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Cooperative Disparity Estimation and its Improvement
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Summary: ZITNICK & KANADE (2000) proposed
a cooperative approach for disparity estimation
from stereo imagery based on support and inhi-
bition in three-dimensional (3D) disparity space.
We describe this approach and show how a signi-
ficant improvement over the results of the evalua-
tion reported for (Z1TNICK & KANADE 2000) in
(SCHARSTEIN & SzELISKI 2002) can be obtained
by several means. The results of the evaluation
of our approach are in the upper third in the
online version of (SCHARSTEIN & SZELISKI 2002),
while the numerical complexity compares fa-
vorably with other approaches. We have analyzed
the different means for improvement including
their performance gain. They comprise symmetric
support, the combination of absolute differences
and (normalized) cross-correlation weighted by
the strength of the horizontal gradient, the use
of auto-correlation to estimate the significance of
a matching score, the preference for small dispa-
rities to obtain more meaningful results for occ-
luded regions, and the enforcement of the align-
ment of disparity and image gradient. The para-
meters of these means are tuned with respect to
given data sets. However, results using the same
set of parameters with other images confirm, that
our implementation is applicable to a wide range
of imagery.

Zusammenfassung: Kooperative Disparitditsschiit-
zung und ihre Verbesserung. ZITNICK & KANADE
(2000) schlugen einen kooperativen Ansatz fiir die
Disparititsschiatzung aus Stereobildern basierend
auf Unterstiitzung und Hemmung im dreidimen-
sionalen (3D) Disparitdtsraum vor. Dieser Ansatz
wird hier beschrieben und es wird gezeigt, wie
durch verschiedene MaBnahmen eine signifikante
Verbesserung gegeniiber den Ergebnissen der
Evaluierung erzielt werden kann, die fiir (Z1TNICK
& KANADE 2000) in (SCHARSTEIN & SZELISKI 2002)
dargestellt wurden. Die Ergebnisse der Evaluie-
rung des verbesserten Ansatzes befinden sich im
oberen Drittel in der online-Version von (SCHAR-
STEIN & SzELISKI 2002), wohingegen die numeri-
sche Komplexitit im Vergleich zu anderen Ansit-
zen vorteilhaft ist. Die verschiedenen MaBnah-
men wurden mit besonderem Schwerpunkt auf
der Verbesserung der Leistungsfihigkeit analy-
siert. Sie umfassen symmetrische Unterstiitzung,
die Kombination von absoluten Differenzen und
(normalisiertem) Kreuzkorrelationskoeffizienten
gewichtet mit der Stirke des horizontalen Gra-
dienten, die Nutzung von Autokorrelation, um
die Signifikanz einer Zuordnungsstarke zu schét-
zen, die Bevorzugung von kleinen Disparititen,
um fiir verdeckte Regionen sinnvollere Ergebnis-
se zu erzielen, und zuletzt die Forcierung der glei-
chen Lage von Disparitits- und Bildgradienten.
Die Parameterwerte der MaBnahmen wurden auf
gegebene Datensitze abgestimmt. Ergebnisse mit
anderen Bildern, die denselben Satz von Parame-
terwerten verwenden, zeigen jedoch, dass die vor-
liegende Implementierung fiir eine groBe Band-
breite von Bildern geeignet ist.
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1 Introduction

Image pairs are often “normalized” before
dense matching by means of epipolar re-
sampling (McGLONE et al. 2004). Epipolar
lines become the rows of the resampled ima-
ge, meaning that only horizontal x-paral-
laxes termed ‘‘disparities’” remain. In com-
bination with the orientation and calibra-
tion of the cameras they alone determine the
distances of the corresponding points from
the cameras. The elimination of y-parallaxes
allows for simplified matching schemes
working on corresponding image rows only.

The estimation of disparities from stereo
pairs has received considerable attention
over the last decades. Yet, there is still not
one or even a set of ‘gold standard’ ap-
proaches which can deal with a broad range
of imagery. An excellent recent survey
(SCHARSTEIN & SzELISKI 2002) has grouped
existing approaches into a taxonomy. The
assumption is, that matching algorithms
perform all or several of the following four
steps:

1. matching cost computation,

2. cost (support) aggregation,

3. disparity computation/optimization,
4. disparity refinement.

Typical matching costs are squared differ-
ences or absolute differences of gray values.
Aggregation can be done as simple as sum-
ming up over a square window and disparity
computation by determining the minimum
matching cost at a position. For the (nor-
malized) cross-correlation-coefficient, steps
1 and 2 are combined. Finally, global algo-
rithms are based on explicit smoothness as-
sumptions for the object surface which are
solved by means of optimization. As the
number of approaches is vast, we refer for
the literature to (SCHARSTEIN & SZELISKI
2002), only introducing recent approaches
and comparing them to our ideas and results.

SCHARSTEIN & SZELISKI (2002) have also
introduced an evaluation metric as well as
test data to compare different approaches.
Together with a web page (http://www.midd
lebury.edu/stereo/) listing the results of all
approaches for which results have been sub-

mitted under the constraint, that the same
set of parameters have been used for all im-
age pairs, and an ordering according to the
performance, this has sparked competition
and progress in the field.

Z1TNICK & KANADE 2000, that our work
is based on, refers to work proposed at the
end of the seventies (MARR & PoGGio 1976,
1979). The basic idea is to employ explicitly
stated global constraints on uniqueness and
continuity of the disparities. While MARR
& PoGaGIo (1976), (1979) have used two-di-
mensional (2D) regions to enforce continu-
ity by fusing support among disparity esti-
mates, ZITNICK & KANADE (2000) employ
3D support regions. Matching scores are
calculated for a disparity range (search
width) and then stored in a 3D array. This
array is filtered with a 3D box-filter to ob-
tain the local support for a match from all
close-by matches. Assuming opaque, dif-
fuse-reflec-ting surfaces, the uniqueness
constraint requires that on one ray of view
only one point is visible. This implies an in-
hibition which is realized by weighting down
all scores besides the strongest. Support and
inhibition are iterated. Thereby, informa-
tion is propagated more globally. We have
chosen (Z1TNICK & KANADE 2000) because
it can deal with strong occlusions and large
disparity ranges and have extended it by the
following means:

The smoothness of the output is improved
by sub-pixel estimation. By a recursive im-
plementation of the 3D box-filter we have
sped up the computation. We determine the
convergence automatically and employ
symmetric support, considerably improving
the results. As proposed by SCHARSTEIN &
SzeLIsSKI (2002), we combine for the match-
ing scores cross-correlation with absolute
differences, employing correlation particu-
larly for horizontally textured regions. As
we are looking for unambiguous matches,
the matching scores are weighted down
when there is repetitive texture determined
by a special type of auto-correlation. It was
found that, using color improves the result.
As occluded regions have a smaller disparity
than their occluding regions, we have intro-
duced a small preference for smaller dispar-
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ities. By combining image gradient and dis-
parity gradient to control the amount of
smoothing as proposed by ZHANG & KAM-
BHAMETTU (2002), we avoid blurring dispar-
ity discontinuities and the elimination of
narrow linear structures. Finally, determin-
ing occlusions and reducing the probabili-
ties for large disparities in these regions is
another means to obtain more meaningful,
smaller disparities in occluded regions.

The paper which is an extension of
MAYER (2003) is organized as follows. First
we give a short account of cooperative dis-
parity estimation as proposed by ZITNICK
& KANADE (2000). Section presents the
evaluation metric of SCHARSTEIN & SZELISKI
(2002) and our results for the four image
pairs obtained using one set of parameters.
In Section 4 we present the means for im-
provement in more detail and we analyze
them by assessing their performance gain.
In Section 5 additional results are presented.
The paper ends up with conclusions.

2 Cooperative Disparity Estimation

The main idea of ZiTNick & KANADE (2000)
is a cooperation between support and inhi-
bition (cf. Fig. ). The support region is a 2D-
region or usually a 3D-box. All matching
scores in this box, derived, e.g., by (nor-
malized) cross-correlation, corroborate to
generate a disparity map which is locally
continuous. When employing a 3D-box,
also sloped regions are modeled, although
only implicitly.

Support

Inhibition enforces the uniqueness of a
match. Assuming opaque and diffuse-reflec-
ting surfaces, a ray of view emanating from
a camera will hit the scene only at one point.
The idea is to gradually weight down all
matches on a ray of view besides the strong-
est. For a stereo pair there are two rays (cf.
Fig., right). The matching scores are stored
in a 3D array. Therefore, for the left image
the ray of view is a column in the 2D-slice
of width and disparity. Because we work in
disparity and not in depth space, the ray of
view of the right image consists of the 45°
left-slanted diagonal through the pixel of in-
terest. Putting everything together, the sup-
port S, for a pixel at row r and column ¢
with disparity d is defined as
S,(r,e,d)= X L,(r+r,c+c,d+d'),
(.. d")ed )

with L, the score for the preceding iteration
and ® the support region. The new score
for iteration n + 1 is obtained as

S,(r,e,d) *
Ln+1(r>cad) = > S (r// ¢’ d//) *
(", c".d")e¥ ! ' '
LO(rv C’d) (2)

with W the union of the left and right inhi-
bition region and o an exponent controling
the speed of convergence. o has to be chosen
greater than 1 to make the scores converge
to 1. The multiplication with the original
matching score L, avoids hallucination in

Inhibition

ray of view

left image

ray of view
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disparity

width

Fig.1: Support and inhibition.

width
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weak matching regions. Finally, for each
pixel of the left image the disparity is chosen
which has the maximum score. Practically,
itis important to correct the inhibition value
for the fact, that on the left and the right
side of the image a number of pixels depend-
ing on the search width are not matched
and, therefore, do not contribute to the in-
hibition.

3 Evaluation

For the evaluation we used the data and the
code available at www.middlebury.edu/
stereo (cf. Fig.2) employing the search
widths given there. The measures used in
(SCHARSTEIN & SzeLiskl 2002) and here
comprise the number of bad pixels, i.e.,
pixels which are further away from the given
ground truth map than a tolerance ;. As
in (SCHARSTEIN & SzEgLIsKI 2002), we also
use o, = 1,0 and the following measures:

e Bad pixels nonocc (all) — Bg: % bad pixels
in non-occluded regions. Used as overall
performance measure.

e Bad pixels untextured (untex.) — By: %
bad pixels in untextured regions.

e Bad pixels discont (disc.) — Bp: % bad
pixels near discontinuities.

For sub-pixel estimation a parabola involv-
ing the matching scores of the voxels having
a smaller (d-1) and larger (d + 1) disparity
than the given disparity for a pixel d (with
L(d) = L,(r,c,d)isused (—0,5<Ad<0.5):

L(d+1)—1,(d—1)

Ad =
22 d) =1 (d+1)—=1,(d—1))

A3)

The results presented in Figs 3 and 4, for
Tsukuba and Map also compared to their
ground-truth, give an indication of the qual-
ity obtained. Tab. 1 gives evaluation results
which are in the upper third of the ap-
proaches presented in the online version of
(SCHARSTEIN &  SzeLiskr  2002) at
www.middlebury.edu/stereo. As required
there, only one set of parameters given in
Tab.3 was used. We were ranked number
three in the individual result page of the on-
line version of (SCHARSTEIN & SZELISKI

2002) as of April 3,2003 and are still number
fourteen of forty as of August 21, 2005. Run
time for all images is about 102 seconds on
a 2.5 GHz PC. This time is better than those
reported for the seventh (2706 seconds) and
fifth (528 seconds) performing algorithms in
(SCHARSTEIN & SZELISK12002). The times for
Tsukuba, Sawtooth, Venus, and Map are 22,
28, 36, and 16 seconds, respectively.

Tab. 1: Percentage of bad pixels with all means
for improvement included (right three columns:
sub-pixel precise results).

subpixel

all |untex. | disc. | all |untex. | disc.

Tsukuba |1.67 | 0.77 | 9.67 |2.24 | 1.58 |11.70

Sawtooth |1.21 | 0.17 | 6.90 |0.72 | 0.03 | 6.82

Venus 1.04 | 1.07 |13.68]0.78 | 0.68 |10.66

Map 0.29 | 0.00 | 3.65 [0.24 | 0.00 | 3.36

Tab.2: RMS error with all means for improve-
ment included (right three columns: sub-pixel
precise results).

subpixel

all |untex. | disc. | all |untex. | disc.

Tsukuba |0.83| 0.63 | 1.74 | 0.87 | 0.56 | 1.90

Sawtooth [0.61| 0.31 | 1.70 [0.56 | 0.24 | 1.67

Venus 047 | 044 | 1.31 {038 035 | 1.27

Map 099 | 042 | 344 {094 | 0.26 | 3.36

Tab. 3: Parameters for the results in the figures
and tables of this paper.

Size matching S5x5x1

Size support 11x11x3

Truncation Value 4 gray values

Threshold for convergence 0.005 * search_width

Threshold for mixing scores 45 gray values

Preference for larger disparities | 0.05 * search_width

Number iterations for occlusion 2
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For the interpretation of the results with
sub-pixel estimation, which were obtained
with the same set of parameters as above,
one has to consider, that while the ground-
truth for Tsukuba is pixel precise, the
ground-truth for the rest is sub-pixel precise.
As the distance for the evaluation is fixed
to one pixel and as we restrict |Ad| < 0,5,
for Tsukuba sub-pixel estimation can only
result into an equal or lower performance.
For the other three images the performance
can improve, as it does. The same is also
true for the root mean square (RMS) error
given in Tab. 2. Because the result for Tsu-
kuba can only degrade for sub-pixel precise
estimation, we concentrate on pixel precise
disparity estimation for the rest of the paper.

4 Means for Improvement

In the remainder of the paper, we illustrate
our means and show their performance gain.
The two basic means presented in the first
subsection only speed up the processing.
The means are explained using Tsukuba as
running example. Their gain is assessed in
the final subsection by comparing the evalu-
ation results when excluding the respective
means from the processing to the result
when all means are used.

4.1 Recursive 3D Box-filter and
Convergence Determination

Filtering with a 3D box-filter based on
simple summation is highly redundant. To

get rid of it, we use a standard recursive fil-
ter. We separate the filter into one-dimen-
sional (1D) staffs and 2D sheets. By adding
pixels on top of each other we generate staffs
(cf. Fig.). From them we build sheets and
finally from the sheets the box. The update
is done recursively. To filter with a trans-
lated box, instead of adding sheets we add
a (new) sheet on one side and subtract the
(old) sheet on the other side. The same is
done for the sheets and the staffs. By this
means the complexity becomes independent
of the size of the box.

The performance gain depends on the size
of the 3D-box, but is considerably large for
meaningful box sizes. For Tsukuba of size
384x288 pixels and a disparity range, i.e.,
search width of 15 pixels, one iteration of
the simple algorithm takes on a 2.5 GHz
PC 3.2 seconds for the 11 x 11 x 3 box. The
separated algorithm needs only 0.10 sec-
onds. It is interesting to compare this with
the times for the inhibition. For Tsukuba
inhibition takes 0.30 seconds per iteration.
If one substitutes the square, i.e., & = 2, for
the general exponential, it reduces to 0.13
seconds. Because we found that this gives
also the best results in nearly all cases, we
have used o = 2 in our experiments.

The meaningful number of iterations va-
ries for different images. It proved useful to
decide about the number of iterations by
convergence determination. For the latter
also one parameter is needed, but empirical
investigations have shown that it is relative-
ly independent of the images at hand. To

height
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Fig. 5: Recursive filtering for 3 X 3 X 3 box: Generation and update.
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determine the convergence, we compute the
difference image between the disparity maps
from the last two iterations and compute the
standard deviation o. Empirically we found,
that a good threshold for ¢ is 0.005 of the
search width. This results in 34 iterations
for Tsukuba, 23 for Sawtooth, 30 for Venus,
and 28 for Map.

4.2 Symmetric Supportand Combina-
tion of Absolute Differences and
Correlation

Fig. 1, right, showing the diagonal inhibi-
tion, gives a hint, that a box-shaped support
as in Fig. might not be optimum. Our ex-
periments have shown, that a symmetric
support, where a box and a tilted box are
added as shown in Fig., considerably im-
proves the performance. Also the tilted box
is implemented recursively by adding/sub-
tracting staffs from the box.

As suggested by SCHARSTEIN & SZELISKI
(2002), we have based the correlation scores
on absolute differences. Experiments
showed that the performance for squared
differences was in nearly all cases worse than
for absolute differences. For the absolute
differences, we truncate the difference value
with trunc. The matching score for absolute
differences is  score, ;= 1— abs_diff]
trunc, with 0 < score < 1.

When looking at results based on (nor-
malized) cross-correlation compared to re-
sults where absolute differences have been
employed, we got the idea, that the failure

modes seemed to be different and that it
might be useful to combine both. The com-
bination is done by

SCOTe s g+ Weight * score

— corr 4
scorecomb 1 + weighz‘ ( )
with

horiz_grad
weight = =8 ®)

threshold_for_mixing_scores

A large horizontal gradient horiz_grad (cf.
Fig.7 left) increases the probability for a
good match for cross-correlation, because
cross-correlation works best for strongly
textured regions and the matching is done
in horizontal direction for the normalized
image pairs.

In addition to the combination, a special
type of auto-correlation auto_corr (cf. Fig. 7
right) is used to indicate potentially false
matches. It is determined as the maximum
value of correlation along the horizontal line
ranging from outside the matching window
to the search width. If this auto-correlation

ray of view
left image right image

Oy 48 I || . NV | I R
) &
’ .b@Q

width

height
[P N

Fig. 6: Symmetric support.

Fig.7: Horizontal gradient (left); Maximum auto-correlation along the horizontal line ranging from
outside the matching window to the search width (right).
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is large, it means that there are similar struc-
tures, 1. e., repetitive textures, already in the
reference image and, therefore, the match
is highly likely to be ambiguous also in the
other image. The auto-correlation is used to
weight down the matching score by
score = score® (1 —0.5* auto_corr). Both,
horizontal gradient and auto-correlation
are smoothed with a Gaussian filter.

4.3 Use of Color and Preference for
Smaller Disparities

For color images we take the average of the
individual results for the three colors for ab-
solute differences. As we found, that color
does not help too much for correlation, we
correlated only the average images of the
colors.

As noted in (ZHANG & KAMBHAMETTU
2002), there is a tendency of the cooperative
approach to fatten regions with larger dis-
parities. We counteract this by reducing the
matching scores by (d is disparity)

d* preference

8COreqg = score* (1= search_width

(1 —0.5* auto_corr)) (6)

This is motivated as follows: Occluded re-
gions must have a smaller disparity than
their occluding regions. As there is no cor-
rect matching possible for occlusions, intro-
ducing a slight bias towards smaller dispar-
ities increases the probability, that occluded
regions obtain correct, smaller disparities.

R % --]
P 3 x
- 1
- .
g .
L]
3 l
L ]
—_— s s Semesmn e - m e .

For preference, a value of 0.05 was found
suitable empirically. By reducing the match-
ing score, thereis a tendency for regions with
alarge auto-correlation (cf. above) to obtain
a wrong, too small disparity value. There-
fore, we reduce the preference with the same
factor as above.

4.4 Enforcement of the Alignment of
Image and Disparity Gradients

In many cases the materials or surface char-
acteristics are considerably different at both
sides of a disparity discontinuity or the dis-
parity continuity casts a dark shadow. This
resultsin a typical alignment of large dispar-
ity gradients with strong image gradients.
While in (ZHANG & KAMBHAMETTU 2002)
the image is segmented into several regions
and the supportis restricted to these regions,
we take a more conservative policy. Addi-
tionally to the support size given in Tab. 3
(box,,, s..) we smooth the image with a 3 x
3 x 3 box filter (box,;;) and mix the results
according to the combined strength of gradi-
ent,,,, = gradient,,,, * gradient;,,,..|255.
This combined gradient is then smoothed
by a Gaussian filter. Both gradients are de-
termined as absolute values by 3 x 3 Sobel-
filters and scale from 0 to 255. An adequate
weight and threshold was empirically found
to be the combination of the combined
gradient with half the search width:

radient
g comb (7)

el h[ =
o 0.5 * search_width

Fig. 8: Regions where the smoothing of the image function is reduced (black) due to large image
and disparity gradients after 5 (left) and after 30 (right) iterations.
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We truncate values below 1. The combined _
blurring reads e
: ]
r(box,, = . )+ weight*r(box,,,) P / o
r box — sup p_size 333 8 / e \_‘k
(b0 1) 1+ weight ® L

where r(box,,,) stands for the result of fil-
tering with the respective box-filter. The
smaller box,;; is only employed for values
above the half search width. As can be seen,
the regions with reduced smoothing fit bet-
ter to the actual disparity continuities after
convergence (right).

4.5 Determination of Occlusions and
Sharpening of Disparity Discon-
tinuities

The tendency to estimate too large dispar-
ities (cf. also Section 4.3) is especially true
for occluded regions. EGNAL & WILDES
(2002) describe different approaches to de-
termine occlusions. We use one of these ap-
proaches and reduce the probability of lar-
ger disparities for occluded regions, for
which no matching is possible, and which
must have a smaller disparity than their oc-
cluding regions. The determination of occlu-
sions works best, when the result is already
cleaned from gross errors. Empirically, the
optimum procedure was found to let the
basic algorithm converge first, and then to
multiply Ly(r,c,d) by (search_width — d)/
search_width. This reduces the energy or
probability of the original matching scores
for larger disparities. They influence the pro-
cess via equation (2). The reduction of the
original matching scores is done several
times. For the experiments in this papers it
i1s done two times. After the reduction, the
algorithm runs until ¢ falls again below the
given threshold for convergence.

Because the disparities are already
smooth when the algorithm has converged
for the first time, it is sufficient to compute
an indication for an occluded region by
what EGNAL & WILDES (2002) term occlu-
sion constraint. Here it is determined by the
predicate (d—d,,.)+ (c —¢,.)) <0. d and
¢ are the disparity and the column coordi-
nate of the point under investigation. d,

oce

Fig.9: Occluded regions at convergence.

and ¢, are the disparity and the column
coordinate of the preceding point when
starting from the left side of the image if no
occluding point was found yet. If an occlud-
ing point was found, it is only updated to
be the preceding point, when the above
predicate is not true any more. To obtain
compact regions, morphological opening
and closing with circular structuring el-
ements with a radius of 2.5 pixels are used.
In Fig. the occlusions determined for the fi-
nal convergence of the algorithm are shown.

4.6 Assessment of the Gain of the
Means

Tab. 4 gives in the first row as reference the
results when all means are employed. In the
other rows results which are considerably
worse than the reference are shown in bold,
while results which are considerably better
are marked in italics.

For the symmetric support in the second
row the result is clear-cut. Apart from the
untextured regions in Venus, there is an im-
provement nearly everywhere. The third
row shows the results for absolute differen-
ces only, with the optimum truncation value
of 4 gray values. As can be seen, the per-
formance gain is considerable for the com-
bination for all images besides Tsukuba.
Our interpretation of this is as follows: Ab-
solute differences make use of brightness dif-
ferences even for weakly textured regions.
This is useful only for constant lighting con-
ditions, similar viewing angles, and well-be-
haved reflection functions. Yet, it is an ad-
vantage compared to (normalized) correla-
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Tab. 4: Comparison of Different Means for Improvement: Percentage of bad pixels of results without
using the respective means (worse results are marked in bold and better results in italics).

Tsukuba Sawtooth Venus Map
Means all untex. disc. | all untex. disc. | all untex. disc. | all untex. disc.
everything included 1.67 0.77 9.67/1.21 0.17 6.90|1.04 1.07 13.68|0.29 0.00 3.65
no symmetric support (4.2) 2.06 1.19 11.90| 1.49 0.43 10.29|0.97 0.67 14.67|0.39 0.00 4.63
absolute differences only (4.2) 1.73 0.69 9.84/1.42 0.20 6.97|1.32 1.14 10.38/2.53 1.19 16.82
without use of auto-correlation (4.2) [1.99 1.01 11.421.22 0.16 6.82|1.17 1.37 15.34/0.29 0.00 3.68
no color used (4.3) 2.15 1.14 12.39|1.40 0.44 7.01|0.82 0.71 10.16/0.29 0.00 3.65
no preference for small disparities (4.3)[ 2.05 1.18 11.78|1.23 0.19 7.06| 1.18 1.34 14.24|/0.27 0.00 3.24
no alignment of gradients (4.4) 2.82 1.53 16.07|1.20 0.18 6.921.08 1.09 13.80|0.51 0.24 6.63
no occlusion modeling (4.5) 1.67 0.77 9.67/1.22 0.17 6.87|1.05 1.10 13.76/0.39 0.71 3.68

tion which is invariant to differences in
brightness and contrast. Correlation can
therefore produce a high score when match-
ing a smooth bright to a smooth or even
textured dark region when the weak texture
happens to be similar, even though this is
practically implausible. On the other hand,
by restricting ourselves to relatively small
truncation values, we do not make full use
of heavily textured regions by absolute dif-
ferences, where correlation works best.

From the fourth row it can be seen, that
auto-correlation helps, though mostly for
Tsukuba and Venus. Both have strong re-
petitive textures in the form of the books
for Tsukuba and the rows of letters for
Venus. The fifth row shows, that color is
helpful. Yet, for Venus there is still ample
room for improvement. This might stem
from the fact, that Venus is partly relatively
greenish and we only sum up the color in-
formation without weighting it according to
contrast. From the sixth row one can see
that no preference for small disparities re-
sults in a noticeable degradation of the over-
all results especially for Tsukuba, while for
Map there is only a small improvement and
for the other images there is none. The im-
provement by means of the enforcement of
the alignment of image and disparity gradi-
ent in the sixth row is extremely large for
Tsukuba and considerable for Map.
Modeling occlusion in the last row only
helps for Map. Yet, the importance of this
means is still not absolutely clear.

5 Additional Results

To show, that our means for improvement
and the set of parameters used are not only
valid for the data set at www.middle-
bury.edu/stereo, we experimented with
other image pairs with the same set of par-
ameters given in Tab. 3. The only modifica-
tion was to make the absolute differences
invariant against a different average bright-
ness of the image windows. This had to be
done, because, opposed to the data set at
www.middlebury.edu/stereo, many other
image pairs have a significantly different
gray value for homologous windows.

For the image pair Sport (cf. Fig. 10) from
INRIA’s Syntim image database one can
see, that the approach works reasonably
well for a relatively large disparity range (45
pixels search width for the epipolar resam-
pled image Sport reduced to 267x271
pixels). The image pair Kitchen (cf. Fig. 11)
stems from http://research.microsoft.com/
virtuamsr/virtuatour.html (ANTONIO CRIMI-
NisI & PHIL TorR). The results show the high
quality achievable with the improved ap-
proach. Similar results were obtained also
for a large number of other images.

6 Conclusions

Ranking our results in the frame of the on-
line version of SCHARSTEIN & SZELISKI
(2002) at  www.middlebury.edu/stereo
shows, that we have obtained a relatively
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good performance also compared to the run
time of our algorithm. On one hand, we have
fine-tuned our approach for an optimum
performance with the given data set. On the
other hand, the last section has shown, that
we obtain reasonable results also for other
image pairs using the same set of par-
ameters.

The results reported in SUN et al. (2002)
are partly better than that presented in this
paper. Though, it takes 288 seconds on a
500 MHz PC for Tsukuba, i.e., more than
double as long as ours when scaled to 2.5
GHz. Graph cuts (Boykov et al. 2001, Kor-
MOGOROV & ZABIH 2001) with and without
the handling of occlusions also have a simi-
lar or better performance than our algo-
rithm especially in combination with the fast
max-flow algorithm. Yet, an interesting
question would be if it might be possible to
reach an improvement by some of our
means for these algorithms. Especially the
combination of correlation and absolute dif-
ferences as well as using the auto-correlation
function to characterize probably unreliable
regions with repetitive texture might be
fruitful in terms of performance as well as
speed. ZHANG & KAMBHAMETTU (2002) has
an advantage for depth discontinuities due
to a more advanced modeling of the image
function, but also it could possibly benefit
from our more wide range of means of im-
provements.

Ways to proceed are for instance the use
of more images as in KocH et al. (1999),
KOLMOGOROV & ZABIH (2002), where
merging of pairs is done in object space
based on relaxation, or to locally optimize
the window size and shape (VEKSLER 2002).
We have started to project the results into
a third image by means of the trifocal tensor
to obtain more evidence via cross-correla-
tion especially for occluded regions. Finally,
recent approaches such as STRECHA et al.
(2003, 2004) resemble the multi-image
least squares matching approaches of EBNER
et al. (1987) and WROBEL (1987). We are
right now working in this area taking as a
basis a large number of highly reliable points
from automatic 3D reconstruction, e.g.,
MAYER (2005), as in LHUILLIER & QUAN

(2002), to initialize the optimization of the
surface.
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