Neue Laser-Technologien für die Industrievermessung

JÜRGEN DOLD, Unterentfelden

Keywords: 3-D metrology, Laser Tracker, Laser Radar, automation, non-contact measurement

Summary: Novel Laser Technologies for Industrial Metrology. Industrial manufacturing processes are continuously improving. New tools increase the manufacturing accuracy and the automation of processes. Optical measurement techniques play a key role to link the design with the reality. Either the measurement technique is used to inspect whether parts are built as designed or the measurement technique helps during the manufacturing process to build according to the design. Two new Laser-based industrial measurement systems will be described. One system is the non-contact Laser Radar and the other system combines camera and Laser Tracker technology for the use of hand held probes and scanners.

1 Einleitung

2 Laser Radar und Laser Tracker

2.1 Scanning

Die patentierte Entfernungsmess-Technologie des LR200 erlaubt eine Distanzmessung auch bei sehr schwach zurück kommendem Laserstrahl. Die Leistung des ausgehenden Laserstrahls beträgt 0,007 Watt und selbst bei einer Abschwächung des reflektierten Signals um den Faktor 1×10^{-9} (d. h. 0.00000000007 Watt) kann die Distanz noch ermittelt werden. Dies hat den großen Vorteil, dass man nahezu alle Materialien mit dem Laser Radar digitalisieren kann, sei es Plastik, Metall, Spiegel, Glas, Holz, Stoff... , alles ist möglich, mit Ausnahme von Wasser.

Als Standardregel gilt, dass der LR200 innerhalb seiner Spezifikationen messen kann, solange der Winkel zwischen dem einfallenden Laserstrahl und der Flächennormalen (Abb. 2) 45° nicht überschreitet. Allerdings können optisch diffuse Oberflächen (nicht polierte Flächen) selbst bei einem Einfallswinkel von bis zu 85° hochgenau vermessen werden. Bei stark polierten Oberflächen, wie z. B. Spiegeln, sollte der Einfallswinkel nicht größer als 20° sein.

Einer der wesentlichen Vorteile der Laser Radar Technologie ist, dass sie das berührungslose Messen erlaubt. Dies ist besonders dann von Vorteil, wenn Objekte manuell nicht erreicht werden können, wenn sie nicht berührt werden dürfen oder wenn beispielsweise wiederkehrende oder zeitaufwändige Messungen automatisch effizienter durchgeführt werden sollen.

2.2 Tracking

Ein entscheidender Vorteil der Laser Tracker Technologie ist die Möglichkeit, sich schnell bewegende Messpunkte nicht nur verfolgen, sondern auch während der Bewegung messen zu können. Das Tracking-Prinzip (Abb. 3) lässt sich wie folgt in Kürze beschreiben: Der vom Laser ausge-

Laser Tracker Messungen sind in einem Messvolumen von bis zu 80 Meter Durchmesser möglich. In diesem Messvolumen erreicht der Laser Tracker eine Messgenauigkeit von 10 Mikrometer pro Meter Messdistanz, dies entspricht bei 5 Meter einer Messunsicherheit von 0.05 mm.

2.3 Kombination von Laser Tracker und Photogrammetrie

2.3.1 Prinzip des 6DOF Tracking

Das Prinzip basiert auf der Kombination eines Laser Trackers mit einer Hochgeschwindigkeits-Kamera (Abb. 4). Das zu messende Objekt (z. B. ein Handtaster, Handscanner, Roboterkopf) besitzt einen integrierten Reflektor und ein Diodenfeld. Die Lage des Reflektors zum Diodenfeld

Abb. 4: Das Prinzip des 6DOF Tracking.
wird dabei als bekannt vorausgesetzt. Während der Laser Tracker die genaue Position des Reflektors (x, y, z) mittels Winkel- (H, V) und Distanzmessung (D) bestimmt, ermittelt die Kamera die Orientierung (i, j, k) des Diodenfeldes mittels digitaler Bildmessung. Mit dieser Anordnung können nun sechs Freiheitsgrade (6 DOF = 6 Degrees of Freedom) beliebiger Objekte im Raum mit einer Echtzeitrate von mehr als 100 Hz gemessen werden.

2.3.2 Hochgeschwindigkeitskamera T-Cam

Speziell für diese Anwendung wurde die Hochgeschwindigkeitskamera T-Cam entwickelt (Abb. 5). Die Kamera besitzt im Inneren einen Titanrahmen, der bei geringem Gewicht hohe mechanische Stabilität garantiert. Der eingebaute Bildsensor, ein CMOS Chip mit 1024 × 1024 Pixel, ermöglicht eine Bildfassungsrate von 100 Hz und ein integrierter „Digital-Signal-Prozessor“ (DSP) wertet die Messbilder simultan zur Bildfassung aus. Die Kamera ist mit einem Vario-Objektiv ausgerüstet, das für Entfernungen zwischen 1,5 Meter und 15 Meter ein konstantes objektseitiges Sichtfeld von 30 × 30 cm garantiert (Abb. 6). Der Vorteil des konstanten Sichtfeldes ist eine nahezu entfernungsunabhängige Genauigkeit der Orientierungswinkel (i, j, k) von etwa 0,01 Grad.

Das System „Laser Tracker und T-Cam“ erlaubt die Verfolgung eines signalisierten Objektes, das sich mit einer Geschwindigkeit von bis zu 2 m/sec und einer maximalen Beschleunigung von 2 g bewegt. Durch diese Messtechnologie können somit in Echtzeit (100–500Hz) die sechs Freiheitsgrade bewegter Objekte bestimmt werden.

2.3.3 Die handgeführte Koordinaten-Messmaschine T-Probe

Die T-Probe ist ein handgeführter Messtaster, dessen Position und Orientierung im Raum durch das System „Laser Tracker und T-Cam“ bestimmt werden. Sie ermöglicht freihandgeführte Messungen in einer radia- len Entfernung vom Laser Tracker von bis zu 15 Meter. Die T-Probe besteht aus einem leichten Kohlefasergehäuse, in dem sich

Abb. 5: Hochgeschwindigkeitskamera T-Cam.

Abb. 6: T-Cam mit konstantem Sichtfeld zwischen 1,5 m und 15 m.

Um einen kabellosen Betrieb der T-Probe zu gewährleisten, erfolgt die Stromversorgung durch eine integrierte Batterie. Die Kommunikation zwischen der T-Probe und der Basisstation (Laser Tracker und T-Cam) erfolgt durch zwei verschiedene Methoden. Zum einen kommuniziert die T-Probe mit der T-Cam durch eine spezielle Helligkeitsansteuerung der Dioden, die mittels Bildverarbeitung in ein Kommunikationsprotokoll wandelt (Abb. 8). Die Kommunikation von der Basisstation zur T-Probe wird über den IR-Laserstrahl des Entfernungs messers realisiert (Abb. 9). Hierfür wird dem Laserstrahl ein Signal aufmoduliert, das durch einen Empfänger hinter dem Reflektor in der T-Probe empfangen wird.

Mit diesen Kommunikationsmethoden wird eine Vielzahl von Operationen automatisiert. Bringt man beispielsweise die T-Probe in das Sichtfeld der T-Cam, so wird automatisch erkannt, welche T-Probe mit welchem Taststift verwendet wird. Mit der handgeführten T-Probe können somit hoch automatisierte Messungen in einem Messvolumen von bis zu 30 m durchgeführt werden. Die Längenmessunsicherheit der T-Probe liegt in einem Messvolumen von 8 m unter 0.1 mm, bei 22 m unter 0.2 mm und bei maximal 30 m unter 0.3 mm.

Abb. 7: T-Probe, die handgeführte Koordinatenmessmaschine.

Abb. 8: Kommunikation von Basisstation zur T-Probe.

Abb. 9: Kommunikation von T-Probe zur Basisstation.

Abb. 10: T-Probe und Laser Tracker.

Abb. 11: T-Scan und Laser Tracker.
3 Anwendung der Systeme

Die Laser Radar Technologie wird zunehmend in Bereichen eingesetzt, in denen große und unzugängliche Objekte vermessen werden müssen (Abb. 12). In diesen Fällen liefert die berührungslose Messtechnik große Vorteile gegenüber allen taktilen Messmethoden. Aber auch die Möglichkeit, Messprozesse vollautomatisch zu gestalten, findet vor allem in der Automobilindustrie großes Interesse (Abb. 13). Vor allem dann, wenn in der Zukunft die 100% Kontrolle der Fahrzeuge möglich wird.

4 Schlussbemerkung

Literatur

DOLD, J., 2002: Real-time 3D motion control with laser tracker technology. – Presented to Coordinate Measuring System Conference, CMSC
LEICA, 2002: Frequency modulated coherent laser radar technology description. – Leica Publication U1 405-0en.

Anschrift des Autors:
Dr.-Ing. JÜRGEN DOLD
Metrology Division, Leica Geosystems AG
Mönchmattweg 5
CH-5035 Unterentfelden
e-mail: juergen.dold@leica-geosystems.com

Manuskript eingereicht: September 2003
Angenommen: Oktober 2003