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Multitemporal Hyperspectral Data Analysis for Regional
Detection of Plant Diseases by using a Tractor- and an

Airborne-based Spectrometer

— Case Study: Sugar beet disease Rhizoctonia solani —
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Summary: Every year sugar beet diseases cause
lower sugar beet yields and qualities compared
to the average. To detect and regionalize this mat-
ter of fact, high resolution field, tractor and air-
borne hyperspectral data were used to recognize
a fungal sugar beet disease (Rhizoctonia solani
var. betae) as an example.

For the airborne part of the study, multitem-
poral hyperspectral remote sensing data was pro-
vided by the Airborne Visible/ Near Infrared Imag-
ing Spectrometer (AVIS), which is operated by
the Ground Truth Center Oberbayern (gtco, Ger-
many). Additionally, tractor based multitemporal
hyperspectral reflection data provided by the
Ground-operated Visible/Near Infrared Imaging
Spectrometer (GVIS) was used to validate the AVIS
data and to compare the classification results.

To indicate the difference between healthy and
unhealthy plants a supervised knowledge-based
classification approach was used. Beside the usage
of multitemporal field based spectroradiometer
data, which was collected with the FieldSpec Hand-
held (ASD) and which was used for the super-
vised knowledge based classification of the trac-
tor- and airborne based datasets, this approach
included the elaboration of the reflection results
with hyperspectral vegetation indices to detect the
sugar beet disease. Therefore, the two multitem-
poral tractor- and airborne based datasets were
analysed by calculating the Optimized Soil-Ad-
Justed Vegetation Index (OSAVI), which is a hy-
perspectral vegetation index. Finally, the results
were classified into nine vitality classes.

This paper presents the evaluation of the gen-
erated multitemporal classifications and discusses
the possibility of detecting and regionalizing
sugar beet diseases with hyperspectral data and
methods.

Zusammenfassung: Multitemporale Analyse hy-
perspektraler Daten zur regionalen Verortung von
Pflanzenkrankheiten unter Verwendung eines trak-
tor- und flugzeuggestiitzten Spektroradiometers.
Fallbeispiel: Zuckerriibenkrankheit Rhizoctonia
Solani. Im Vergleich zu unbefallenen Zucker-
ritbenschldgen verursachen Krankheiten auf den
Feldern jedes Jahr erhebliche Ernteschiden und
fliihren so zu geringen Ertrdgen. Um kranke Be-
reiche der betroffenen Schlige zu verorten und
zu regionalisieren, wurden im Rahmen der hier
vorgestellten Studie hoch auflésende hyperspekt-
rale Feld-, Traktor- und Flugzeugdaten genutzt.
Die Ausfithrungen dieses Beitrags beschrinken
sich auf die Zuckerriibenpilzkrankheit Rhizoc-
tonia solani var. betae.

Die multitemporalen hyperspektralen Flug-
zeugdaten wurden durch das Airborne Visible/
Near Infrared Imaging Spectrometer (AVIS) er-
hoben, das von dem Ground Truth Center Ober-
bayern (gtco, Germany) betrieben wird. Zusétz-
lich dazu sind multitemporale hyperspektrale,
traktorgestiitzte Reflexionen durch das Ground-
operated Visible/Near Infrared Imaging Spec-
trometer (GVIS) gemessen worden, um die AVIS
Daten zu validieren und um die Klassifikationser-
gebnisse zu vergleichen.

Fir die Analyse der Unterschiede zwischen
gesunden und infizierten Zuckerriiben wurde ein
iiberwachter wissensbasierter Klassifikationsan-
satz gewihlt. Neben der Verwendung von multi-
temporalen hyperspektralen Felddaten, die mit
Hilfe des FieldSpec Handheld (ASD) Spektro-
radiometers erhoben und fiir die Klassifikationen
der beiden traktor- und flugzeuggestiitzten Daten
verwendet wurden, beinhaltet dieser methodische
Ansatz auch die Darstellung der Reflexionen un-
ter Verwendung von hyperspektralen Vegeta-
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tionsindizes, um die Zuckerrubenkrankheit
rdumlich zu verorten. Dafiir wurden die Daten-
sitze aufbereitet und der hyperspektrale Opti-
mized Soil-Adjusted Vegetation Index (OSAVI)
berechnet. In einem letzten Analyseschritt wur-
den die Ergebnisse in neun Vitalitdtsklassen klas-
sifiziert.

Dieser Beitrag zeigt die Auswertung der erzeug-
ten multitemporalen Klassifikationen und dis-
kutiert die Moglichkeit der rdumlichen Verortung
und Regionalisierung von Zuckerriibenkrank-
heiten unter Verwendung hyperspektraler Sys-
teme und Methoden.

1 Introduction

For the majority of the European citizens,
the availability of daily food with high qual-
ity standards is common. Among other
things, this matter of fact attributes to the
demands of the legislator and the market,
who claim quality control and (geo-) tracea-
bility of all processes within the food supply
chain. With respect to this background, a
GIS based Management Information Sys-
tem for Sugar Beet Companies was develop-
ed (Sugar Beet Management Information
System = SuMIS), which includes geo-
graphical, attribute and remote sensing data
(LauDIEN & DovruscHiTz 2004, LAUDIEN et
al. 2004a; LAUDIEN et al. 2005a, b, ¢). There-
fore, a field based approach was chosen to
collect spatial and alphanumeric informa-
tion of every production step. This enables
SuMIS to trace and track in a field based
way — from the soil sampling to the beet de-
livery (“from field to factory’’) — and meets
the above mentioned requirements.

One objective of SUMIS is to detect sugar
beet diseases by using multitemporal hyper-
spectral remote sensing data provided by an
airborne-, tractor- and handheld spec-
troradiometer. (LAUDIEN et al. 2003,
LAUDIEN et al. 2004b, ¢, ¢). Two different
hyperspectral sensor systems were used to
detect the sugar beet disease Rhizoctonia
solanivar. betae. This fungal disease rots the
beet roots and also causes a weathering of
the foliage (RIECKMANN & STECK 1995). Rhi-
zoctonia solani attacks the beet in the middle

of its vegetation period. BUTTNER et al.
(2002) estimate the affected area of Ger-
many with 10,000 hectares already in 2001.
Studies of German sugar beet seed com-
panies, published via internet (SYNGENTA
2000), strengthen the statement of Biittner
and his colleagues. They re-evaluated the
disease area of Germany in 2002 and
reached the conclusion that the number of
the affected fields was nearly reduplicated
(ca. 20,000 hectares).

Beside the common survey which is car-
ried out by professionals in several field
campaigns, the usage of remote sensing sys-
tems, and integrated image analysis can help
to recognize, detect and regionalize growth
anomalies of large areas (LILLESAND et al.
2004).With this matter of fact, the increas-
ing importance of detecting and locating
Rhizoctonia solani is not unusual.

For this purpose a method has been de-
veloped to visualize diseased and healthy
parts of a sugar beet field. Thereby, a knowl-
edge based, multitemporal, hyperspectral
approach was used to calculate a sensitive
vegetation index.

2 Material

For agricultural applications, the analysis of
airborne, field- and satellite-based hyper-
spectral reflectance data is of increasing im-
portance (CLEVERS & JONGSCHAAP 2001).
Consequently, in this study three hyperspec-
tral devices collected reflectance data to de-
tect the disease. In contrast to multispectral
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remote sensing the hyperspectral measure-
ments acquire very narrow spectral bands
throughout the visible, near infrared and
mid-infrared portions of the spectrum.
Therefore, the analysis of hyperspectral
datasets offers more opportunities com-
pared to multispectral ones. The used three
sensors measured the spectral reflectance be-
tween the visible and the near infrared part
of the electromagnetic spectrum by using
several channels and a very narrow spectral
interval. With their high spatial resolution,
they were able to detect different crop vital-
ities very detailed.

2.1 Field survey with DGPS

Differential GPS-data, containing the dis-
eased polygon boundaries with at least 25
percent infected area, were collected at se-
lected fields of the study area to validate the
multitemporal hyperspectral classification.
For this purpose a “Trimble 4gGPS® 132”
twelve channel receiver was connected to a
SOLO CE device to store the incoming data.
OmniSTAR differential GPS service was
used to correct the data online.

The infected areas of the chosen fields
were surveyed during a field campaign in
early September 2003. In 2003, the fields of

S

i

the whole study area showed single plant in-
fection because of very dry weather condi-
tions. As the regular symptoms of Rhizoc-
tonia solani are characterized by circular in-
fection concerning several sugar beet plants,
it was almost impossible to collect polygon
data via GPS. Therefore, polygons were
only stored with at least 25 percent infection.

2.2 Spectral reference measurements
with ASD-FieldSpec

To detect the spectral differences between
healthy and diseased sugar beets, the hyper-
spectral spectroradiometer FieldSpec Han-
dHeld by ASD (Analytical Spectral Devices)
was used to collect field data at an artificial
inoculation trial (LAUDIEN et al. 2004c,
LAUDIEN et al. 2005d). This reflectance data
was archived in a web based spectral library
(LAUDIEN et al. 2006).

The ASD handheld spectroradiometer
has a wavelength range of 325nm to
1075nm with an interval of 1.6nm and a
viewing angle of 25 degrees. For further
FieldSpec details see: http://www.asdi.com

To archive a useful spatial ground reso-
lution, an additional technical device was
developed and constructed in cooperation
with the technical department of the Univer-

Fig.1: Designed measurement device for collecting hyperspectral field data.



220

Photogrammetrie « Fernerkundung « Geoinformation 3/2006

sity of Hohenheim. Fig. 1 shows the design
of the measurement device and a picture of
the field campaign with the equipment.
Three tent-poles, which were combined with
moveable joins, formed the frame of the de-
vice. The construction was designed to put
the measurement equipment to the desired
height above ground. A mounted spirit-level
guaranteed vertical nadir measurements.
The spectroradiometer was located two
metres above the foliage. The measuring
viewing angle (o) of 25 degrees caused a Field
of View (4) of 0.62 m? with a Field of View
radius () of 44cm (see equations 1 and 2).

—prtan( (2)* 1
r= an 5 @ ()

A=T0%p 2)

To compare healthy and infected sugar beets
of the selected fields with the ones of the
artificial inoculation trial, spectroradio-
meter measurements were made every 40 cm
per row and were averaged for each treat-
ment plot. The spots were located with a
low cost GPS solution (Garmin III Plus)
coupled to Software from ESRI (ArcPad,
installed on a Compaq iPAQ CE computer)
(LAUDIEN et al. 2003, LAUDIEN et al. 2004c).

2.3 Airborne Visible/Near Infrared
Imaging Spectrometer (AVIS)

Beside the field measurements provided by
the FieldSpec Handheld Pro, monthly air-
borne hyperspectral measurements were
taken in the period of June 2003 to Septem-
ber 2003 to regionalize the ground based
data. For this purpose, hyperspectral re-
mote sensing data was provided by the ““Air-
borne Visible/Near Infrared Imaging Spec-
trometer” (AVIS), which is operated by the
Ground Truth Center Oberbayern (gtco).
The hyperspectral AVIS sensor measures
spectral reflectance between 400 and 845 nm
by using 63 channels with a spectral interval
of 9nm. At a spatial resolution of 4 meters,
the AVIS sensor is able to detect crop vi-
talities very detailed (MAUSER & OPPELT
2000).

2.4 Ground-operated Visible/Near
Infrared Imaging Spectrometer
(GVIS)

In contrast to the AVIS Sensor, the
“Ground-operated Visible/Near Infrared
Imaging Spectrometer” (GVIS) is a ground-
based system which allows reflectance data
acquisition at field sites by using a tractor
asa carrier platform. Besides the flexible and
cost-efficient use of GVIS another advan-
tage of the system is the possibility to sim-
ultaneously record the reflectance of a ref-
erence panel due to a newly developed fiber-
optic system. The GVIS sensor collects spec-
tral reflectance data between 380 to 860 nm
by using 63 spectral bands. GVIS is mount-
ed 2m above the foliage and each of the
16 lenses has a viewing angle of 25°
(=IFOV of 0,9m per lens). A custom re-
cording fiber-optic system which consists
these 16 lenses enables the simultaneous per-
pendicular recording of up to 12m across
the driving direction of the tractor (KLOTZ
et al. 2003).

3 Methods

The red and near infrared parts of the re-
flectance spectra are important for agricul-
tural applications (KUMAR et al. 2001). The
significant difference of the reflectance at the
red portions of the spectra compared to the
near-infrared ones can be used to predict ve-
getation conditions (LILLESAND et al. 2004).
DockTeR et al. (1988) and LicHTI et al.
(1997) showed in their hyperspectral studies
the spectral differences in winter wheat and
sugar beets.

Hyperspectral vegetation indices (HVI)
are calculated, by using red and near-in-
frared reflectance (APAN et al. 2003, LiL-
LESAND et al. 2004). The HVI values are sig-
nificantly correlated to the vitality of the de-
tected plants. In this study, the Optimized
Soil-Adjusted Vegetation Index (OSAVI) of
RoONDEAUX et al. (1996) was modified and
applied to analyse the multitemporal AVIS
and GVIS datasets (see equation 3—5). The
index was chosen to be the best indicator
of the differences between healthy and un-
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healthy sugar beets. The equations 4 and 5
present the modified OSAVI for the AVIS/
GVIS data.

R800 — R670
OSAVI = 3)
R800 + R670 +0.16

where

R800 = reflectance at 800 nm [%)]
R700 = reflectance at 670 nm [%)]

OSAVI, s = @)
AVIS_channel55 — AVIS_channel37
AVIS_channel55 +AVIS_channel37+0.16

where

AVIS_channel55 = reflectance at 804.62 nm [%]
AVIS_channel37 = reflectance at 673.38 nm [%]

OSAVlgys = ®)
GVIS_channel67 — GVIS_channel35
GVIS_channel67 + GVIS_channel35+ 0.16

where

GVIS_channel67 = reflectance at 799.69 nm [%]
GVIS_channel35 = reflectance at 670.83 nm [%]

The spatial analysis as well as the index cal-
culation and classification were accom-
plished by using the GIS Software Arc-
GIS™ 8.3 by ESRI®.

In a first analysis step, the above charac-
terised index was calculated for the four in-
put datasets which were provided by each
of the two systems (GVIS and AVIS). Fur-
thermore, the OSAVTI of infected sugar beets
was identified by using the FieldSpec data
of June 25™, July 30", August 27" and Sep-
tember 19" (see Tab. 1).

The flow chart of Fig. 1 shows the devel-
oped and used knowledge based approach.
In a first analysis step, the OSAVI (which
is described in equation 3) was calculated
for each monthly GVIS and AVIS scene.
The result of that procedure was an
“OSAVIimage”. After that, the given Field-
Spec OSAVI values of the inoculation trial
were used as an input threshold for the

Tab.1: Index minima (OSAVI) of the artificial in-
oculation trial (collected with the FieldSpec) at
the four GVIS/ AVIS collecting dates.

GVIS/AVIS Minimum value
collecting date (OSAVI)
06/252003 0.600
0730/2003 0.520
08/27/2003 0.405
09/19/2003 0.430

analysis to mask most of the abiotic growth-
anomalies.

This enabled the generation of four quasi
binary images (“OSAVI Clips”). The
“OSAVI Clip” image only consisted of two
values: 1 and “no Data” (“no Data” = no
pixel value). Pixels, which show higher
values than the threshold (see Tab.1) re-
ceived value 1, all others got the value “‘no
Data”. The clipping procedure calculated
the “OSAVI biotic” image by multiplying
the four “OSAVI images” by the four
“OSAVI Clips”. With this procedure, the
results contained only the pixels, which
showed higher values than the index mini-
ma. Additionally, the majority of unwanted
field border effects were reduced by assign-
ing the value “‘no Data”.

Considering the hypothesis that the Field-
Spec threshold indicated the minimum re-
flectance of infected sugar beet leaves at a
specific collecting date, four raster images
could be generated (OSAVI biotic) which
did not contain most of the abiotic pa-
rameters anymore. After creating these four
“OSAVIbiotic” images they were combined
by using the “add” tool of the ArcGIS™
Raster Calculator. This algorithm only al-
located OSAVI values to these pixels which
did not contain the value “‘no Data” in one
or more of the four “OSAVI biotic” images.
The pixels which showed the value “no
Data’ in one or more of the “OSAVI biotic”
images received the value “no Data”. The
result of this procedure was a multitemporal
HVI image (OSAVI multi).

In the last step the “OSAVI multi” image
was classified into nine vitality classes by us-
ing the “Quantile Classification Method™ of
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Fig. 2: Knowledge based multitemporal analysis method (note: the threshold values of the clip
procedures are choosen out of Tab. 1, figure = exemplarily for the AVIS data) (LAUDIEN et al. 2004c).
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ArcGIS™ Spatial Analyst. Additionally,
the GPS polygons of the field campaign were
added to the ArcGIS™ 8.3 project as an
overlay layer, to validate and compare the
multitemporal classification.

4 Results

Fig. 2 shows the above described knowledge
based hyperspectral analysis method con-
sidering the scene of June as an example.
After calculating the OSAVI for all pixels,
a binary image was produced. This clipped
image included all pixels with higher values
than the specific threshold of the collecting
date. The OSAVI biotic image of June was
calculated by multiplying the “Clip” by the
“OSAVI June” image.

Figs.3 and 4 present the multitemporal
classification results of two selected fields
(see methodological approach shown in
Fig. 1 for details). According to the leaf vi-
tality of sugar beets, the values of the cal-
culated OSAVI were increasing with heal-
thier and decreasing with unhealthier plant
conditions. The multitemporal images were
classified into nine vitality classes. Low in-
dex values (healthy plants) are displayed in
cold colours (blue, green). High index values
(unhealphy plants) were associated with
warm colours (yellow, orange, red). Signifi-
cant differences concerning plant vitalities
within the fields can be identified. By using
the above described knowledge based clas-
sification approach most of the abiotic fac-
tors (field border effects, bare soil, etc.) were
clipped in an early stage of the analysis.
Therefore, the multitemporal results show

many unclassified areas within the two
fields.

The overlay of the GPS polygon layer
confirms the difficulty of surveying single in-
fected plants within a field. The stored poly-
gons including at least 25 percent infected
sugar beets do not match the spatial dis-
tribution of the remotely sensed uninfected
plants very detailed.

The area of ““no Data’ in the western part
of the southern field (see Fig. 2) comes from
the incomplete AVIS dataset of July. As
there occurred sensor problems during col-
lecting the reflectance data, the “flight-
stripe”” had to be cut off. Hence, the multi-
temporal algorithm assigned “no Data” for
that region of the field. In contrast to the
tractor based GVIS system a major advan-
tage of AVIS is its very time-efficient man-
ner of collecting reflectance data of a large
area. The GVIS device can only be used to
record data of small areas (field size). But
as the spatial resolution of GVIS is much
higher than the one of the AVIS the classi-
fication result is more detailed. Therefore,
smaller infected areas can be differentiated
a lot better.

Fig.3 presents that advantage of the
GVIS system. Compared to the AVIS clas-
sification the one of GVIS shows more
abiotic field border effects. That results in
much lower classification accuracy. Impre-
cise calibrations of the two systems by gtco
(AVIS, GVIS) caused different reflection
value ranges and caused these hardly com-
parable classification results. Nevertheless,
the advantages of the used two hyperspec-
tral devices are obvious.

Fig. 3: Knowledge based approach considering the image of June as an example.



Photogrammetrie ¢« Fernerkundung ¢ Geoinformation 3/2006

M

Fig. 4: Multitemporal AVIS classification result and GPS-polygon overlay with at least 25% infected
area (note: GPS measurements were only taken at one field).
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Fig. 5: Multitemporal GVIS classification result and GPS-polygon overlay with at least 25 % infected
area (note: GPS measurements were only taken at one field).
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Both multitemporal classifications (see
Figs. 2 and 3) show significant differences in
plant vitalities within the fields under inves-
tigation. In combination with the DGPS
measurements and the knowledge of the dis-
ease (disease stages, dispersion, etc.) the hy-
perspectral results can be used to detect, dif-
ferentiate and regionalize healthy and dis-
eased sugar beets.

Discussion

In this study, an airborne multitemporal hy-
perspectral remote sensing dataset was clas-
sified on the basis of hyperspectral field data
by using a hyperspectral vegetation index.
In contrast to the conventional sugar beet
disease survey, shape and structure of the
infected areas within the selected fields could
be spatially identified by using a multitem-
poral knowledge based classification ap-
proach.

Field based hyperspectral measurements
and a tractor and an airborne hyperspectral
sensor were used to detect sugar beet reflec-
tance. Compared to satellite based systems,
tractor and airborne platforms are more
flexible concerning collecting date, repeti-
tion rate and weather conditions.

In general, the immense advantage of a
hyperspectral device is its very high spectral
resolution. The possibility of analysing
datasets by using hyperspectral vegetation
indices for the detection of plant vitalities
instead of common multispectral ones —1i.e.
the OSAVI (which was used in this study)
or the hyperspectral index of GITELSON et
al. (1996) — offers more opportunities for ag-
ricultural applications (APAN et al. 2003).
The mathematical possibilities of band cal-
culations and combinations for the creation
of new HVI are disproportionately en-
hanced. In the beginning of the GVIS and
AVIS data analysis for this study, the
calculation and interpretation of several
HVI resulted in using the OSAVI because
of its low sensitivity concerning bare soil
and other abiotic parameters. Further-
more, the OSAVI showed a high range be-
tween values of infected and healthy sugar
beets.

Beside the data analysis of the tractor and
airborne sensor, a hyperspectral library was
generated by using weekly field based reflec-
tance data of the artificial inoculation trail
which were collected with the FieldSpec
Handheld (LAUDIEN et al. 2005d). This web
based spectral library contains the reflec-
tance characteristics of the sugar beet dis-
ease Rhizoctonia solani and could be used
as a reference for the regionalization. As the
infection of the disease and its outbreak
were not typical in 2003 and the spatial res-
olutions of the input datasets were too low
for detecting single affected plants with a sig-
nificant accuracy, the D-GPS polygon
measurements showed not the quality of
those having been collected in previous
years. Circular affected areas within the se-
lected fields did not occur in 2003. This rea-
son was reasonable for the above described
low significance. Furthermore, “mixed pixel
phenomena’s” within the GVIS and AVIS
scenes covered the unusual situation of
2003, too.

Conclusions

Monitoring plant diseases during the circle
of field production is one main objective
within the food supply chain. Therefore,
modern computer based Decision Support
Systems (DSS) should include tools to detect
and regionalize such plant conditions. Fur-
thermore, demands of the EU market and
the agricultural policy concerning food
quality and documentation push the devel-
opment of computer based Geographical
Information Systems (GIS), which meet
these requirements. The presented disease
detection and regionalisation approach is
part of a developed GIS-field based Sugar
Beet Management Information System
(SuMIS) (LAUDIEN et al. 2004a, LAUDIEN &
DoruscHITZ 2004, LAUDIEN et al. 2005a, b,
¢). SuMIS contains several types of geo-data
which were collected in a local pilot region to
fulfil the qualifications of a functional field
based GIS. It includes — beside many other
important tools — the visualisation, the docu-
mentation and the detection of all processes
within a cultivation year of sugar beets.
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