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Abstract: As a contribution to the discussion on
classification approaches for very high spatial re-
solution (VHSR) remote sensing data, we explore
the potential of object-based mapping and the
usage of additional data layers and contextual in-
formation for class description. This paper pre-
sents two studies on land-use and habitat map-
ping in Natura-2000 sites in Austria. Both studies
have been performed using VHSR data, namely
a pan-sharpened QuickBird scene and digitalized
aerial photographs. Image segmentation is dem-
onstrated as an approach to aggregate image in-
formation to provide manageable landscape ob-
jects. These objects can potentially be of ecolo-
gical significance as opposed to the pixels of the
original image. It is shown that scenes of high
spatial and spectral variability (as depicted on
VHSR data) can be segmented with the aim of
either one-level representation (OLR), or multi-
scale segmentation (MSS). The first, applicable
in landscapes with rather distinct features and
clear boundaries, represents landscape elements,
which can be directly classified by an advanced
set of features, such as colour, form or texture.
The latter, resulting in a hierarchical set of land-
scape objects, provides constituting elements for
object relationship modeling (ORM) of complex
target classes. Both approaches are discussed in
terms of their appropriateness for specific land-
scape settings concerning complexity and spatial
ambiguity of elements at a specific target scale.
We also demonstrate how object-based habitat
mapping can help to detect fine-scaled changes
in the habitat types under consideration and how
the approach can be used to support Natura-2000
monitoring.

Zusammenfassung: Automatisierte objektbasierte
Habitat- und Landnutzungskartierung iiber Zu-
satzinformation und Objektbeziehungsmodelle. Als
ein Beitrag zur Diskussion der Automatisierungs-
ansdtze zur Klassifikation hochstauflésender
(VHSR) Fernerkundungsdaten im Bereich Na-
turschutz untersucht der vorliegende Artikel das
spezifische Potenzial objektbasierter Klassifika-
tion und der Einbeziehung zusétzlicher Datensét-
ze bei der Klassenbeschreibung. Bedeutung und
Einsatzmoglichkeiten werden anhand von zwei
Fallstudien zur Habitat- und Landnutzungskar-
tierung in Natura-2000 Gebieten in Osterreich
verdeutlicht. Bildsegmentierung wird als ein ge-
eigneter Ansatz vorgefiihrt, wie detaillierte Bild-
information aggregiert werden kann, um hand-
habbare Landschaftsobjekte von &kologischer
Relevanz zu erhalten. Es wird gezeigt, dass Szenen
hoher rdumlicher und spektraler Variablitdt ent-
weder durch einen einzigen geeigneten Objektle-
vel (OLR) oder multiskalare Bildsegmentierung
(MSS) reprisentiert werden konnen. OLR, an-
wendbar in Landschaften mit homogen struktu-
rierten Einheiten und klaren Grenzen, stellt Ein-
heiten bereit, die durch Charakterisierung von
Farbe, Form und Textur unmittelbar klassifiziert
werden konnen. MSS hingegen generiert eine
hierarchische Reprisentation von Landschafts-
objekten und bietet Objekte fiir die Modellierung
komplexerer Klassen (ORM). Beide Ansitze wer-
den fiir spezifische Landschaftsstrukturen be-
sprochen, die unterschiedliche Komplexitdt bzw.
rdumliche Unscharfe aufweisen. SchlieBlich wird
noch anhand des Beispiels zunehmender Verbu-
schung aufgezeigt, inwieweit objektbasierte Klas-
sifikation genutzt werden kann, um feinmalBsta-
bige Verdnderungen in Habitattypen quantitativ
zu erfassen und somit das Monitoring von Na-
tura-2000 Gebieten zu unterstiitzen.
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Introduction

User acceptance for satellite remote sensing
data in local level nature conservation ap-
plications has been limited due to a spatial
resolution that tends to mismatch the re-
quirements of detailed assessment and
monitoring tasks at hand. With recent in-
crease in spatial resolution of satellite im-
agery (Ikonos, QuickBird), a growing inter-
est from the nature conservation side can
be observed (see e.g. KERR & OSTROVSKY
2003, WULDER et al. 2004, TURNER et al.
2003). However, with the advent of very
high spatial resolution (VHSR) data not
only chances, but also challenges of auto-
mated information extraction have signifi-
cantly risen (LANG & BLASCHKE 2003). Some
of the emerging advanced mapping and as-
sessment methods are based on image seg-
mentation approaches in combination with
knowledge-based and rule-based classifica-
tion of the delineated units. Current studies
and projects concerning the Natura-2000
EU policy (e. g. SPIN, see WEIERS et al. 2004)
seek to perform the task of status and
change assessment on the basis of remote
sensing data in a semi-automated manner.
Reproducibility, transparency, transferabil-
ity and the increased possibility for quanti-
fication have been reported by LANGANKE
etal. 2004 as the central advantages of map-
ping approaches based on Earth observa-
tion (EO) within the framework of site as-
sessment. Semi-automated classification
methodologies for EO data provide a more
objective outcome in the sense of the above
mentioned requirements as compared to vis-
ual interpretation (ibid.). Due to its subjec-
tive character (ALBERTZ 1999, CAMPBELL
2001) reproducibility and transparency of
visual interpretation is limited as even the
same interpreter is not able to completely
reproduce a visual interpretation a second
time. Erroneous or biased results of the clas-
sification will propagate through any subse-
quent analysis like quantitative structural
assessment or post-classification change de-
tection.

The object-based approach discussed in
this paper can facilitate mapping of complex

habitat structures (LANG & BLASCHKE
2003). Experienced field ecologists and re-
mote sensing/visual interpretation special-
ists are challenged to collaborate on setting
up a functioning rule set. The approach
therefore bridges the gap between modeling
and direct mapping, integrating methods of
rule-based classifications of segmented re-
motely sensed imagery and GIS methods of
spatial analysis. Within object-based map-
ping a cognition network (BINNIG et al.
2001) is established which serves as a con-
ceptual framework for the number and par-
ameterization of segmentation layers and
the definition of classes. Especially when
multiscale segmentation and object-rela-
tionship modeling (MSS/ORM, see BUR-
NETT & BrascHKE 2003) is being applied,
such a conceptual outline seems to be indis-
pensable. Any step and setting during the
entire classification process is documented,
and can be assessed and adopted if needed.
Although the result is not necessarily more
accurate, it can be reproduced and the pro-
cess is to a high degree comprehensible. The
formalized approach of analysis (i.e. the
class definitions and composition and the
documentation of the workflow and settings
in the semi-automated process) technically
allows for a transfer of the classification to
other scenes (LANG & LANGANKE 2004,
BENz et al. 2004).

This paper aims to demonstrate the po-
tential of object-based classification
methods on two Natura-2000 sites in the
Austrian provinces of Salzburg and Styria.
Classification has been performed on high-
resolution remotely sensed images utilizing
expert knowledge. The authors will discuss
the strengths of the approach but also dem-
onstrate potential limits and problems
which arise partly from the vagueness in
class definition, partly from the segmenta-
tion algorithm itself.

Study sites and data sets used

Study sites

The first test area comprises a four square
kilometre subset of the Styrian Joglland
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Fig. 1: Locations of the two test sites: Joglland
(Styria) and Wenger Moor (north-east of the city
of Salzburg). The insets show samples of the
data used: a QuickBird scene from 2004 (right)
and a false-colour air-photo from 1976 (Amt der
Salzburger Landesregierung, /left)

around the town of Dechantskirchen (Fig.
1). The entire Joglland area is considered to
form the habitat of various bird species list-
ed in the Bird Directive 79/409/EEC (such
as Lanius collurio, Crex crex, Tetrao tetrix,
Pernis apivorus). The subset used in this
study is dominated by a mosaic of agricul-
tural fields (intensively used grassland, vari-
ous types of crops), hedgerows (as of par-
ticular importance for Lanius collurio) and
forest. A feasibility study for semi-auto-
mated classification of QuickBird data was
carried out, focusing on object-based map-
ping using monotemporal VHSR data. This
included the distinction between crop types
and grasslands, the differentiation between
forest types and the delineation of linear
structural components (e. g. hedgerows) and
land-use classes with ‘conceptual’ bound-
aries (e. g. orchards).

The second case-study captures and
evaluates fine-scaled change dynamics in a
threatened raised bog in the foothill area of
the Alps within the province of Salzburg.
With an overall size of 298 hectare the Wen-
ger Moor (Fig. 1) is a small remnant of a
raised bog, situated at an altitude of 510 m.
Dynamics in the bog mainly reflect human-
induced changes due to activities within the
bog itself (such as drainage, peat extraction,
afforestation logging) and in its immediate

surrounding (intensive agriculture). Today
the former active raised bog is characterised
by a complex and intermingled mosaic of
remaining raised bog and several stages of
degradation such as Calluna vulgaris en-
croached areas (heath bog) Pinus mugo
(bush bog), and trees (tree bog). Aerial pho-
tographs document these changes between
1976 and 1999. Object-relationship model-
ing has been used to identify the four degra-
dation stages. This included three steps: 1)
image segmentation on two distinct levels,
2) classification of high resolution images of
two different dates and 3) quantifying and
highlighting changes in the habitat types un-
der consideration.

Data

QuickBird data have been acquired for the
Joglland study. The data were resolution-
merged leading to a ground-resolution of
0.6m. Spatial enhancement of the Quick-
Bird data was achieved by using a pan-
sharpening approach after Liu (2000), a
procedure that is optimized to maintain the
original spectral values to a large extent
(>90%), as being compared to methods
based on principal component analysis.
For the Wenger Moor study we used two
scanned aerial photographs of the bog area,
a colour-infrared air-photo from 1976 and
a colour air-photo from 1999. Both aerial
photographs have been co-registered and re-
sampled to a spatial resolution of 0.37m. A
subset (28.8 ha) was used with the core area
of the eastern part of the bog (see Fig. 1).

Methods

Segmentation strategy: one-level
representation (OLR) vs. multi-scale
segmentation (MSS)

Image segmentation (HARALICK & SHAPIRO
1985) aims at partitioning an image exhaus-
tively into homogeneous regions. Detailed
image information is aggregated in segments
that can be labelled and classified according
to their spectral and spatial properties as
well as their interrelationships. Image seg-
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mentation is considered to be a crucial step
in image analysis (PAL & PAL 1993), and by
forming the conceptual link to human per-
ception it may be a essential prerequisite for
image understanding (GORTE 1998). While
an enormous range of different segmenta-
tion approaches does exist (ZHANG 2001),
the operational use of them within remote
sensing applications is still limited (BLASCH-
KE & STROBL 2001, CHEN 2003). On the other
hand the flexibility in performing scale-spe-
cific segmentation has led to a growing in-
terest from landscape ecological applica-
tions of this approach. Within landscape
ecology the hierarchical representation of
process-relevant spatial units in various
scale domains is one of the fundamental pil-
lars (Wu 1999). Segmentation can be used
to provide a consistent set of image primi-
tives to be used as landscape objects (LANG
& LANGANKE 2004, BURNETT & BLASCHKE
2003).

Image segmentation in both studies has
been performed using the software eCogni-
tion (BENZ et al. 2004). The algorithm being
implemented follows a region-based, local
mutual best fitting approach (Baatz &
ScHAPE 2000), which performs merges in a

local vicinity of the image segments accord-
ing to a fitting gradient (““gradient of degree
of fitting”). In a scene being dominated by
homogenous geographic features with dis-
tinct boundaries (e. g. agricultural fields, or
forest types that are more characterized by
texture than by spatial arrangement) one
single level reflecting the appropriate scale
domain is likely to be found. This level may
be generated by iterative segmentation, but
it will be used as the only level for classifi-
cation (one-level representation, OLR, see
Fig. 2, left). In more complex images with
less distinct boundaries, the hierarchical
structure of the represented landscape may
be better reflected by multi-scale segmenta-
tion (MSS, see Fig. 2, right). MSS (BURNETT
& BLASCHKE 2003) produces a nested hier-
archy revealing homogenous units on differ-
ent levels of aggregation. These units are
subsequently used for defining classes by ob-
ject-relationship modeling (ORM, ibid., see
next chapter). Within MSS/ORM a cogni-
tion network guides the number of segmen-
tation layers required for the class modeling
(LANG & LANGANKE 2004).

In the Joglland study we used OLR, since
a single scale domain has been visually

(Class specific) target level

Temporary levels for
optimizing segmentation

OLR

Reporting level

F ] :'LI: [ eI ]

Level of landscape elements

—F LI i

Types of object relationships:
eAdjacent to

sSurrounded by

sDistance to

sPercentage of sub-objects
sControlled by

MSS/ORM

Fig. 2: Two segmentation strategies: one-level representation (OLR, /eft) vs. multi-scale segmen-
tation (MSS, right). OLR utilizes one single optimized level. In MSS/ORM two or more levels are

used for class modeling.
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Tab.1: Segmentation levels, methods and parameterization for the two test sites. SP = scale
parameter (final levels in bold); STD = standard (SP controls average size of segments); SD =
spectral difference (SP controls average spectral distance between segments); ColW = colour
weighting (against form); CompW = compactness weighting (against curvilinearity).

SP Method ColW CompW

Joglland OLR

Crop types 50/80/120/140/170 STD 0.5 0.5

Forest types 200 STD 0.5 0.5

Linear elements | 50/80/120/140 STD 0.5 0.5

Orchard 10/20 STD 0.5 0.1
Wenger Moor MSS

Level 0 15 SD n.a. n.a.

Level -1 150 STD 0.8 0.1

identified for the required level of detail. The
parameters being used for the segmentation
are shown in Tab.1. In the Wenger Moor
case study two such levels were created, na-
mely the level of elementary landscape ob-
jects and the reporting or mapping level. The
first level of segmentation represents basic
landscape elements. Segmentation has to be
fine enough to generate objects to be in-
cluded in later classifications. This level is
classifitd by collecting representative
samples for each basic class throughout the
image. A second, more aggregated segmen-
tation level is created containing the target
objects of the mapping level.

Labeling and classification

Several sub-studies have been performed to
investigate different strategies, each of them
considered appropriate for the respective
category of land use types. A complement-
ary ground survey based on 159 control
points has been conducted in the Joglland
area. Points were collected under the prem-
ise to cover all spectrally distinguishable
units and in particular to document the dif-
ferentiation of different grassland and crop
types, as well as different forest types.
Ground survey and acquisition time of the
satellite data were three months apart, there-

fore in some cases we additionally had to
examine the actual stage three months be-
fore.

Crop types have been classified on a sub-
set of 35.9 ha using a sample-based nearest
neighbour classifier in spectral feature
space. To differentiate between different fo-
rest types the third principal component
(PC-3) has been used as an extra layer in a
subset of 40.8 ha. The standard deviation
of PC-3 was used as an additional feature
in the classification process. The sub-scene
has been classified in sequences: first we dis-
tinguished classes of different texture beha-
viour and secondly we combined it with the
spectral information of the NIR band. Lin-
ear elements such as hedgerows and denser
tree rows usually exhibit similar spectral sig-
natures as deciduous trees. Hedgerows have
been addressed by modeling the horizontal
spatial relationships of their components,
i.e. the continuous tree or shrub line next
to an elongated shadow object, all being ad-
jacent to agricultural fields. Orchards,
though being easily recognized by a human
interpreter due to their specific spatial ar-
rangement of single trees in an otherwise ho-
mogeneous matrix (mostly grass vegeta-
tion), are hardly captured by segmentation,
since outer boundaries are missing. In this
case we successfully applied LIST, a tool for



10 Photogrammetrie

e Fernerkundung « Geoinformation 1/2006

Semantic g

Reflectance + Shape

classes Sphagnum Calluna
dominated dominated
Assemblage
Percentage Percentage
Fuzzy range
(65 - BS%)
Fuzzy range
(65 - 85%)

Pinus mugo Wood
encroached encroached
Ry,

B
A ¥

Crisp range (>
10%)

Percentage
N Specific mix
Distance
F"'“_“'I'gf'sgrﬁ)ﬁ‘s At least 40 % of

each

Fig. 3: Cognition network Wenger Moor. The graphic shows how the four degradation stages (se-
mantic classes) can be modeled using both spectral and structural characteristics.

quantifying manually delineated features in
terms of the spatial distribution of machine-
derived sub-units (LANGANKE et al. 2004).
In the second case study we used
ORM. The cognition network being estab-
lished (Fig. 3) foresees two levels of segmen-
tation, the first being referred to as the level
of elementary landscape objects (level -1),
the second being considered the reporting
or mapping level (level 0). Level -1 reflects
the constitutional homogenous elements in
the landscape of interest. It has been clas-
sified by collecting representative samples
for each class throughout the image. Spec-
tral information was not sufficient to separ-
ate all classes, as some of them showed high
spectral correlation. While a variety of ob-
ject features could be used for separating
samples, many of them are statistically in-
tercorrelated. A statistical de-correlation
analysis (feature space optimization, FSO)
could be performed to identify n features
which manage to separate the classes at best.
However, this would not determine, if these
features are really distinctive for the specific
classes. For example, if the feature length/
width ratio is selected by FSO, only coinci-
dentally the samples may show this charac-
teristic. Additional heuristics leveraging

spatial properties were encoded using fuzzy
rules: the spatial feature ‘distance of sphag-
num to intensively used grassland’ prevents
objects adjacent to grassland from being
classified as sphagnum. On the mapping
level (level 0) classes were established ac-
cording to the specific stages of degradation
in the bog such as (remaining) open raised
bog areas, Calluna vulgaris encroached
areas, Pinus mugo bushes and tree domin-
ated areas. The cognition network defines
class composition on level 0 by modeling the
spatial arrangements of the constituting
sub-objects on level -1. Representative
image sections were selected and their ‘body
plans’ were documented as structural signa-
tures (LANG & LANGANKE 2004) according
to their typical structural characteristics.
Expert knowledge has been incorporated to
consider the relevant heuristics of a semantic
class. An example for the heuristics being
used for defining the class Pinus mugo en-
croached bog is given in Fig. 4.

Change analysis

Post-classification change detection (SINGH
1979) has been applied on the 1976 and 1999
classification results. Changes were charac-
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Fig. 4: For the definition of the semantic class Pinus mugo encroached bog the relative area of sub-objects

(fuzzy rule) and an average distance (crisp rule) are

terized according to the increase of ad-
vanced degradation stages, mainly the
spread of Pinus mugo bushes. A map overlay
was performed and a set of sixteen change
classes was produced. Additionally a tran-
sition matrix was computed which shows the
transition from the original Sphagnum layer
to each of the other degradation stages.

Results
Classification on OLR data layers

Sample-based overall classification

A sample-based overview classification,
only using the original four bands of Quick-

used.

Bird would generate high confusion between
forest type classes and agricultural fields. In
atest run we only obtained poor results (per-
cent correct: 54.1%). Spectral profiles col-
lected for the investigation of ambiguous
classes showed broad overlaps.

Crop fields vs. grassland

Since grassland in the study area is mainly
intensively used, most parcels have already
been mowed at the time of image acquisition
in early May. These fields are characterized
by a high portion of bare soil. Furthermore
hay bundles lying on the ground are detect-
able and help differentiate grassland from
corn (Zea mays L.) fields. Crop fields (other
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than corn) at the time of capturing are char-
acterized by higher biomass content, show-
ing uneven textures in shades of red. Clas-
sification problems arose with grassland not
yet being mowed, which exhibits a fuller red
colour with an even texture. As a special case
freshly mowed parcels were captured. Short-
ly after being mowed these fields show a light
red to orange signature. Parcels, which at
this phenological stage show limited photo-
synthetic activity, are mostly corn fields
(with the exception of disturbed surfaces or
freshly made up fallow ones).

Crop types

On false-colour representations of the
QuickBird data, the early growth stage corn
fields appear in bluish tones in the original
data. All other grain types were already in
the growth stage with a certain portion of
biomass at this time. In the study area this
applies for crop types with ears (barley,
wheat, rye, triticale) more clearly than to
crops with panicles (here only oats). The re-
sult of the crop type classification is depicted
in Fig. 5.For evaluating the classification
stability we used membership assessment,
assigning each segment a value reflecting the
degree of best class membership. Addition-

m
= Rye
. Triticale / Barlay

Fig.5: Automated delineation of agricultural
fields and differentiation of crop types. Note that
assignment of the field X is ambiguous due to
its reflection behaviour (left). Analysis of clas-
sification stability revealing high uncertainty for
field X (orange colour) (top right).

ally we examined every single polygon, and
verified its label. Of these 104 segments, 98
(i.e. 94.2%) were classified correctly. Main
confusion appeared at the edges of single
parcels, where agricultural roads, tracks and
field edges have been merged with the actual
parcels in the segmentation process.

Forest types

The distinction of different forest types has
been successfully performed using addi-
tional data layers. Based on the third prin-
cipal component a texture image has been
calculated (see Fig. 6). Using the specific
roughness, young spruce stocks could be
identified, which otherwise due to their high
spectral reflectance in near infrared were
mistaken as deciduous trees. Pure pine fo-
rest could be separated from mixed wood-
land. 93 generated random points were used
for evaluation, of which 90 points (96.8 %)
were correctly classified.

Linear elements

Hedges and tree rows are theoretically de-
tectable, if neighbourhood rules can be ap-
plied successfully. But this requires relevant
objects (e. g. corn field and hedge objects)

Fig. 6: Classification of different forest types. A
texture image of PC-3 of the QuickBird data (up-
per right corner) was used to identify afforesta-
tion areas (spruce).
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to be produced directly adjacent to each
other. Due to graded transitions between the
dark shaded areas and the bright neighbour-
ing field, the neighbour-rule often fails.
Problems of aggregation will arise, if on
higher levels of segmentation the desired
boundaries of the entire hedge are not pro-
duced.

Hybrid approaches

Manually delineated outlines of an orchard
are used as predefined boundaries in the seg-
mentation process. Alternatively, in this
case, a convex hull could have been created
around the trees using a certain buffer size.
Using LIST, the number of deciduous trees
and their averaged distance is then deter-
mined automatically (Fig. 7).

A similar procedure has been used to dis-
tinguish between forest classes, where aggre-

gation would be difficult without visual de-
lineation (e. g. mixed woodland). Deciduous
and coniferous trees, which are classified au-
tomatically, were used for quantification
and structural analysis of the delineated
units (see Fig. 7, right).

Classification of degradation stages
using ORM on MSS data layers

The classification results of the degradation
stages in the Wenger Moor is shown in Fig.
8 and Tab.2. In 1999 bush encroachment
has increased significantly as compared to
the situation in 1976, where the different de-
gradation stages have yet to show. Accuracy
assessment has been performed using a ran-
dom selection of 93 centroids of randomly
selected 25m? cells. The same set of points
has been used for both time slices. Since the
data show a past status of the mire and due
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Fig.7: Quantitative analysis using the ArcView extension LIST. Left: counting of trees within a
manually delineated orchard. Right: Forest composition of manually defined units, being analyzed
by the number of sub-objects (NP) of deciduous or coniferous/mixed woodland. Furthermore the
respective total area (CA) and mean patch size (MPS) were calculated.
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Sphagnum = Calluna
Sphagnum = Pinus mugo

200 Meters o

e

Fig. 8: Classification and quantification of chan-
ges in the Wenger Moor study. Top row: clas-
sification of false-colour air-photo from 1976
and colour air-photo from 1999. Below: Post
classification change detection with transitions
of Sphagnum to three different degradation sta-
ges.

to restricted access, ground truthing has
been done by visual interpretation. Howe-
ver, assigning the correct reference values is
problematic, since smooth transitions oc-
cur, when degradation stages gradually
transform from one to another. Therefore
1%t and 2" choice has been accepted in these
transition zones (the class “Active raised
bog’ has been excepted from this rule). 1%
choice acceptance led to percent correct

values smaller than 80% in either case
(1976: 77.4%; 1999: 73.1%). 2™ choice ac-
ceptance led to 87.6% 1976 and 83.7% in
1999 when allowing bush and tree confusion
in transition zones; 82.8 % in 1976 and
83.8% in 1999, when allowing heath and
bush confusion. Taking both cases we finally
reached 83.9% in 1976 and 89.3 % in 1999.
In 1976 slight overestimation of active
raised bog was observed. Note that this
could also refer to an underestimation in the
reference interpretation. Point-based accu-
racy assessment seems to be very limited in
scenes of high complexity and smooth tran-
sitions.

Quantification of changes

The change map (Fig. 8) shows the respect-
ive transitions from the original Sphagnum
area towards each of the designated degra-
dation stages in the Wenger Moor test site
within the 23 years between 1976 and 1999.
Pink tones indicate change from Sphagnum
towards Calluna vulgaris, orange towards
Pinus mugo, and red towards forest. Loss
of the core bog area has been calculated as
3.3 ha in favour of the degradation stages
heath (0.2 ha), bushes (2.1 ha) and trees
(1.0 ha).

Discussion

We demonstrated to which extent ap-
proaches and strategies based on remotely
sensed data can be used for fine-scaled clas-
sifications in the context of Natura-2000

Tab. 2: Results of the bog classification of two time slices 1976 and 1999. DG = degradation stage
(0-111); CA = entire class area, NP = number of patches, MPS = mean patch size.

1976 1999
Class (DG) CA (ha) NP MPS (ha) CA (ha) NP MPS (ha)
Active Raised Bog (0) 5.98 3 1.99 2.13 17 0.13
Heath Bog (I) 7.51 8 0.94 4.85 25 0.19
Bush Bog (II) 0.48 21 0.02 3.59 207 0.02
Tree Bog (II1) 10.11 15 0.67 14.57 95 0.15
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habitat mapping. The potential of an object-
based classification for deriving relevant tar-
get classes from VHSR data in a semi-
automated manner has been examined, and
critical issues and limits have been shown.
Possibilities to facilitate the classification by
rule sets or additional data derived by image
processing were discussed. Using segmenta-
tion-based  classification  approaches,
changes have been detected and spatially
analyzed on aggregated levels. Monitoring
and change detection methodologies are re-
quired in nature conservation, e. g. for the
regular assessment of the conservation
status of Natura-2000 sites all over Europe.
In some cases this approach will be able to
complement or even replace fieldwork, and
at least enable better targeting the areas
that warrant further study (WEIERS et al.
2004).

Data material and usability

QuickBird data with an enhanced spatial re-
solution of 0.6 m and the spectral range in-
cluding the VNIR band provide means to
classify habitats and land use types in a tar-
get scale dimension reaching up to 1:10,000.
The pan-sharpening product has proved to
be suitable for increasing spatial resolution
while at the same time maintaining spectral
behaviour for detecting the target classes to
be addressed. The majority of the target
classes can therefore be derived from Quick-
Bird data. But still the difference between a
0.25 m aerial photograph and a 0.6 m Quick-
Bird image can be critical when trying to
identify single trees or plant species, even if
satellite data have high radiometric resol-
ution (11 bit). A reasonable cost-benefit ra-
tio and the possibility to order and program
user-defined areas by polygonal boundaries
are further assets making QuickBird attract-
ive for studies that focus on a rather small
overall study area. As compared to the
usage of aerial photographs, the entire work
flow from ordering to processing is digital,
i.e. no information is lost due to analogue
procedures and mosaicking. Continuing
monitoring and change detection is sup-
ported by high repeating rates. However, re-

ceiving the data is depending on data pro-
viders and can be influenced by the political
situation or other uncontrollable factors
such as unfavourable weather conditions.

OLR, ORM and methodological
constraints

OLR has turned out to be suitable for de-
lineating landscape elements with rather dis-
tinct boundaries. Even in seemingly hetero-
geneous (forest) habitats specific forest
types in OLR could be identified due to tex-
ture homogeneity. Semi-automated classifi-
cation to a certain degree allows for delin-
eating different forest types. This applies to
deciduous forest, mixed woodland, conifer-
ous forest and spruce afforestation. Image
processing techniques, such as PCA, pro-
vide additional data layers, which can be
used for class definition. Also larger single
trees, e. g. individual oaks within a pine for-
est can be detected, but due to its high struc-
tural heterogeneity of coniferous forest with
mixed ages it remains a domain of manual
interpretation, though supplemented by
quantification of the portion of deciduous
trees. Approaches using crown shapes for
classification (see HIRSCHMUGL et al. 2004)
appear to be promising when applied on im-
ages with spatial resolution smaller than
0.3m.

Some classes turned out to be rather prob-
lematic for verification on the ground. This
mainly applies for land-uses that showed a
wide range of spectral signatures due to dif-
ferent land management on the different
parcels. Classification based on samples us-
ing nearest neighbour classifiers and a uni-
form set of features proved to be successful
in crop type differentiation on a limited area.
At the very point of data capturing (begin-
ning of May) a clear distinction is possible
for corn against other crop species due to
the phenology of growth. Judging hedges in
terms of their suitability as habitats for bird
species in the study area is likewise limited.
The specific composition and the proportion
of larger trees in relation to the under storey
is relevant. While tree rows can be differen-
tiated from lower hedges with ease, the spe-
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cies composition is hardly derivable from
the QuickBird data.

The gradient problem occurs when fea-
tures seem to have distinct boundaries, but
transitions are being produced by the re-
gion-based segmentation algorithm. These
transition zones may only be several pixels
in width, but often cause segments to be gen-
erated. These small and elongated objects
lead to a situation in which neighbouring
objects are in fact not strictly adjacent. In
some cases acceptable, e.g. when consider-
ing gradients (MULLER 1998) or ecotones
(Opum 1959) in the landscape, they usually
hinder the application of spatial rules like
‘is adjacent’ or ‘is surrounded by’. In this
case the arrangement can only be modelled
by distance rules, which are very processing-
time intensive.

Another problem is concerned with the
delineation of aggregated target classes like
an orchard (orchard problem). The auto-
mated delineation of an orchard will fail,
where an outer limiting polygon is missing
on any of the segmentation levels. The in-
dividual trees are spectrally separable from
the surrounding meadow, but the outline
border of the orchard itself (which is con-
sidered a conceptual border) cannot be de-
linecated automatically. The surrounding
grassland is spectrally nearly identical to the
meadow within the orchard. Such a task is
accomplished by the human brain without
major effort (although the human ability to
aggregate suffers from subjectivity). If such
classes shall be included, we suggest combin-
ing the strengths of human aggregation with
the power of machine-based delineation and
quantification. As an operational solution
for integration advantages of either ap-
proach, we used manually derived geometry
from visual interpretation as a) predefined
outlines for the segmentation or b) spatially
coinciding features on different scales, the
hierarchical relationships of which can be
analyzed.

At the same time we realize that this hy-
brid approach can only be seen as a step on
the way towards developing fully automated
image analysis. This brings up the question
whether full automation is feasible at all,

given the relatively high expenditure of time
for the implementation of the rule sets.

Cross-study usability and
transferability

By making expert knowledge explicit the
process of classifying becomes more trans-
parent. Object-based mapping in general is
a means of semi-automatically providing
landscape units and the respective labels in
an objective manner. In case of the Wenger
Moor the spatial distribution of the four
degradation stages has been generated by a
rule set, which can be fully reconstructed.
Based on a production system the outcome
strictly depends on the underlying object re-
lationship model. At the same time it is flex-
ible for adaptations by changing the para-
meterization. The establishment of a cogni-
tion network encapsulates the required
knowledge for building up a rule set.
Though not empirically proved as yet in this
case, the transferability seems to be rather
a matter of adapting the parameterization
(ScHOPFER et al. 2005).

When modeling aggregated and complex
classes, difficulties arise in assessing the ac-
curacy in the end, because working over sev-
eral scales is required. In the end accuracy
has to be judged on the reporting level. Get-
ting visual prove from an expert may be
easy, but to perform a quantitative assess-
ment sophisticated methods of locational,
attributive and geometrical accuracy have
to be included.
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