotation of an
angle |w| about the axis w/|m|.

)

S 0 p,

K=[0 f p, (10)
0 0 1

E = [1] x R(w) (11

F=KTEK™! (12)
Notice there are a total of 8 free parameters,
despite the fact that the Fundamental Ma-
trix has only 7 degrees of freedom. Though
this presents no problem to the estimation
of F, it does mean that an ambiguity is pre-
sent in the underlying parameters.

To extend this to the calibrated case, we
take K to be known. Thus, there are now 5
free parameters: 2 for the translation 7, and
3 for the rotation w. It would be trivial to
extend this to the case that only certain ca-
libration parameters were known, or to in-
clude a constant for camera skew.

3.2 Optimization

To explore the behavior of the probability
distributions over the Fundamental and Es-
sential Matrices, we will use a heuristic op-
timization to try to find arg max,p(F) and
arg max,p(E), respectively. The optimi-
zation proceeds as follows: First, select N
random points in the Fundamental or Es-
sential matrix space. Evaluate p(E) or p(F)
at each of these points. Next, take the M
highest scoring points, and run a nonlinear
optimization, initialized to each of these
points. We have used both Simplex and
Newton’s type optimizations, with little
change in performance. The final, highest
scoring point is taken as the max.

For the calibrated case, we have found
that using N = 2500 and M = 25 was suf-
ficient to obtain a value very near the global
maximum in almost all cases. As in the case
for the standard least-squares error surface
(OLIENSIS 2005, TIAN et al. 1996), there are
generally several, but only several local mi-
nima. Usually, a significant number of the
nonlinear searches lead to the same (global)
point.

In the uncalibrated case, we used N =
M = 100. (Thus searches are taken from
100 random points.) We found that it was
neces-sary to increase M to 100 to obtain
reasonable certainty of obtaining the global
maximum. At the same time, we found that
increasing N did not improve results, and
may even be counterproductive. Still, the
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space of p(F) appears to have more local
minima, and even this increased method
does not always appear to achieve the global
maximum.

4 Experiments

To analyze the performance of the frame-
work, we prepared three different 3-D Mo-
dels with the POV-Ray software. Each
model was chosen for its difficulty, including
repetitive structure, lack of texture, or little
image motion. The use of synthetic models
makes the exact motion and calibration pa-
rameters available. For each model, we gen-
erated two different image sequences, one
with a forward motion, and one with a mo-
tion parallel to the image plane.

For each image pair, 10,000 correspon-
dence probability distributions were created.
Next, the calibrated and uncalibrated algo-
rithm were both run across a range of input
sizes. For each input size, 100 random sub-
sets of the correspondences were generated,
and the algorithm was run on each input.

In the calibrated case, the measurement
of error is simple. Let the true translation
vector be #,, normalized so that |7,] = 1. Let
the vector parameterizing the true rotation
matrix be w,. The error metrics we use are
simply the Euclidean distance between the
estimated and true motion vectors, |7 — ],
and | — w,| respectively. For each input
size, means are taken over the errors for all
resulting motion estimates.

In the uncalibrated case, we must measure
the error of a given fundamental matrix F.
Commonly used metrics such as the Frobe-
nius norm are difficult to interpret, and
allow no comparison to the calibrated case.
Instead, we use the known ground truth cali-
bration matrix K to obtain £ (HARTLEY &
ZISSERMAN 2004).
E=K'FK (13)
Next, Singular Value Decomposition is used
to decompose E into the translation and
rotational components, E = [tf] X R(w).
From this, it is simple to recover the under-
lying motion parameters, ¢ and w. The error

is then measured in the same way as the
calibrated case.

Results for the ‘Cloud’, ‘Abyss’, and ‘Bis-
cuit’ models are shown in Figs. 2, 3, and 4
respectively. Several observations are clear
from the data. First, motion estimation is
always more accurate when the epipole is
in the middle of the image than when it is
parallel to it. Surprisingly, perhaps, neither
the calibrated nor uncalibrated approach
clearly outperforms the other. The perform-
ance of the uncalibrated approach relative
to the calibrated approach is better when
the epipole is further from the image.

Two frames from the ‘Castle’ sequence,
along with the epipolar lines are shown in
Fig. 5. Two frames from the popular ‘Ox-
ford Corridor’ sequence are shown in Fig. 6.
In both cases, approximately 2000 corres-
pondence distributions were used. Though
no ground truth calibration or motion is
available, the reader can observe the close
correspondence among epipolar lines.

The running time of the algorithm is
dominated by the time to generate corres-
pondence distributions. In practice, the mo-
tion estimation step runs on the order of a
minute on a modern laptop.

5 Conclusions and Future Work

With real cameras, neither the fully calibrat-
ed, nor fully uncalibrated approach is fully
realistic. In practice, one has some idea of
the calibration parameters, even if only from
knowledge of typical cameras. At the same
time, even when a camera is calibrated, the
true calibration is not found exactly. It
would be quite natural to extend this paper’s
work to create a unifying approach between
the two cases.

Write the prior distribution over the focal
lengths by p( f). Similarly, we can write the
prior distributions of the principal point by
p(,.p,). Now, we can make the Bayesian
nature of this approach more explicit by
writing Eqn. 14 as

max
K TEK 's=

PE|f.peD,) o€ v Ra (14)
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"Cloud" model, t=[0-10]", ©=[0-.0350]" "Abyss" model, t=[100]", ©=[00.175]"
.

error
L
*
error
]
[

—_—It- tol calibrated —_—It- tol calibrated
107 — - tol uncalibrated N — - tol uncalibrated
—&— o - o calibrated —&— o - o calibrated
—+—lo- ogluncalibrated —+—lo- ogluncalibrated
10-4 ‘1 ‘2 ‘3 10-‘ ‘1 ‘2 ‘3
10 10 10 10 10 10

correspondence probability distributions correspondence probability distributions

B " _ T T
“Cloud" model, t=[001]", ©=[0-.0350]" _ "Aoyssmodel 1=[001], ©=[00-175]

0 ' T B S 10° ]
—_—It- tnl calibrated

— It tol uncalibrated
—&—lo- o calibrated

~ _ i 10
107k —— o u)DI uncalibrated|

5 s
5 107 ] st ]
. E—— P tol calibrated
10°F 4 1070 gt- t,l uncalibrated E
—&— lo- o calibrated
—+—lo- ogluncalibrated
-4
” . . . 10 : ' '
10 o 7 o 10' 10° 10°

correspondence probability distributions correspondence probability distributions

Fig. 2: ‘Cloud’ model, and mean errors for the ~ Fig-3: "Abyss’ model, and mean errors for two
two different motions. different motions.



32 Photogrammetrie « Fernerkundung « Geoinformation 1/2007

"Biscuit" model, t=[0 1 O]T, ® = [0-0.047 —0,017]T

error
!

—+— I't- t ] calibrated
——— I't— t | uncalibrated

—&—lo- o calibrated

—+—lo- ol uncalibrated

1 2 3

10 10
correspondence probability distributions

10

"Biscuit' model, t=[001]", =[0-0.017 0.047]"

error
S

—+— I't- t l calibrated
——— I't= t | uncalibrated

—&— o~ o calibrated 8

—+—lo- ol uncalibrated

10 :
1

. .
10 10° 10°
correspondence probability distributions

Fig. 4: ‘Biscuit’ model, and mean errors for two
different motions.

Fig.5: Two frames from the ‘Castle’ sequence,
with epipolar lines overlaid.

Now, in the optimization step, instead of
seeking

arg max p(F), (15)
F

the optimization would be over

arg maxy ., , P(E|f.p..p,) p(f)pPps.p,)

(16)
In this way, in one step, the most likely ca-
libration parameters would be found as well
as the most likely motion. This could be par-
ticularly useful in the common case that the
camera calibration is approximately known,
but the focal length changes, perhaps due
to change of focus.
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Fig. 6: Two frames from the ‘Oxford Corridor’ se-
quence, with epipolar lines overlaid.
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