Photogrammetrie
Fernerkundung
Geoinformation

Organ der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation (DGPF) e.V.

Jahrgang 2003, Heft 2

Hauptschriftleiter:
Prof. Dr.-Ing. habil. Klaus Szangolies

Schriftleiter:
Dr. rer. nat. Carsten Jürgens und Dr.-Ing. Eckhardt Seyfert

E. Schweizerbart’sche Verlagsbuchhandlung
(Näggele u. Obermiller) Stuttgart 2003
Die Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation (DGPF) e.V. unterstützt als Mitglieds- bzw. Trägergesellschaft die folgenden Dachverbände:

International Society for Photogrammetry and Remote Sensing

DAGM

Deutsche Arbeitsgemeinschaft für Mustererkennung e.V.

Alfred-Wegener-Stiftung (AWS) zur Förderung der Geowissenschaften

Herausgeber:

© 2003 Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation (DGPF) e.V.

Geschäftsstelle: Dr. Klaus-Ulrich Komp, c/o EFTAS Fernerkundung Technologie Transfer GmbH, Ostmarkstraße 92, D-48145 Münster, e-mail: Praesident@dgpf.de

Internet: http://www.dgpf.de

Published by:

E. Schweizerbart’sche Verlagsbuchhandlung (Nägels u. Obermiller), Johannesstraße 3 A, D-70176 Stuttgart. Tel.: 0711/351456-0, Fax: 0711/351456-99, e-mail: mail@schweizerbart.de

Internet: http://www.schweizerbart.de

© Gedruckt auf alterungsbeständigem Papier nach ISO 9706-1994

All rights reserved including translation into foreign languages. This journal or parts thereof may not be reproduced in any form without permission from the publishers.

Verantwortlich für den Inhalt der Beiträge sind die Autoren.

ISSN 1432-8364

Hauptschriftleiter: Prof. Dr.-Ing. habil. Klaus Szangolies, Closewitzer Str. 44, D-07743 Jena.
e-mail: Klaus.Szangolies@t-online.de

Schriftleiter: Dr. rer. nat. Carsten Jürgens, Universität Regensburg, Institut für Geographie D-93040 Regensburg, Fax: 49-941-943 4933, e-mail: carsten.juergens@geographie.uni-regensburg.de und Dr.-Ing. Eckhardt Seyfert, Landesvermessung und Geobasisinformation Brandenburg, Heinrich-Mann-Allee 103, D-14473 Potsdam, e-mail: eckhardt.seyfert@lvermap.brandenburg.de

Erscheinungsweise: 7 Hefte pro Jahrgang.

Bezugspreis im Abonnement: € 98,– pro Jahrgang. Mitglieder der DGPF erhalten die Zeitschrift kostenlos.

Anzeigenverwaltung: Dr. E. Nägels, E. Schweizerbart’sche Verlagsbuchhandlung (Nägels u. Obermiller), Johannesstraße 3 A, D-70176 Stuttgart, Tel.: 0711/351456-0; Fax: 0711/351456-99.
e-mail: mail@schweizerbart.de, Internet: http://www.schweizerbart.de

Bernhard Harzer Verlag GmbH, Westmarkstraße 59/59a, D-76227 Karlsruhe, Tel.: 0721/944020, Fax: 0721/9440230, e-mail: Info@harzer.de, Internet: www.harzer.de

Printed in Germany by Tutte Druckerei GmbH, D-94121 Salzweg bei Passau
PFG – Jahrgang 2003, Heft 2

Inhaltsverzeichnis

Originalbeiträge

<table>
<thead>
<tr>
<th>Autor/In</th>
<th>Titel</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRUEN, A. & ZHANG, L.</td>
<td>Sensor Modeling for Aerial Triangulation with Three-Line-Scanner (TLS) Imagery</td>
<td>85</td>
</tr>
<tr>
<td>WÄLDER, O. & BUCHROITHNER, M. F.</td>
<td>Eine Anwendung von Spline-Verfahren zur DGM-Ausdünnung</td>
<td>99</td>
</tr>
<tr>
<td>Jarmer, T., Udelhoven, T. & Hill, J.</td>
<td>Möglichkeiten zur Ableitung Boden-bezogener Größen aus multi- und hyperspektralen Fernerkundungsdaten</td>
<td>115</td>
</tr>
</tbody>
</table>

Aus Wissenschaft und Technik

<table>
<thead>
<tr>
<th>Autor/In</th>
<th>Titel</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wighagen, M. & Raguse, K.</td>
<td>Entwicklung von Kenngrößen zur Qualitätsbeurteilung optischer Prozessketten</td>
<td>125</td>
</tr>
<tr>
<td>Brunner, K.</td>
<td>Frühe photogrammetrische Beiträge während deutscher Südpolarexpeditionen</td>
<td>135</td>
</tr>
</tbody>
</table>

Berichte und Mitteilungen

<table>
<thead>
<tr>
<th>Bericht</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISPRS Symposium Kommission VII, 3.–6. 12. 2002 in Hyderabad, Indien</td>
<td>143</td>
</tr>
<tr>
<td>Wechsel an der Spitze von CIPA</td>
<td>145</td>
</tr>
<tr>
<td>EuroSDR – European Spatial Data Research</td>
<td>145</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hochschulenachrichten</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hochschule Vechta</td>
<td>146</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Persönliches</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr.-Ing. Otto Hofmann Ehrenmitglied der DGPF</td>
<td>148</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Buchbesprechungen</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beckel, L.</td>
<td>148</td>
</tr>
<tr>
<td>De Lange, N.</td>
<td>149</td>
</tr>
<tr>
<td>Olbricht, G., Quick, M. & Schweikart, J.</td>
<td>150</td>
</tr>
<tr>
<td>Salllet, E.</td>
<td>152</td>
</tr>
<tr>
<td>Buhmann, E. & Wiesel, J.</td>
<td>152</td>
</tr>
<tr>
<td>Bill, R., Seuss, R. & Schilcher, M.</td>
<td>153</td>
</tr>
<tr>
<td>Patzl, C.</td>
<td>154</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorankündigungen</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>155</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zum Titelbild</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>159</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neuerscheinungen</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>160</td>
</tr>
</tbody>
</table>
An der Fachrichtung Geowissenschaften der Technischen Universität Dresden ist zum frühestmöglichen Zeitpunkt eine

C3-Professur für Geoinformationssysteme

zu besetzen.

Die Bewerber/innen müssen die Anforderungen zur Berufung zum Professor gemäß § 40 des Sächsischen Hochschulgesetzes vom 11.06.1999 erfüllen. Es wird darauf hingewiesen, dass sich die besoldungsrechtlichen Grundlagen im Laufe des Ausschreibungs- und Berufungsverfahrens aufgrund der – infolge bundesgesetzlicher Neuordnung der Reform der Professorenbesoldung – erforderlichen veränderten landesgesetzlichen Regelungen ändern können.

Frauen sind ausdrücklich zur Bewerbung aufgefordert. Bewerbungen Schwerbehinderter werden bei gleicher Eignung bevorzugt berücksichtigt.

Ihre Bewerbungen richten Sie bitte mit tabellarischem Lebenslauf, Lichtbild, Darstellung des wissenschaftlichen Werdeganges, Verzeichnis der wissenschaftlichen Publikationen, Verzeichnis der Lehrtätigkeit und beglaubigten Kopien von Zeugnissen und Urkunden bis zum 31.05.2003 an:

Technische Universität Dresden, Herrn Prof. Dr. W. Killisch, Dekan der Fakultät Forst-, Geo- und Hydrowissenschaften, 01062 Dresden
Sensor Modeling for Aerial Triangulation with Three-Line-Scanner (TLS) Imagery

ARMIN GRÜEN & ZHANG LI, Zürich

Keywords: photogrammetry, remote sensing, TLS (Three-Line-Scanner), sensor modeling, triangulation, GPS/INS integration, tie-point extraction

Summary: This article describes the sensor modeling and the photogrammetric triangulation procedure for the TLS (Three-Line-Scanner) system. This system is a new airborne digital sensor, developed by STARLABO Corporation, Tokyo jointly with the Institute of Industrial Science, University of Tokyo. It utilizes the Three-Line-Scanner principle to capture digital image triplets in along-strip mode. The imaging system contains three times three (RGB) one-dimensional CCD arrays, with 10200 pixels of 7 µm each, mounted parallel to each other in the focal plane. They produce seamless high-resolution images (5–10 cm footprint on the ground) with three viewing directions (forward, nadir and backward). In order to get precise attitude and high quality image data from an aerial platform, a high quality stabilizer stabilizes the camera and outputs attitude data at 500 Hz. A Trimble MS750 serves as Rover GPS and collects L1/L2 kinematic data at 5 Hz and another Trimble MS750 serves as Base GPS on the ground.

The position and attitude elements measured by the on-board GPS/INS do not refer to the perspective center of the imaging camera. Additionally, there is a boresight misalignment between the axes of the INS and the camera. These translational and rotational offsets have been taken into account in our sensor model and triangulation procedures. In our experiments, the following 3 trajectory models are evaluated: (a) Direct georeferencing with stochastic exterior orientations (DGR), (b) Piecewise Polynomials with kinematic model up to second order and stochastic zero and first order continuity constraints (PPM) and (c) Lagrange Polynomials with variable orientation fixes (LIM).

With different numbers and distributions of control points and tie points, 4.9–6.3 cm and 8.6–9.4 cm absolute accuracy in planimetry and height is achieved using the DGR model under

Da die Daten der äußeren Orientierung sich nicht auf das Projektionszentrum der Kamera beziehen, müssen entsprechende Korrekturen in Kalibrierungs-, Georeferenzierungs- und Triangulationsverfahren eingebaut werden. Für diese Aufgaben haben wir insgesamt drei Trajektorienmodelle entworfen, implementiert und untersucht:

a) Direkte Georeferenzierung mit stochastischer äußerer Orientierung (DGR),
b) Stückweise Polynome, aufbauend auf einem
the condition that the GPS/camera displacement corrections have been applied. Moreover, with different numbers of spline sections or orientation fixes, 2.6–6.0 cm and 4.9–11.7 cm absolute accuracy in planimetry and height is attained using the PPM and LIM models. These results show that a ground point determination of 0.5–1.2 pixel accuracy in planimetry and 0.7–2.1 pixel accuracy in height has been achieved. The orientation parameter determination using the DGR model has the advantage of stability and needs less control points, but the obtained accuracy is better with the PPM and LIM models. This however is penalized by the need to have more well-distributed control and tie points.

1 Introduction

During the last decade, in photogrammetry and remote sensing high spatial resolution digital sensors are being developed to collect panchromatic and multispectral imagery. Currently, most of these digital sensors are based on the Three-Line-Scanner principle. The use of three or more linear arrays in pushbroom mode is due to at least three good reasons: (a) matrix CCD array imaging systems with a comparable size are still not available, (b) the line sensors allow for a more flexible camera design and, (c) this new imaging mode allows for new and more powerful algorithmic approaches in data processing. Cameras based on linear CCD sensors like the Wide Angle Airborne Camera WAAC (Boerner et al. 1997), the High Resolution Stereo Camera HRSC (Wewel et al. 1999), the Digital Photogrammetric Assembly DPA (Haala et al. 1998) were the first digital systems being used for airborne applications. The first commercial line scanner Airborne Digital Sensor ADS40 was developed by LH Systems jointly with DLR and was introduced at the XIXth ISPRS Congress in Amsterdam (Reulke et al. 2000, Sandau et al. 2000). In the year 2000, STARLABO Corporation, Tokyo designed a new airborne digital imaging system, the Three-Line-Scanner (TLS) system, jointly with the Institute of Industrial Science, University of Tokyo and completed in the meantime several test flights. The TLS system was originally designed to record line features (roads, rivers, railways, power-lines, etc) only, but later tests also revealed the suitability for general mapping and GIS-related applications. However, this was already conceived by Murai & Matsumoto 2000 and Murai 2001.
Georeferencing the image data of linear scanner systems is more complex compared to standard aerial triangulation. In traditional photogrammetric triangulation, the georeferencing problem is solved indirectly using some well-distributed control points and applying geometric constraints such as collinearity equations between the image points and object points. In principle, this approach can be transferred directly to line scanner imagery, but due to the instability of the platform during the scanning process, the geometry of this imagery is much weaker compared to the traditional frame sensor imagery. Basically, the orientation parameters for all the image lines need to be recovered. In satellite platform applications, this problem can partly be solved by modeling the trajectory by piecewise polynomial models, due to the fact that there is a high correlation between the orientation parameters of each scan line. In these models, only the polynomial parameters have to be recovered by using the control and tie points. Because of the high dynamics of the airborne environment and platform, the airborne digital sensors have to be integrated with high accuracy INS and GPS systems. This additional information allows for reducing the number of control points and enables even direct georeferencing of the linear array imagery. Nowadays, the integration of INS/GPS using the Kalman filter approach can reach a high absolute accuracy. For GPS, using the differential phase observations with rover-master receiver separation below 30 km, better than 10 cm absolute positional accuracy in airborne kinematic environments can be achieved (Cannon 1994, Cramer 2000). Using a GPS-updated, high to medium accuracy inertial system for attitude determination, accuracies in the range of 10–30 arc sec can be obtained (Schwarz & Wei 1994, Skaloud 1999, Cramer 2000). In a combined aerial triangulation approach, these parameters from the integrated INS/GPS system are used as additional weighted observations.

This article deals with the sensor modeling and the high precision georeferencing of the TLS imagery, collected with the Three-Line-Scanner System developed by STARLABO Corporation, Tokyo. The next section describes briefly the TLS system. Then we report about the sensor model. Following that three different trajectory models and the corresponding combined triangulation approaches are introduced. In the final part, the experimental results and conclusions will be provided.

2 The TLS System

The TLS (Three-Line-Scanner) system is a new airborne digital sensor, developed by STARLABO Corporation, Tokyo (Murai & Matsumoto 2000, Murai 2001, Chen et al. 2001). It utilizes the Three-Line-Scanner principle to capture digital image triplets in along-strip mode. The imaging system contains three times three parallel one-dimensional CCD focal plane arrays, with 10 200 pixels of 7 μm each (Fig. 1). The TLS system produces seamless high-resolution images (5–10 cm footprint on the ground) with three viewing directions (forward, nadir and backward). There are two configurations for image acquisition. The first configuration ensures the stereo imaging capability, in which the three CCD arrays working in the green channels are read out with stereo angles of about 21 degrees.

The second configuration uses the RGB CCD arrays in nadir direction to deliver color imagery. In order to get precise attitude data and good quality raw image data from an aerial platform, a high quality stabilizer is used for the camera and outputs attitude data at 500 Hz. A Trimble MS750 serves as Rover GPS and collects L1/L2 kinematic data at 5 Hz and another Trimble MS750 serves as Base GPS on the ground. For the TLS sensor and imaging parameters see Tab. 1.

The TLS imaging system does not use the highest quality gyro system to achieve highly precise attitude data over long flight lines. Instead, a combination of a high local accuracy INS with the high global accuracy GPS is exploited. The rover GPS is installed on the top of the aircraft the INS and the TLS camera are firmly attached together.
Fig. 1: TLS CCD sensor configuration.

Tab. 1: TLS sensor and imaging parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>focal length</td>
<td>60.0 mm</td>
</tr>
<tr>
<td>number of pixels per array</td>
<td>10200</td>
</tr>
<tr>
<td>pixel size</td>
<td>7 μm</td>
</tr>
<tr>
<td>number of CCD focal plane arrays</td>
<td>3</td>
</tr>
<tr>
<td>stereo view angle</td>
<td>21/42°*</td>
</tr>
<tr>
<td>Field of view</td>
<td>61.5°</td>
</tr>
<tr>
<td>instantaneous field of view</td>
<td>0.0085°</td>
</tr>
<tr>
<td>scan line frequency</td>
<td>500 Hz</td>
</tr>
</tbody>
</table>

* * forward-nadir/forward-backward stereo view angle

Fig. 2 shows the configuration of the TLS components. After the collection of the GPS/INS raw data, the kinematic position and attitude data are calculated, but without use of a Kalman filter approach or anything equivalent. This results in large drift values for the INS observations, which currently have to be recovered, together with possible other systematic errors, by triangulation.

Unlike with frame-based photography, the three-line geometry is characterized by a nearly parallel projection in the flight direction and perspective projection perpendicular to that. Our sensor model for the TLS images is based on modified collinearity equations and uses different forms of trajectory models. These models are used for the improvement of the measured exterior orientation parameters for each scan line of TLS images by a modified photogrammetric bundle adjustment procedure, called TLS-LAB.

Fig. 2: System configuration of the TLS system.

3 Sensor Modeling

Each scan line of the TLS image is collected in a pushbroom fashion at a different instant of time. Therefore, there is in principle a different set of values for the six exterior orientation parameters for each scan line. A good mathematical sensor model is needed to improve the time-dependent orientation elements of the TLS trajectory by photogrammetric triangulation.

At any given instant of time we can imagine the TLS CCD sensors to be positioned perpendicular to its flight trajectory at the instantaneous perspective center (Fig. 3). At

Fig. 3: TLS CCD sensor coordinate system definition and interior orientation parameters.

C: Center point of CCD linear array
H: Principal point
z: Inclination of CCD array to y-axis
At this instant of time three lines of 10200 pixels each are acquired. With the movement of the aircraft three TLS image strips are constructed. In the TLS imagery the pixel coordinates of one certain point are given by its digital image column v and the scan line number u. We define the image coordinate system \((x, y)\) as having its origin in the principle point of the focal plane and its \(x\)-axis perpendicular to the nadir CCD line. It is obvious that the image coordinates \((x, y)\) of an image point are only related to the pixel coordinate \(v\) and the interior orientation parameters. After the interior orientation parameters and the lens distortion of the TLS camera have been estimated in the laboratory by a collimator device, the image coordinates \((x, y)\) of a point can be computed by the following equations with respect to its pixel coordinate \(v\) (including a correction for radial distortion \(\Delta r\)):

\[
\begin{align*}
\left\{ \begin{array}{l}
x' = x_0 + (v - M Id v) \times ps \times \sin z \\
y' = y_0 + (v - M Id v) \times ps \times \cos z \\
x = x' + \Delta r \times x' / r = I_x(v) \\
y = y' + \Delta r \times y' / r = I_y(v)
\end{array} \right.
\end{align*}
\]

and \(\Delta r = a_1 r + a_2 r^3 + a_3 r^5\)

\(x_0, y_0\) are the image coordinates of the center of the CCD arrays, \(z\) is the inclination angle for the forward and backward CCD arrays to the image \(y\) axis, \(a_1, a_2, a_3\) are radial symmetric lens distortion correction coefficients, \(M Id v\) is the number of the CCD central pixel and \(ps\) is the pixel size (Fig. 3).

To relate the image coordinates \((x, y)\) to the object coordinates \((X, Y, Z)\) of a terrain point at any given instant, the following colinearity equations are used:

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} =
\begin{bmatrix}
X_0 \\
Y_0 \\
Z_0
\end{bmatrix}_N + \lambda R(\omega, \phi, \kappa)_N
\begin{bmatrix}
x \\
y \\
c
\end{bmatrix}
\]

(2)

Here \(c\) is the calibrated camera constant; \(X_0, Y_0, Z_0, \omega, \phi\) and \(\kappa\) are the exterior orientation parameters belonging to the \(N\)th scan cycle. Assuming a constant scanning frequency \(f_s\), the orientations parameters are functions of the pixel coordinate \(u\):

\[u = f_s t\]

(3)

These orientation parameters can be measured by the onboard GPS/INS system directly, or estimated by means of a photogrammetric triangulation procedure with some well-distributed control points. The directly measured position and attitude elements \((X_{GPS}, Y_{GPS}, Z_{GPS}, \omega_{INS}, \phi_{INS}, \kappa_{INS})\) from the GPS/INS system do not refer to the perspective center of the imaging camera. The GPS antenna and the center of the INS unit are displaced from the camera, resulting in translational and rotational offsets (Fig. 2). Additionally, there is a boresight misalignment between the axes of the INS and the camera. These translational and rotational displacements should be corrected in order to obtain correct exterior orientation parameters for the instantaneous perspective center:

\[
\begin{align*}
X_0(t) &= X_{GPS}(t) + \Delta X(t) \\
Y_0(t) &= Y_{GPS}(t) + \Delta Y(t) \\
Z_0(t) &= Z_{GPS}(t) + \Delta Z(t) \\
\omega(t) &= \omega_{INS}(t) + \Delta \omega_{INS} \\
\phi(t) &= \phi_{INS}(t) + \Delta \phi_{INS} \\
\kappa(t) &= \kappa_{INS}(t) + \Delta \kappa_{INS}
\end{align*}
\]

(4a)

(4b)

Where \((\Delta X, \Delta Y, \Delta Z)\) are translational displacement corrections between the GPS receiver and the TLS camera; \((\Delta \omega_{INS}, \Delta \phi_{INS}, \Delta \kappa_{INS})\) are INS errors including the boresight misalignment angles between the axes of the INS and the TLS camera.

The translational displacement vector between the GPS receiver and TLS camera can be determined using conventional terrestrial surveying methods after the installation of the TLS system in the aircraft. In the TLS system, the stabilizer keeps the camera pointing vertically to the ground in order to get high quality raw images, so the achieved attitude data from INS refers to the INS/camera body and not to the aircraft. For correction of this kind of displacement,
the aircraft attitude data should be recorded and used. In case of the TLS system this is done by mounting three GPS antennas on the aircraft, and deriving the attitude values from their coordinate recordings. We can measure the GPS-INS displacement when the system is in its initial status, then use the recorded aircraft attitude data to calculate the instant GPS-INS displacement at the same frequency as the aircraft attitude data. Using the same method, the INS-camera displacement vector can also be obtained. For the total GPS-camera displacement vector we obtain:

\[
\begin{bmatrix}
\Delta X(t) \\
\Delta Y(t) \\
\Delta Z(t)
\end{bmatrix} = R(\Omega(t), \Phi(t), K(t)) \begin{bmatrix} T_X \\ T_Y \\ T_Z \end{bmatrix}_{\text{GPS/INS}} + \begin{bmatrix} 0 \\ 0 \\ s \end{bmatrix}_{\text{INS/CAMERA}}
\]

(5)

Where \((T_X, T_Y, T_Z)^T\) is the translational displacement vector between the GPS receiver and the INS; \(s\) is the vertical displacement between the INS and TLS camera. Since it is only about 20.3 cm in length its rotation can be neglected. \((\Omega(t), \Phi(t), K(t))\) are the instantaneous attitude values for the aircraft. Due to the low accuracy of the aircraft attitude data (RMS of the directional values is 0.3°), there should be some residual errors left in the position data for the perspective center of the camera. Assuming the maximum component of GPS-INS displacement vector is 2 meters, the error caused by the directional error of the aircraft attitude data could be 1–3 cm. This fact should be considered in the TLS sensor modeling.

The rotational offsets, i.e. the boresight misalignment between the INS sensor axes and the camera coordinate system cannot be observed via conventional surveying methods. The attitude errors of the INS system mainly consist of the constant offset \((\omega_0, \varphi_0, \kappa_0)\) due to the incorrect initial alignment and the drift errors \((\omega_t, \varphi_t, \kappa_t)\). These errors have to be determined or corrected to obtain correct attitude data \((\omega, \varphi, \kappa)\).

\[
\begin{cases}
\Delta \omega_{\text{INS}} = \omega_0 + \omega_t \\
\Delta \varphi_{\text{INS}} = \varphi_0 + \varphi_t \\
\Delta K_{\text{INS}} = \kappa_0 + \kappa_t
\end{cases}
\]

(6)

By combining the equations from (1) to (6), the sensor model can be written as:

\[
\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} X_{\text{GPS}}(t) \\ Y_{\text{GPS}}(t) \\ Z_{\text{GPS}}(t) \end{bmatrix} + R \begin{bmatrix} \Omega(t) \\ \Phi(t) \\ K(t) \end{bmatrix} \begin{bmatrix} T_X \\ T_Y \\ T_Z \end{bmatrix}_{\text{GPS/INS}} + \frac{i}{c} \begin{bmatrix} \omega_{\text{INS}} + \omega_0 + \omega_t \\ \varphi_{\text{INS}} + \varphi_0 + \varphi_t \\ K_{\text{INS}} + \kappa_0 + \kappa_t \end{bmatrix} \begin{bmatrix} x \\ y \\ -c \end{bmatrix}
\]

(7)

Where \(t = \frac{u}{f_z}; \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} I_x(v) \\ I_y(v) \end{bmatrix} \)

This expresses the relationship between the pixel coordinates \((u, v)\) and the object coordinates \((X, Y, Z)\).

Equations (7) are the basic equations in the triangulation approach, which are appended by a trajectory model. The strength of the triangulation process with TLS data lies in the fact that at any instant of time there is only one set of orientations of the aircraft, yet there are three lines of data acquired. Measurements can be made in all three images, enabling each tie point to be located in three images and a good degree of redundancy to be achieved.

So far we have experimented with three different types of trajectory models: (a) Direct georeferencing with stochastic exterior orientations (DGR), (b) Piecewise Polynomials with kinematic model up to second order and stochastic zero and first order continuity constraints (PPM) and (c) Lagrange Polynomials with variable orientation fixes (LIM). The detailed formulation of our trajectory models is given in the next section.

4 Trajectory Models

4.1 Direct Georeferencing Model (DGR)

Under the condition that the attitude data of the aircraft was recorded successfully, the translational displacement vector can be cal-
culated and corrections can be made for the TLS positional data (equations (4) and (5)). Considering the errors of the aircraft attitude elements and the GPS errors, the positional data for the whole TLS trajectory can be modeled as:

\[
\begin{aligned}
X_0(t) &= X_{GPS}(t) + X_{\text{off}} \\
Y_0(t) &= Y_{GPS}(t) + Y_{\text{off}} \\
Z_0(t) &= Z_{GPS}(t) + Z_{\text{off}}
\end{aligned}
\]

(8)

Where \((X_{\text{off}}, Y_{\text{off}}, Z_{\text{off}})\) are one set of unknown offset parameters to be estimated for the whole strip. Similarly, the INS error terms \((\Delta \omega, \Delta \phi, \Delta \kappa)\) can be modeled by equations (6) for the whole trajectory.

Combining equations (6) to (8), the following observation equations for the triangulation procedure of TLS imagery can be formed:

\[
\begin{aligned}
\begin{cases}
\psi_i = A x_{\text{off}} + B x_i + B x_d + C x_e - l_i; & P_i \\
\psi_i = x_{\text{s}} - l_i; & P_i \\
\psi_i = x_d - l_d; & P_d \\
\psi_i = x_e - l_e; & P_e
\end{cases}
\end{aligned}
\]

(9)

The first equation of this system is the linearized observation equation of (7) and \(x_{\text{off}}\) is the unknown positional offset vector; \(x_i\) and \(x_d\) are the unknown INS shift and drift terms respectively; \(x_{\text{s}}\) is the ground coordinates vector; \(A, B, B_d\) and \(C\) are the corresponding design matrices; \(\psi, l\) and \(P\) are the respective residual and discrepancy vectors and weight matrices.

This trajectory model allows the determination of 9 systematic error components, which are the remaining errors after the GPS-camera displacement vector and the INS error terms correction. The INS shift and drift terms and the ground coordinates are treated as stochastic variables. The triangulation procedure based on this trajectory model can thus be used for TLS system calibration and direct georeferencing as well.

4.2 Piecwise Polynomial Model (PPM)

The piecwise polynomial model has been often used to model the platform trajectory with respect to time (Lee et al. 2000). In a plain polynomial model, the values of the exterior orientation parameters are written as polynomial functions of time. The bundle adjustment solution determines the polynomial coefficients instead of the exterior orientation parameters themselves. Due to the instability of the high-order polynomial models here, the piecewise polynomial model is used, in which the full complex trajectory is divided into sections, with each section having its own set of low-order polynomials. Continuity constraints on the orientation parameters at the section boundaries ensure that the calculated positions and attitudes are continuous across the boundaries.

The piecwise polynomial model is used to model the translational displacement correction terms \((\Delta X, \Delta Y, \Delta Z)\). The model is described as:

\[
\begin{aligned}
\Delta X(t) &= x_0^k + x_1^k t + x_2^k t^2 \\
\Delta Y(t) &= y_0^k + y_1^k t + y_2^k t^2 \\
\Delta Z(t) &= z_0^k + z_1^k t + z_2^k t^2
\end{aligned}
\]

(10)

for \(k = 1, 2, \ldots, n_s\)

\(n_s\) = number of polynomial segments

The INS errors are a function of time and most of the time-dependent errors follow a systematic pattern, so the INS error terms \((\Delta \omega, \Delta \phi, \Delta \kappa)\) are modeled by equations (6) for the whole trajectory.

The total number of unknown parameters in this piecewise polynomial model with \(n_s\) segments is \(9 \times n_s + 6\), i.e.

\[
x_{00, k}, y_{00, k}, z_{00, k}, x_{11, k}, y_{11, k}, z_{11, k};
\]

\(k = 1, 2, \ldots, n_s\)

and \(\omega_0, \phi_0, \kappa_0, \omega_1, \phi_1, \kappa_1\)

There are two kinds of constraints that are applied to each parameter at the section boundaries. The zero order continuity constraints ensure that the value of the function computed from the polynomial in every two neighboring sections is equal at their boundaries, i.e.

\[
\begin{aligned}
x_0^{k-1} + x_1^{k-1} t + x_2^{k-1} t^2 &= x_0^k + x_1^k t + x_2^k t^2 \\
y_0^{k-1} + y_1^{k-1} t + y_2^{k-1} t^2 &= y_0^k + y_1^k t + y_2^k t^2 \\
z_0^{k-1} + z_1^{k-1} t + z_2^{k-1} t^2 &= z_0^k + z_1^k t + z_2^k t^2
\end{aligned}
\]

(11)

\(k = 2, 3, \ldots, n_s\)
The first order continuity constraint requires that the slope, or first order derivative, of the functions in two adjacent sections is forced to have the same value at their boundary, i.e.

\[
\begin{align*}
 x_i^{k+1} + 2x_i^{k-1}t &= x_i^k + 2x_i^kt \\
 y_i^{k+1} + 2y_i^{k-1}t &= y_i^k + 2y_i^kt \\
 z_i^{k+1} + 2z_i^{k-1}t &= z_i^k + 2z_i^kt \\
 k &= 2, 3, \ldots, n,
\end{align*}
\]

(12)

All these constraints are treated as soft (weighted) constraints. The bundle adjustment solution determines the polynomial coefficients instead of the exterior orientation parameters themselves.

The overall estimation model results in:

\[
\begin{align*}
 v_i &= Ax_i + B_i x + B_d x_d + C x_d - l_i; \quad P_i \\
 v_i &= A_i x_i - l_i; \quad P_i \\
 v_i &= A_i x_d - l_i; \quad P_i \\
 v_i &= x_i - l_i; \quad P_i \\
 v_i &= x_d - l_i; \quad P_i \\
 v_i &= x_d - l_i; \quad P_i
\end{align*}
\]

(13)

The first equation of this system is the linearized observation equation of (7) and the following two equations are derived from the two kind of constraints: \(x_{d0}\) contains the unknown translational displacement correction terms (\(AX, AY, AZ\)) for all spline sections; \(x_i\) and \(x_d\) are the unknown INS shift and drift terms respectively; \(x_i\) is the ground coordinate vector; \(A, A_i, A_d, B_i, B_d\) and \(C\) are the corresponding design matrices; \(v, l\) and \(P\) are the respective residual and discrepancy vectors and weight matrices. Through this consequent weighting scheme much flexibility is obtained with respect to the modeling of different trajectory conditions.

4.3 Lagrange Interpolation Model (LIM)

EBNER et al. 1992 developed the principle of orientation images or orientation fixes for the geometric in-flight calibration of MOMS imagery. This method is based on collinearity equations and the exterior orientation parameters are determined in the so-called orientation fixes, which are introduced at certain time intervals. Between the orientation fixes, the exterior orientation parameters of an arbitrary scan line are interpolated using Lagrange polynomials. All unknown orientation parameters for these orientation fixes are estimated in a least squares adjustment procedure, and the parameters for each individual scan line are interpolated with its neighboring orientation fixes. The general form of the n-th order Lagrange polynomial is given as

\[
P_i(t) = \sum_{i=0}^{n} P(t_i) \prod_{j=0, j \neq i}^{n} \frac{t - t_j}{t_i - t_j}
\]

(14)

Where \(P_i(t)\) at time \(t\) is interpolated from the values \(P(t_j)\) at the \(n + 1\) neighboring orientation fixes with time \(t_j\); \(P_i(t)\) is any of the six exterior orientation parameters for a scan line at time \(t\).

The interpolation function of order three has attracted most attention (EBNER et al. 1992, FRASER & SHAO 1996). In our experiments, we modified and adopted this method according to our sensor model with the provision of auxiliary position/attitude data generated by the GPS/INS system. In our case third-order Lagrange polynomials are used to model the aircraft attitude values (\(\Omega, \Phi, K\)) instead of the translational displacement correction terms (\(AX, AZ, AZ\)) because the former are observations from the system and are related to the translational terms by equations (5). Linear Lagrange polynomials are used to model the INS errors (\(A\Omega, A\Phi, A\kappa\)) because of their locally linear systematic pattern (FRASER & SHAO 1996).

After combining equations (7) and (14), the following observation equations for the combined triangulation procedure can be formed:

\[
\begin{align*}
 v_i &= Ax_i + Bx_{INS} + Cx_d - l_i; \quad P_i \\
 v_i &= x_{INS} + B x_i + B_d x_d - l_i; \quad P_i \\
 v_i &= x_i - l_i; \quad P_i \\
 v_i &= x_d - l_i; \quad P_i \\
 v_i &= x_d - l_i; \quad P_i
\end{align*}
\]

(15)

The first equation of this system is the linearized observation equation of (7) and the se-
cond is a constraint which models the INS error terms in the whole trajectory as shift and drift terms. P controls the weight of this constraint. x_{g} is the unknown attitude parameter vector (Ω, Φ, K) of the aircraft for the orientation fixes; x_{INS} is the unknown INS error $(A\omega, A\phi, A\kappa)$ vector for the orientation fixes; x_{s} and x_{d} are the unknown INS shift and drift terms respectively; x_{g} is the ground coordinates vector; A, B, B_{s}, B_{d} and C are the corresponding design matrices; v, l and P are the respective residual and discrepancy vectors and weight matrices.

If we have f orientation fixes and p tie/control points, there are $6 \times f + 3 \times p + 6$ unknowns to be estimated in bundle adjustment. The selection of the number of orientation fixes depends on many factors. The software package ORIMA of LH Systems for their three-line scanner ADS40 triangulation procedure argues that the interval between two neighboring orientation fixes must be shorter than the ground distance corresponding to the „short base“ (the distance between the nadir and backward image lines) of the ADS40. For the TLS system, this corresponds to 3000–3600 scan lines. From our experiences, the orientation fixes interval of 2000 scan-lines (4 seconds flight time) is appropriate to model the TLS trajectory. The accuracy does not improve anymore by using a smaller interval below 1500 scan lines.

5 Tie Point Extraction

The DGR method, because of its low number of unknown orientation parameters (9), can work with only few tie and control points. If there are enough control points one could even do without extra tie points altogether. However, the triangulation procedures with the LIM and PPM trajectory models need a large number of tie points. A software package has been developed for tie point extraction from TLS imagery. Tie points can thus be extracted semi-automatically or fully automatically. Problems with fully automatic extraction might occur in low image contrast areas and forest areas. Also, the blunders need to be detected and deleted. The image matching process is done in image space and exploits all three, i.e. forward, nadir and backward TLS images. In order to achieve sub-pixel accuracy the Least Squares Matching is used. The procedure runs as follows:

- The Foerstner interest operator is used to select well defined feature points that are suitable for image matching. When working in the semi-automatic mode, the user can select the match points in the nadir image. If the software works in fully automatic mode, the nadir-view image will be divided into small image windows (21 × 21 pixels) and then only one feature point will be extracted in each image window. In our implementation, the threshold for the Foerstner parameter roundness has been set to 0.85, the gray value variance of the image window is not allowed to drop below 20.

- Pixel accuracy level conjugate points are generated using the maximum of the normalized correlation coefficient. The positioning of the search areas is determined by using the already known tie/control points in the neighborhood. Image pyramids and a matching strategy based on region growing, which takes the already manually measured control points as seed points are used to get these approximate points. The threshold of the normalized correlation coefficient is 0.85.

- Least squares matching is finally used to refine the image coordinates of the tie points in order to achieve sub-pixel accuracy.

In our first test the semi-automatic tie point extraction strategy was used. Several hundreds of tie points are thus extracted in an interactive way. These tie points are introduced into the combined aerial triangulation procedure. In addition, the results of fully automatic tie point extraction are also reported.

6 Experimental Results

6.1 Image Data

In our experiments, TLS images in forward, nadir and backward views of Japan’s GSI test area together with the position and attitude data of the sensor were used to eva-
valuate the geometric accuracy of the TLS imagery and our triangulation approaches. The GSI test area is covered by a strip of 650 m × 2500 m. The footprint is about 5.6 cm. There are two versions of the trajectory data for the GSI area. One is the data that includes the GPS-camera displacement corrections and the other does not. The test area is relatively flat. All the 48 control points are signalized marks on the ground or on the top of buildings. The control points were measured using GPS and conventional total stations. The obtained accuracy was reported as 2 cm for the horizontal and 3 cm for the vertical components. The image coordinates of these points were measured manually in the TLS images.

6.2 Results of the DGR Model

The experiment with the DGR trajectory model was designed to test the overall performance of the whole sensor system. In a first step, the offsets between GPS receiver and the perspective center of the TLS camera, the INS shift and drift error terms and the misalignment angles were estimated by using a subset of the control points plus some check points, used as tie points here. Then these parameters were used to calculate the ground coordinates of the remaining checkpoints by equation (7). Tab. 2 gives the RMS values of the discrepancies for the checkpoints for the study area. \(\sigma_2 \) is the estimated standard deviation of unit weight.

The triangulation procedure gives better results when the GPS-camera displacement corrections are applied. With different numbers and distributions of control points, 4.9–6.3 cm and 8.6–9.4 cm absolute accuracy in planimetry and height are achieved. Due to the fact that the GPS-camera displacement corrections for each scan line are variable with time (equation (5)), the accuracy is worse with the trajectory data without the displacement corrections. Thus, 7.1–8.8 cm and 16.2–17.2 cm absolute accuracy in planimetry and height is achieved here. These results prove that the attitude data for the aircraft should be recorded and the GPS-camera displacement corrections need to be applied, at least for the DGR model, to achieve a reasonable accuracy.

However, the results are widely independent on the number of control points. For low accuracy applications, the DGR model is a good solution because it can achieve reasonable results with only 4–8 well-distributed control points. Also, the triangulation results with the DGR model can be used to detect and delete large-size blunders in the fully automatic tie point generation procedure.

6.3 Results of the PPM and LIM Models

Similar to the situation with frame-based images, the triangulation accuracy of TLS images with the PPM and LIM trajectory models is affected by the number of control points and their distribution. Also, the number of piecewise sections and orientation fixes will affect the resulting accuracy. Tab. 3 and 4 provide a summary of the accuracies obtained for the study area with the PPM and LIM models respectively. In these results, the tie points were measured semi-automatically. Tab. 5 gives the results with tie points extracted fully automatically.

With different numbers of spline sections or orientation fixes, 2.6–6.0 cm and 4.9–11.7 cm absolute accuracy in planimetry and height is attained using the PPM and LIM models. These results show that a ground point determination of 0.5–1.2 pixel accuracy in planimetry and 0.7–2.1 pixel
accuracy in height are achieved. Given the same number of GCPs, the LIM model returns slightly better results than the PPM model, both in \(\sigma_\delta \) and in the RMS values for the check points. When evaluating the absolute accuracy level it should be noted that the signalized control points and check

points are very small in the images (about 3–7 pixels diameter) and they were measured manually, which does not give the best possible accuracy. Also, the GPS-determined reference values were said to have already an inaccuracy of 2 cm in planimetry and 3 cm in height, accounting for roughly 50% of the error budget.

Tab. 5 shows the triangulation results with the LIM model and fully automatically extracted tie points. In this result, the number of orientation fixes was set to be 40. The number of tie points after blunder cleaning is 3654 (in our experiments 5–10% blunders are detected and deleted). The accuracy in height is slightly worse than the one with the semi-automatic tie point measurement version. This can be expected because there are some small size blunders left here.

In our systems we get high correlations between the estimated orientation parameters. By analysis of the covariance matrix of the estimated parameters, the correlations between the pitch (roll) values and the positional elements in X (Y) direction reach 90%. Therefore TLS image strips with different flight direction and different flying height should be used to de-correlate the estimated orientation elements, especially the estimated exterior orientation elements and interior orientation parameters, if used in a self-calibration procedure. The results of these works will be reported later.

6.4 Computing times

Computing times are of only temporary interest because they depend largely on the computer configuration used and on the status of software optimization. In the following we will give some numbers just for the
purpose of giving the reader some ideas about the coarse amount of CPU times needed to perform tie point extraction and triangulation. The number refer to the computer configuration DELL Optiplex GX1P with Pentium II processor at 450 MHz and 256 MB RAM. Also, at its current stage, the software is not fully optimized concerning speed. Improvements both on the software and hardware side will be made as the project progresses.

The automated extraction of 3654 tie points from an image triplet using crosscorrelation takes 37 min. If the results obtained are refined by least squares matching an additional 80 min is added.

For triangulation with three image strips we obtain:

DGR model:
- 206 tie points: \(<1/10\) sec

PPM model:
- 206 tie points, 3 segments: 40 sec
- 206 tie points, 21 segments: 2.5 min

LIM model:
- 206 tie points, 5 segments: 20 sec in total
- 206 tie points, 50 segments: 22 sec per iteration (2–3 iterations)
- 3654 tie points, 50 segments: 9 min per iteration (2–3 iterations)

In tie point extraction the computing times should depend linearly on the number of points extracted and on the method of matching used.

In triangulation we have to deal with more complex relationships. The main effort goes into the solution of the normal equations. Here the size and the sparsity of the normals is critical. The number of operations (and thus the CPU) goes with the \(n b^2\) law \((n = \text{number of unknowns}, b = \text{bandwidth})\). Therefore the number of segments and the number of tiepoints both have a significant influence. Some additional considerations apply if the inverse of the normals is computed for precision studies (this procedure is implemented, but not included in the given numbers).

7 Conclusions

The sensor model of the Three-Line-Scanner (TLS) system, developed by STARLABO Corporation, Tokyo has been described. Triangulation procedures with three different trajectory models have been developed: (a) Direct georeferencing with stochastic exterior orientations (DGR), (b) Piecewise Polynomials with kinematic model up to second order and stochastic zero and first order continuity constraints (PPM) and (c) Lagrange Polynomials with variable orientation fixes (LIM).

With different numbers and distributions of control points and tie points, 4.9–6.3 cm and 8.6–9.4 cm absolute accuracy in planimetry and height is achieved using the DGR model under the condition that the GPS/camera displacement corrections have been applied. Moreover, with different number of spline sections or orientation fixes, 2.6–6.0 cm and 4.9–11.7 cm absolute accuracy in planimetry and height is attained using the PPM and LIM models. These results show that a ground point determination of 0.5–1.2 pixel accuracy in planimetry and 0.7–2.1 pixel accuracy in height has been achieved. However, with the given data the accuracy limit of the system could not be fully explored, because both the image measurements and the accuracy of control and check points did not present the state-of-the-art.

Furthermore, the backward and forward images suffered under significant image blur, caused by lens imperfections.

The orientation parameter determination using the DGR model has the advantage of stability and needs less ground control points, but the obtained accuracy is better with the PPM and LIM models. This however is penalized by the need to have more well-distributed ground control and tie points with these latter models.

The CPU times indicate, while the software is not yet fully optimized in this respect and while they depend strongly on the computer configuration used, that they impose no real problem. The sensor model and the triangulation of relatively large blocks can be handled in reasonable time.
The major time factor relates to the extraction of tie points. Here high precision results are penalized by additional CPU efforts (least squares matching adds about 200% CPU time to the core correlation results). This must be compared to the times absorbed by manual measurements, and here we are by many factors faster. However, realistically, real-time performance cannot be expected from such a system.

The future experiments will include the triangulation procedure with self-calibration, using TLS multi- and cross-strips imagery, the detection of the small size blunders, the investigation of the effect of undetected small blunders and other issues. The covariance matrix of the estimated parameters is available for extensive theoretical precision studies of the different system configurations.

Currently, the TLS sensor is being replaced by a new camera, called STARIMAGER SL-200, which features a new, improved lens, 14 400 pixels per line and an additional infrared CCD line in the focal plane. Our future tests will include this new imagery as well.

Acknowledgement

The authors would like to thank STARLABO Corporation, Tokyo for their project support and provision of the test TLS image data sets and control point coordinates.

References

Anschrift der Autoren:
Prof. Dr. ARMIN GRUEN
ZHANG Li, M.Sc.
Institute of Geodesy and Photogrammetry
ETH-Hoenggerberg, CH-8093, Zürich
Switzerland,
e-mail: (gruen, zhangl)@geod.baug.ethz.ch

Manuskript eingereicht: Oktober 2002
Angenommen: November 2002
Eine Anwendung von Spline-Verfahren zur DGM-Ausdünnung

OLGA WÄLDER & MANFRED F. BUCHROITHNER, Dresden

Keywords: cartography, digital terrain model (DTM), spline-method, Bezier-splines

Summary: An application of spline-methods for the thinning of digital terrain models. A special method for thinning of digital terrain models is proposed. On one hand it helps to reduce the memory resources, on the other hand this approach optimally reproduces the original structure of the original DTM. As a result of this thinning we obtain a special „skin-structure“ of the real geo-relief. Two different methods for modeling the sampling points of this skin-structure are discussed. These simple and efficient approaches are applied to two simulated surfaces and the results are compared.

1 Problemstellung

Im Rahmen des Teilprojektes „Entwicklung und Anwendung von Methoden für die dreidimensionale Visualisierung der Marsoberfläche aus HRSC-Daten“ des Projektes „Mission Mars Express“ (MEX), unterstützt vom Deutschen Zentrum für Luft- und Raumfahrt e.V. (DLR), soll die Entwicklung bzw. Adaption von Methoden zur Visualisierung dreidimensionaler kartenverwandter Darstellungen auf der Basis von Daten der High Resolution Stereo Camera (HRSC) realisiert werden.

Ein optimiertes 3D-Netz, basierend auf den 3D-Punkten des aus HRSC-Daten abgeleiteten Geländmodells, soll generiert werden. Dazu wird eine spezielle Ausdünnung des DGM durchgeführt, die zu einer erheblichen Minimierung des Speicherungsaufwandes führt. Unter einem optimierten 3D-Netz ist in diesem Zusammenhang eine topologische Struktur aus einzelnen 2D-Flächen zu verstehen, welche das gegebene Gelände morphologisch ausreichend genau, d.h. die wesentlichen Gerippelinien berücksichtigt und mit minimiertem Speicherbedarf abgebildet.

2 Diskussion der Verfahren

Bei einer Polynomdarstellung einer Oberfläche wird die Z-Koordinate als Funktion

\[
Z = Z(X, Y) = a_1 + a_2X + a_3Y + a_4XY + a_5X^2 + \ldots
\]

(1)

Dabei werden die unbekannten Koeffizienten aus der folgenden Matrizengleichung bestimmt:

\[
\begin{pmatrix}
Z_1 \\
Z_2 \\
\vdots \\
Z_n
\end{pmatrix}
=
\begin{pmatrix}
1 & X_1 & Y_1 & X_1Y_1 & \ldots \\
1 & X_2 & Y_2 & X_2Y_2 & \ldots \\
\vdots \\
1 & X_n & Y_n & X_nY_n & \ldots
\end{pmatrix}
\begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_n
\end{pmatrix}
\]

(2)

oder \(Z = Ba \), also \(a = (B^T B)^{-1} B^T Z \)

Eine eindeutige Lösung von (2) kann ganz offensichtlich dann erreicht werden, wenn die Anzahl der unbekannten Variablen \(a_1, a_2, \ldots \) und die Anzahl der Spalten und Zeilen in der Matrix \(B \) identisch ist. Wenn man nur von den \(z \)-Werten an vier Stützpunkten ausgeht, dazu aber als Zusatzinformation jeweils die zwei partiellen Ableitungen nach \(x \) und \(y \) an diesen Punkten bestimmt, dann können in der Polynomdarstellung (1) die Koeffizienten \(a_1, a_2, \ldots \) eindeutig bestimmt werden, wie es schematisch in (3) dargestellt ist:

\[
z = [1, x, y, xy, x^2, y^2, x^2y, x^3y, xy^2, x^4y, xy^3]^T,
\]

\(z(x, y) = z^T \cdot a \),

\(a = [a_1, \ldots, a_4] \),

dann

\[
Z(x, y) = z^T \cdot a \quad \text{und}
\]

\[
\begin{bmatrix}
z(x, y) \\
\partial z(x, y) \\
\partial x \\
\partial z(x, y) \\
\partial y
\end{bmatrix}
=
\begin{bmatrix}
a_1 \\
\ldots \\
a_{12}
\end{bmatrix}
\begin{bmatrix}
Z_i \\
\partial Z_i \\
\partial x \\
\partial Z_i \\
\partial y
\end{bmatrix}
\Rightarrow
\]

\[
\begin{bmatrix}
a_1 \\
\ldots \\
a_{12}
\end{bmatrix}
=
\begin{bmatrix}
z(x, y) \\
\partial z(x, y) \\
\partial x \\
\partial z(x, y) \\
\partial y
\end{bmatrix}
^{-1}
\begin{bmatrix}
Z_i \\
\partial Z_i \\
\partial x \\
\partial Z_i \\
\partial y
\end{bmatrix}
\]

(3)

des gekennzeichneten Bereiches liegen, berechnet, vgl. MENZ (1998):

\[
\frac{\partial Z}{\partial x} \approx \frac{E_r - E_i}{d/2},
\]

\[
\frac{\partial Z}{\partial y} \approx \frac{E_u - E_a}{d/2}.
\]

\(d\) bezeichnet hier die Breite des groben Gitters, \(E_r, E_i, E_a, E_u\) sind die Mittelwerte der Z-Werte in den rechten, linken, oberen und unteren Hälften des in Abb. 1 gekennzeichneten Bereichs.

Anschließend wird die gesamte absolute Abweichung der wahren Z-Werte der Punkte aus dem DGM von den mittels der angepassten Bezier-Fläche geschätzten Werten berechnet. Liegt diese Abweichung im zulässigen, a priori vorgegebenen, Genauigkeitsbereich, so wird die Masche mit den Polynomkoefizienten \(a_i, i = 1, \ldots, 12\) der entsprechenden Bezier-Fläche abgespeichert, vgl. (3). Wenn diese Voraussetzung nicht erfüllt wird, so wird die betroffene Masche bei der nächsten Schleife des Algorithmus nochmals „geviertelt“.

Die gewichteten Mittelwerte können auf unterschiedliche Weise berechnet werden. Als häufig verwendetes diskretes Verfahren soll hier die Methode der inversen Distanzen erwähnt werden. In etwas allgemeinerer Form lässt sich die Gewichtung hierbei folgendermaßen darstellen:

\[w_i = \frac{F(d_i)}{W}, \quad W = \sum_{i=1}^{n} w_i, \quad i = 1, \ldots, n. \] (5)

\(F(d_i)\) ist ein Einflussfunktional, \(d_i\) stellt den Abstand zwischen dem \(i\)-ten Punkt und der Stelle, an der geschätzt werden muss, dar, \(n\) ist die Anzahl der bei der Schätzung berücksichtigten Punkte. Im Fall der gewöhnlichen Methode der inversen Distanzen nutzt man ein Einflussfunktional der Form

\[F(d_i) = \frac{1}{d_i^2}, \quad i = 1, \ldots, n. \] (6)

Der maximal mögliche Abstand zwischen den Punkten kann die „natürliche“ Grenze des Definitionsreiches des Einflussfunktionaler beschreiben. Der mit zunehmendem Abstand nachlassende Einfluss lässt sich beispielsweise mit einer monoton fallenden exponentiellen Funktion darstellen.

Gesteuerte Auswahl von Punkten des DGM.

Ein bekanntes Kriterium für eine solche Auswahl stellt die so genannte Entropie dar. Bei dieser gibt es durchaus unterschiedliche Definitionen. In der Stochastik wird die Entropie auf der Basis der Verteilung einer Zufallsgröße eingeführt. Von den diskreten Verteilungen liefert die Gleichverteilung den maximalen Wert der Entropie, unter den stetigen Verteilungen stellt die Normalverteilung als Extremfall den Fall vom maximalen Chaos dar. Im Fall einer deterministischen Betrachtungsweise muss nach einem Maß gesucht werden, welches den Informationsgehalt jedes Punktes in der Gruppe erfasst. Jener Punkt, der mittels seiner Nachbarpunkte am schlechtesten geschätzt werden kann, wird als der erkannt, welcher am not-
wendigsten ist, auf den somit nicht verzich
tet werden kann. Zum Beispiel kann dies der
Punkt mit dem maximalen Schätzfehler, be-
stimmt durch eine Cross-Validation, sein.

Auf der Grundlage des Entropieansatzes,
vgl. SHANNON & WEAVER (1963), kann ein
Entropie-Maß in der folgenden Form abge-
leitet werden:

\[e = \frac{1}{\max(\sigma_i)} \cdot \sum_{i=1}^{n(M)} \]

mit

\[\sigma_i = (Z_i - \hat{Z}_i)^2, \]

wobei \(\hat{Z}_i\) ein Schätzwert für den wahren \(Z_i\)-
Wert auf der Basis der \(Z\)-Werte der übrigen
Maschenpunkte einer Masche \(M\) des Gitters
ist, und \(n(M)\) die Anzahl der Punkte dieser
Masche darstellt.

Nun ist derjenige Punkt in dem Punkt \(A\)
benachbarten Bereich (siehe Abb. 1) zu fin-
den, bei dem die Schätzvarianz \(\sigma_i\) aus (8)
den maximalen Wert annimmt. Dann wird
der \(Z\)-Wert dieses Punktes als der Schätz-
wert für den entsprechenden Stützpunkt \(A\)
der Bézier-Fläche verwendet.

Anschließend soll das Gütemaß für jede
Bézier-Fläche geprüft werden. Diskrete In-
terpolationsmethoden bieten unterschiedli-
che Ansätze zur Abschätzung ihrer Ge-
nauigkeit an. Als Alternative zu der klassi-
 schen Methode der minimalen Quadrate
kann auch die bereits erwähnte Cross-Vali-
dation-Methode benutzt werden: Ein Punkt
des DGM unter der Bézier-Fläche wird
„weg gestrichen“, und eine Flächenglei-
chung basierend auf den restlichen Punkten
wird anschließend hergeleitet. Die absolute
Differenz zwischen dem wahren \(Z\)-Wert die-
es Punktes und seinem Schätzwert, abgelei-
tet aus der Flächengleichung, stellt somit
den Schätzfehler dar. Wird dies sukzessiv
für alle Punkte durchgeführt, so liegt eine
komplette Erfassung des Schätzfehlers vor,
die Genauigkeit des Modells kann somit flä-
chendeckend analysiert werden. Um hohen
Rechenaufwand zu vermeiden, kann diese
Methode auf je einen zufällig ausgewählten
Punkt für jede Bézier-Fläche angewendet

werden. Es können aber mehrere Punkte auf
einmal weg gestrichen werden. Klarerweise
wird dann der Wert der auf diesen alterna-
tiven Wegen berechneten Genauigkeit von
dem klassischen Schätzfehler der Cross-Val-
dation-Methode abweichen.

3 Vergleich der Verfahren

Beide Ansätze werden anhand von zwei Bei-
spielen verglichen. Die beiden unten ange-
führten Oberflächen werden jeweils auf ei-

einem \((x, y)\)-Gitter, \(0 \leq x, y \leq 1\) mit Mas-
chenweite 0.02 erzeugt (siehe Abb. 2 und
3). Diese einfachen Oberflächen erfüllen
dann die folgenden Gleichungen:

\[\text{Abb. 2: Beispiel 1: Oberfläche mit einem auffälli-
ger Maximum.} \]

\[\text{Abb. 2a: Beispiel 1: Totale Filterung mit einfachem}
\text{arithmetischem Mittel. Ergebnis: Beinahe Null-Fläche.} \]

Abb. 3a: Beispiel 2: Totale Filterung mit einfaches arithmetischem Mittel.

Abb. 2c: Beispiel 1: Gesteuerte Filterung.

Abb. 3b: Beispiel 2: Totale Filterung mit der Methode der inversen Distanzen.

Abb. 3: Beispiel 2: Glatte wellenförmige Oberfläche. Achtung: Maßstabsänderung bei Z-Koordinate in Abb. 3a–3c.

Abb. 3c: Beispiel 2: Gesteuerte Filterung.
Beispiel 1:
\[z(x, y) = \begin{cases}
1, & (x, y) = (0.5, 0.5) \\
0, & \text{sonst}
\end{cases} \]

und

Beispiel 2:
\[z(x, y) = \frac{\sin(150(x - 0.5)(y - 0.5)^2)}{0.0001 + (x - 0.5)^2 + (y - 0.5)^2}. \] (9)

Es soll nun eine Ausdünnung dieser Flächen auf ein größeres Gitter der Maschenweite 0.2, also um einen Faktor 10 größer, erfolgen. Die totale Filterung wird sowohl mittels des einfachen arithmetischen Mittelwertes (Abb. 2a und 3a) als auch mit der Methode der inversen Distanzen (Abb. 2b und 3b) durchgeführt. Für die gesteuerte Auswahl von Punkten des DGM (Abb. 2c und 3c) wird der arithmetische Mittelwert als Schätzwert in (8) benutzt. Entsprechende Algorithmen wurden mit der mathematischen Software MATLAB realisiert. Die Genauigkeit der entsprechenden Bezier-Flächen, d.h. die nicht gemittelte Summe der Abweichungen über alle Maschen, sowie der Maximalwert der Oberflächen werden verglichen.

4 Diskussion und Ausblick

Danksagung

Die vorliegende Arbeit wurde im Rahmen des MEX-Projektes, das durch die finanzielle Unterstützung des Deutschen Zentrums für Luft- und Raumfahrt e.V. (DLR) ermöglicht wird, am Institut für Kartographie der TU Dresden angefertigt. Dank schulden die Autoren Prof. SIEGFRIED MEIER, Institut für Planetare Geodäsie der TU Dresden, der sie mit Diskussionen unterstützt hat.

Literatur

Anschriift der Verfasser:

Dr. rer. nat. OLGA WÄLDER, Prof. Dr. phil. habil. MANFRED BUCHROITHNER
Institut für Kartographie, TU Dresden
Mommsenstrasse 13, 01062 Dresden
Tel.: 0351-4633-6200 und 0351-4633-4809
Fax: 0351-463-3-7028, e-mail: Olga.Waeelder@mailbox.tu-dresden.de & Manfred.Buchroithner@mailbox.tu-dresden.de

Manuskript eingereicht: August 2002
Angenommen: Dezember 2002
Beiträge zur Extraktion von Felskanten aus Airborne Laser Scanner Daten am Beispiel der Elbsandsteinformationen im Nationalpark Sächsische Schweiz

ELMAR CSAPLOVICS, Dresden, KATHLEEN NAUMANN, Wien & STEFAN WAGENKNECHT, Dresden

Keywords: topography, airborne laser scanner data, extraction of rock edges, Elbe sandstone formations in Saxony

Summary: Contributions to the Extraction of Rock Edges from Airborne Laser Scanner Data – Case Study of Elbe Sandstone Formations in the National Park Saxon Switzerland. Traditional methods of topographic modelling meet their limits if applied to rock formations in forested areas. Airborne laser scanning collects densely distributed data of the reflecting surfaces with highest spatial accuracies. Forest canopies as well as ground surfaces can be detected. Thus morphological edges of the terrain are detectable as well. Airborne laser scanning meets its limits, if the terrain is covered by very dense forest stands, as penetration of the canopy will not be possible even under very high laser pulse frequencies. On the other hand, similar surface heights of forest canopies and adjacent rock surfaces create problems of classification. The region of the limestone landscapes along the Elbe river, protected by the National Park Sächsische Schweiz, represents the perfect real-world example of these terrain conditions. As one of many other multithematic activities in the frame of a complex transnational project, the presented study focussed on the analysis of possibilities to extract rock formations from laser scanner data by applying methods, which take into account the specific constraints and at the same time allow for highest accuracies of the digital documentation of the rock formations. It was learned that semi-automatic approaches to laser data specification and representation supported by topographic information systems and digital image analysis show quite remarkable results. Especially the application of methods of digital image filtering proved for a high efficiency in extracting edges of rock formations, which can then be integrated with over-all topographic modelling.
1 Einleitung

Der großflächig schutzbedürftige Landschaftsraum ist vielfältigen Belastungen ausgesetzt.

Grundbaustein für eine multithematische und multitemporale Datenauswertung zur Lösung vielschichtiger Nutzungskonflikte mit dem Ziel, bedrohte Naturräume vor jeglicher Beeinträchtigung zu schützen, ist eine hochgenaue räumliche Bezugsebene. Dieses

2 Laser Scanner Daten des Nationalparks Sächsische Schweiz

Nicht alle Laserpunkte repräsentieren die Geländeoberfläche. Ein Anteil der Punkte wird in bzw. an der Vegetation (z.B. in den Baumkronen), aber auch an Gebäuden, Brücken und anderen Objekten reflektiert. Diese im Allgemeinen als Oberflächenpunkte bezeichneten Messungen sind für die Rechnung von digitalen Modellen zur mathematischen Beschreibung der Geländeoberfläche nicht relevant, wohl aber für die Ableitung von digitalen Oberflächenmodellen (z.B. Kronendachmodelle von Waldbeständen).

3 Einfache Ansätze zur Extraktion von Felskanten

Bei Beschränkung auf die Anwendung automatischer Filterung der Originaldaten in Gebieten mit hoher Reliefenergie (Felsflächen, Felsabbrüche, Schluchten) konnten keine zufrieden stellenden Ergebnisse der Geländemodellierung erreicht werden. Ein limitierender Faktor ist in diesem Zusammenhang auch die relativ geringe Punkt-

Abb. 2: Limitierte Anwendbarkeit ausschließlich automatischer Filterungen über dichten Wald- und Felsgebieten. Links: Vegetationspunkte (dichter Nadelwald), die fehlerhaft als Bodenpunkte klassifiziert wurden; Rechts: korrekt klassifizierte Bodenpunkte (Felspunkte der Felsformation „Gamrig“) (aus Wagenknecht & Csaplovics 2000).

Abb. 3 zeigt ein Laser-DGM der Felsformation „Gamrig“ im Nationalparkbereich „Vordere Sächsische Schweiz“. In diesem Fall waren – neben der automatischen Filterung – zusätzlich terrestrisch-geodätische Messungen sowie visuelle Interpretationen von CIR-Luftbildern zur koordinativen Festlegung des Verlaufes des Felsfußes durchgeführt worden. Das so berechnete Geländemodell der Felsformation ist durch eine hohe geomorphologische Detailgenauigkeit geprägt.

In Abb. 4 ist die Perspektivansicht des digitalen Geländemodells der Felsformation „Gamrig“ als Ergebnis einer photogrammetrischen Stereoauswertung eines CIR-Luftbildpaares (Bildmaßstab ca. 1: 10 400) dargestellt. Die Schwachstellen der Luftbildauswertung beruhen auf Problemen bei der Auswahl repräsentativer Felspunkte und

Abb. 3: Perspektivansicht des aus Laserdaten abgeleiteten DGM der Felsformation „Gamrig“, nach SCOP-Filterung und zusätzlicher Interaktion im Felsbereich (aus WAGENKNECHT 1999).

Abb. 4: Perspektivansicht des aus photogrammetrischen Messungen abgeleiteten DGM der Felsformation „Gamrig“ (aus RAUSCH 1994).

dichte der Laserdaten. Stark gegliederte Felsformationen werden durch den Filtervorgang geglättet. Markante Details des Felsreliefs, insbesondere Felskanten werden kaum oder gar nicht berücksichtigt. Eine

Abb. 5: Geschummerte Perspektivansicht des aus Laserdaten abgeleiteten DGM des Polenztales nach Integration von interaktiv ausgewählten Strukturlinien.

Durch die starke Zergliederung der Felslandschaft sowie der häufig dichten Bewaldung ist eine Bestimmung von zusätzlichen Punkten am Felsfuß mit Hilfe terrestrischer Aufnahmeverfahren oft nicht oder nur mit hohem Aufwand möglich. Für das Testgebiet Polenztal wurde versucht, direkt Laserpunkte zu bestimmen, die die markanten Felsabbrüche gut charakterisieren. Die durch die Punkte so definierten Strukturlinien wurden als zusätzliche Forminformation in die abschließende Interpolation des Geländemodells einbezogen.

Abb. 5 zeigt das Ergebnis des Vorgehens. Zweifellos ist diese Art der Strukturliniendefinition lediglich ein rudimentärer Ansatz, führt jedoch – im Rahmen der zu erwartenden Genauigkeit – bereits zu deutlichen Verbesserungen in der Oberflächenbeschreibung im Felsbereich.

4 Extraktion von Felskanten mit Hilfe von Bildverarbeitungsmethoden

Aufgrund der oben beschriebenen Schwierigkeiten bei der Felsabgrenzung wurde in weiterer Folge der Versuch unternommen, mit Hilfe von Bildverarbeitungsmethoden Geländekanten aus Laserdaten zu extrahieren.

4.1 Ableitung von Kantenelementen

Das Ergebnis ist in Abb. 6 dargestellt. Das Kantenbild enthält neben den relevanten Informationen für die Extraktion von Felsabbrüchen auch Informationen über die Höhenvariationen der Bäume. Zum Teil sind Einzelbäume als kleine geschlossene Linienzüge erkennbar. Grauwertgradienten machen das Ausmaß dieser Differenzen sichtbar. Die Breite der Linien beschreibt die räumliche Ausdehnung der Höhendiffe-

Abb. 6: Kantenbild (Sobel 5 × 5), Bildausschnitt ca. 950 m × 1070 m (NAUMANN 2000).

Je nach Höhenvarianz der umgebenden Flächen können Felsabbrüche gut, weniger gut oder gar nicht erkannt werden. Dies hängt stark davon ab, ob der Fels sich über den umgebenden Wald erhebt oder ob hohe Bäume bis an den Rand des Felsens heranwachsen und dann oftmals eine ähnliche Höhe wie der Fels selbst aufweisen. Weiterhin ist entscheidend, ob der Fels bewaldet ist oder nicht.

4.2 Halbautomatische Extraktion von Felsabbruchlinien

Im Folgenden wurde versucht, aus den Kantenbildern die sichtbaren Abgrenzungen der Felsabbrüche zu extrahieren. Dazu wurde zuerst das über den Sobel-Operator veränderte Bild in ein Binärbild überführt. Der Schwellwert wurde so festgelegt, dass nur Kanten mit großen Höhenunterschieden abgebildet werden.

In Abb. 8 ist das Ergebnis der Ausdünnung mit einer 3×3-Maske ersichtlich. Die breiten Linien sind dünner geworden, schmale Linien wurden ganz entfernt. Diese Methode hat die gleiche Wirkung wie die

Abb. 7: Binärbild nach Schwellwertbildung, Bildausschnitt ca. 950 m \times 1070 m (NAUMANN 2000).

Abb. 8: Ausgedünntes Binärbild, Bildausschnitt ca. 950 m \times 1070 m (NAUMANN 2000).

Anwendung des morphologischen Operators „Dilatation“ auf ein Binärbild, bei dem Objekte mit dem Wert 1 ausgedehnt werden, hier also der Hintergrund, der auf Kosten der Kanten im Bild vergrößert wird.
Um im weiteren Verlauf eine Vektorisierung der Felslinien durchführen zu können, ist es sinnvoll, die Lücken zwischen den Linien zu verkleinern. Das kann man durch die Anwendung eines Minimumfilters auf das ausgedünnte Bild erreichen. Dadurch werden die noch vorhandenen Objektpixel wieder ausgedehnt. Diese Filterung entspricht dem morphologischen Operator „Erosion“. Eine Dilatation mit einer nachfolgenden Erosion wird als Closing (Schließen) bezeichnet.

Im nächsten Schritt werden die potenziellen Felskanten vektorisiert. Dazu stehen GIS-Werkzeuge zur Verfügung, die ein interaktives Festlegen des Anfangspunktes der zu vektorisierenden Linie zulassen und danach die Linie selbstständig verfolgen. Durch Auswahl geeigneter Werte für den Suchradius und für die zulässige Distanz ist es möglich, auch größere Lücken in den Linien zu überbrücken und damit eine interaktive Editierung durchzuführen.

Abb. 9 zeigt die vektorisierten potenziellen Felskanten für den ausgewählten Bereich des Polenztales (vgl. Abb. 5).

5 Diskussion

aus Laserdaten. Voraussetzung dafür ist zunächst eine grobe lagemäßige Bestimmung der Bruchlinien, beispielsweise mit Hilfe des vorgestellten Ansatzes aus der Bildverarbeitung.

6 Ausblick

Im Umfeld der topographisch orientierten Auswertung von Laserscannerdaten liegt ein Hauptgewicht auf den Bestrebungen, eine automatische Extraktion von topographisch relevanten Bruchkanten zu erreichen (BRZANK 2001, BRIESE et al. 2002).

7 Dank

Die Daten der ALS-Befliegung wurden vom Landesvermessungsamt Sachsen und der Landesanstalt für Forsten zur Verfügung gestellt. Die Bearbeitung der Daten erfolgte im Rahmen von übergeordneten Kooperationsprogrammen mit dem Institut für Photogrammetrie und Fernerkundung der TU Wien.

8 Literatur

Anschriften der Verfasser:
Prof. Dr. techn. habil. Elmar Csaplovics
Dipl.-Ing. Stefan Wagenknecht
Technische Universität Dresden, Institut für Photogrammetrie und Fernerkundung
Mommsenstraße 13, D-01069 Dresden
Tel.: +49-351-463-33 680
Fax: +49-351-463-37 266,
e-mail: csaplovi@tcs.urz.tu-dresden.de
e-mail: Stefan.Wagenknecht@mailbox.tu-dresden.de

Dipl.-Ing. Kathleen Naumann
Technische Universität Wien, Institut für Photogrammetrie und Fernerkundung
Gußhausstraße 27–29, A-1040 Wien
Tel.: +43-1-58801-12221,
Fax: +43-1-58801-12299,
e-mail: knaumann@ipf.tuwien.ac.at

Manuskript eingereicht: September 2002
Angenommen: Januar 2003
Möglichkeiten zur Ableitung Boden-bezogener Größen aus multi- und hyperspektralen Fernerkundungsdaten

THOMAS JARMER, THOMAS UDELHOVEN & JOACHIM HILL, Trier

Keywords: remote sensing, spectrometry, absorption feature, organic carbon, inorganic carbon, iron

Abstract: Possibilities to derive soil related parameters from multi- and hyperspectral remote sensing data. The quantification of spatial soil properties requires the consideration of many representative soil samples. Reflectance spectroscopy seems to be a useful supplement for chemical laboratory analysis, since the approach is fast and has only limited requirements for sample preparation. Based on several case studies the potential of the method to derive selected chemical soil constituents (organic carbon, inorganic carbon and iron) is demonstrated. Beside of the usage of laboratory spectrometry also image data with different spatial and spectral resolution (aerial photographs, Landsat TM and DAIS 7915) have been included in the study.

1 Einführung

Die Bodenreflexion ist in erster Linie durch das Reflexionskontinuum charakterisiert, wobei sich verschiedene bodenphysikalische und podochemische Parameter in spezifischer Weise auswirken (Abb. 1). Jedoch können auch spezifische Absorptionsmerkmale im Spektralbereich zwischen 0,4 und 2,5 µm zur Identifikation wichtiger Bodeninhaltsstoffe wie Eisen, Tonmineralen oder Karbonaten genutzt werden.

Die Schätzung spezifischer pedogener Eigenschaften durch Reflexionsmessungen kann aufgrund der Schnelligkeit der Methode die herkömmliche Laboranalytik bei der

Letztendlich stellt jedes statistische Modell eine Arbeitshypothese dar, basierend auf einer Anzahl von Annahmen für ein Problem, die unvollständig oder fehlerhaft sein können.

Im Folgenden werden einige ausgewählte Studien vorgestellt, die den Einsatz kontinuums- und bandenorientierter Analyseverfahren für die Schätzung bodenchemischer Messgrößen beispielhaft aufzeigen.

Die spektrale Reflexion der im Rahmen der folgenden Studien verwendeten Bodenproben wurde mit einem ASD FieldSpec im
2 Schätzung von Konzentrationen pedochemischer Größen aus Reflexionsspektren

2.1 Gesamteisengehalt

Die meisten der durch das Eisen hervorgerufenen Absorptionsbanden resultieren aus Elektronenübergängen in den Eisenkationen. Typischerweise treten drei relativ breite Absorptionen bei ~0,5 μm, ~0,7 μm und ~0,9 μm in Fe(III)-Oxiden auf. Über die dritte Bande ist auch eine Differenzerung der Eisenoxide Goethit und Hämattit möglich, da die Absorptionsbande des Hämattit bei ~0,87 μm und die des Goethit bei ~0,93 auftritt. Zweierwichtiges Eisen lässt sich durch eine Absorptionsbande bei ~1,0 μm identifizieren (HUNT et al. 1971, BURNS 1993).

![Abb. 2: Scatterplot der Kreuzvalidierung des entwickelten Modells zur Vorher sage von Gesamteisenkonzentration (aus JARMER & SCHÜTT 1998).](image-url)
basiert. Der Quotient der C.I.E.-Normfarbwertanteile \(x \) und \(y \) wurde als zusätzliche unabhängige Variable für die Eisenbestimmung berücksichtigt, da dieser Wert vom Verhältnis zwischen den Hämattin- und Goethitgehalten deutlich beeinflusst wird. Außerdem wurde der C.I.E.-Normfarbwert \(Y \), der ein Maß für die Farbhelligkeit darstellt und einen hohen Zusammenhang mit der panchromatischen Reflexion \((x < 0.001)\) aufweist, als \(Y^{-2} \) in das Regressionsmodell einbezogen (SUDDUTH & HUMMEL 1991).

Die Kreuzvalidierung ergab für dieses Modell ein \(r^2 \), von 0,869 (Abb. 2).

2.2 Anorganischer Kohlenstoff

Karbonate zeigen starke Absorptionsbanden im nahen Infrarot bei 2.30–2.35 \(\mu m \) und 2.50–2.55 \(\mu m \). Drei schwächere Absorptionsbanden treten bei 1.85–1.87 \(\mu m \), 2.12–2.16 \(\mu m \) und 1.97–2.00 \(\mu m \) auf. Die Positionen der Banden varieren in Abhängigkeit von der Zusammensetzung der unterschiedlichen Karbonate im Boden (HUNT & SALISBURY 1971, GAFFEY 1986). Mit zunehmendem Gehalt an Magnesiumkarbonat verschiebt sich die maximale Absorption hin zu den kürzeren Wellenlängen (VAN DER MEER 1996, CLARK 1999).

Die starke Ausprägung der charakteristischen Absorptionsbande bei ca. 2.33 \(\mu m \) kann zur Schätzung der Karbonatgehalte verwendet werden (JARMER et al. 2002). Die Messung der Bodenreflexion erfolgte unter den in 2.1 beschriebenen Bedingungen. Für die Bestimmung der Karbonatbandenparameter wurden die Reflexionspektren ebenfalls unter Verwendung einer Hüllkurve normiert und die maximale Absorptionstiefe und das Flächenintegral im Wellenlängenbereich 2.33–2.37 \(\mu m \) ermittelt. Dieser Wellenlängenbereich zeigte die höchste Korrelation mit der Konzentration anorganischer Kohlenstoffes. Das beste Regressionsmodell mit einem Bestimmtheitsmaß von 0.719 ergab sich unter Verwendung der maximalen Absorptionstiefe bei 2.33 \(\mu m \)–2.37 \(\mu m \).

Da der relative Karbonatanteil in Böden die Bodenhelligkeit substanziell beeinflusst (BEN-DOR & BANIN 1994), wurden zusätzlich die C.I.E.-Normfarbwerte in der Modellbildung berücksichtigt. Dabei war zu erwarten, dass der C.I.E.-Normfarbwert \(Y \), der die Helligkeit repräsentiert, die Modellergebnisse erheblich verbesserte. Allerdings hatte die Integration von \(Y \) nicht den erhofften Effekt, während sich ein sehr hoher Zusammenhang zwischen dem C.I.E.-Normfarbwertanteil \(x \) und der Konzentration an anorganischem Kohlenstoff ergab (\(r = 0.946 \) (Abb. 3).

Die Integration von Absorptionsbandenparametern und C.I.E.-Normfarbwerten in die Modellbildung, d.h. die Verknüpfung

 Abb. 3: Zusammenhang zwischen dem C.I.E.-Normfarbwertanteil \(x \) und der Konzentration an anorganischem Kohlenstoff (aus JARMER et al. 2002).
zwischen spezifischen Absorptionsmerkmalen und Eigenschaften des Kontinuums, führte zu einem optimalen Ergebnis. Das beste Regressionsmodell lieferte hierbei kreuzvalidiert ein r^2 von 0,9538 (Abb. 4).

2.3 Organischer Kohlenstoff

Im Gegensatz zu Eisen und anorganischem Kohlenstoff lässt sich organischer Kohlenstoff nur eingeschränkt über charakteristische Absorptionsbanden identifizieren. Er beeinflusst vielmehr den Gesamtverlauf der Reflexion zwischen 0,35 µm und 1,4 µm. Reflexionspektren mit einem deutlich konkaven Anstieg zum maximalen Reflexionsniveau bei ca. 1,3 µm weisen in der Regel nur sehr geringe Anteile an organischer Substanz auf (Abb. 1, Typ b und c). Mit zunehmendem Anteil an organischen Substanzen verringert sich die Gesamtreflexion. Während geringe Gehalte organischen Kohlenstoffs zu einem konvexen Verlauf des Reflexionspektrums führen, kann bei hohen Anteilen organischen Kohlenstoffs (> 2%) häufig eine eher gestreckte oder konkave Verlaufsform beobachtet werden (Abb. 1, Typ a)."

Aufbauend auf diesen Überlegungen schätzten HILL & SCHÜTT (2000) im Rah-

men einer Studie im Guadalentin (SE Spanien, karbonatische Böden) den organischen Kohlenstoffgehalt von Oberböden anhand einer spezifisch auf die Parametrisierung des spektralen Kontinuums ausgerichteten Strategie. Dazu wurden die kontinuierlich vorliegenden Reflexionspektren (0,4–2,5 µm) zunächst auf die Reflexion bei 1,676 µm normiert. Anschließend wurde für den Wellenlängenbereich 0,45–1,676 µm ein Polynom dritter Ordnung an den Kurvenverlauf approximiert (Gl. 1).

$$\rho_j = b_0 + b_1 \cdot \lambda + b_2 \cdot \lambda^2 + b_3 \cdot \lambda^3$$ (Gl. 1)

Ein solches Polynom kann das Reflexionskontinuum von Böden und Gesteinen ziemlich gut annähern. Dabei beschreiben die Koeffizienten b_1–b_3 die Steigung und Krümmung der Funktion, wobei die Koeffizienten b_1 und b_2 die wichtigsten Variablen zur Konzentrationsbestimmung von organischem Kohlenstoff darstellen. Mit Hilfe dieser beiden Variablen ließ sich die Konzentration des organischen Kohlenstoffs in den Bodenproben durch eine multiple Regression vorhersagen. Nachdem wegen der nichtlinearen Beziehung zwischen Reflexion und organischem Kohlenstoffgehalt die Konzentrationen des organischen Kohlenstoffs für die Modellbildung logarithmiert worden waren, lieferte das kreuzvalidierte Modell ein r^2 von 0,768 ($n = 91$) (Abb. 5).

Das Modell für die relativ homogenen Bodenproben aus dem Hunsrück erbrachte gute Schätzergebnisse der organischen Kohlenstoffkonzentrationen aus Labor-Reflexionsmessungen ($r^2 = 0.88$). Anders stellte sich das Resultat für die Bodenproben aus der Eifel dar. Für die auf heterogener geologischer Ausgangsgestein entwickelten Böden lieferte das kreuzvalidierte PLS-Modell nur ein r^2 von 0.69. Im Rahmen dieser Studie konnten zwei zusätzliche Restriktionen bei der Schätzung chemischer Bodeninhaltstoße aus Reflexionsspektren aufgezeigt werden. So erbrachten die PLS-Modelle für pflanzenverfügbare Nährstoffe (P, K, Mg gemessen im CAL-Extrakt) keine verwertbaren Ergebnisse. Die Gesamtgehalte (Ca, Mg, Fe, Mn, K) hingegen konnten aus Labor-Reflexionsmessungen zufriedenstellend geschätzt werden. Entsprechende Gelände- messungen erbrachten keine brauchbaren Resultate. Die zugrunde liegenden Ursachen sind in weiterführenden Untersuchungen noch zu klären.

3 Bildbasierte Schätzung pedogener Eigenschaften

Eine Übertragung von unter Laborbedingungen entwickelten Modellen ist nur eingeschränkt auf Bilddaten möglich. Ursachen dafür sind u.a. die Verschiedenartigkeit der Sensoren, die Beeinflussung durch die Atmosphäre und ein unterschiedliches Skalenniveau, auf dem die Messungen erfolgen.

In diesem Gebiet wurden Reflexionsmessungen der unterschiedlichen vorherrschenden Substrat- und Oberflächentypen durchgeführt. Anhand einer spektalen Entmischung von digitalisierten, reflexionskalibrierten Luftbildern sowie Hyperspektral-
daten des DAIS-7915 Sensors wurden die proportionalen Anteile der Oberböden an Sand, Feinmaterial und biogener Bestandteile quantitativ bestimmt. Übereinstimmend sind dabei die Sande der Dünenkämme (röthlich) und die Playas (bläulich) zu erkennen, während die biogenen Krusten in grüntlichen Farbtönen dargestellt sind (Abb. 7 & Abb. 8). Weiterführende Detailuntersuchungen sind in Bearbeitung.

4 Fazit

Abb. 8: Abundanzbilder für Sand, biogenes Krustenmaterial und Feinmaterial (Schluff/Ton), eine RGB-Farbkomposite dieser Fraktionen und der Root Mean Square Error des verwendeten Drei-Endmember-Modells aus kalibrierten und atmosphärisch korrigierten DAIS-7915-Daten (Nizzana/Nord-Negev) (aus HilI et al. 2000).
Literatur

GAFEEY, S.J., 1986: Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 microns): calcite, aragonite, and dolomite. – American Mineralogist, 71: 151–162.

Anschreiben der Autoren:
Dipl.-Geogr. THOMAS JARMER, Universität Trier, Abt. Fernerkundung, Behringstraße, D-54286 Trier
Tel.: + 49-651-201-4605, Fax: + 49-651-201-3815, e-mail: jarmer@uni-trier.de
Dr. rer. nat. THOMAS UDELOHVEN, Universität Trier, Abt. Fernerkundung, Behringstraße, D-54286 Trier
Tel.: + 49-651-201-4594, Fax: + 49-651-201-3815, e-mail: udelhoven@uni-trier.de
Prof. Dr. rer. nat. JOACHIM HILL, Universität Trier, Abt. Fernerkundung, Behringstraße, D-54286 Trier,
Tel.: + 49-651-201-4591, Fax: + 49-651-201-3815, e-mail: hillj@uni-trier.de
Manuskript eingereicht: November 2002
Angenommen: Januar 2003
Entwicklung von Kenngrößen zur Qualitätsbeurteilung
optischer Prozessketten

MANFRED WIGGENHAGEN & KARSTEN RAGUSE, Hannover

Keywords: close-range photogrammetry, evaluation indices, quality validation

Summary: Development of quality parameters for quality assessment of optical process chains. This paper presents quality parameters for the quality assessment of photogrammetric bundles in photogrammetric close-range applications. For the preparation and realisation of photogrammetric object determinations the quality parameters shall enable the user to get a maximum amount of result quality. The indices can be calculated from simple geometric measures and require no detailed experience in statistical methods or adjustment procedures.

1 Einleitung

Die dreidimensionale Punktbestimmung mit Methoden der Photogrammetrie basiert auf klar definierten geometrischen Zusammenhängen der Zentralperspektive. Trotz dieser mathematisch eindeutig festgelegten Methoden werden von potenziellen Nutzern häufig folgende Kritikpunkte genannt: „Photogrammetrie ist kompliziert, nicht nachvollziehbar und nur Experten können reproduzierbare Ergebnisse erzielen“.

Die Akzeptanz der photogrammetrischen Verfahren kann jedoch auch dadurch erhöht werden, wenn nachvollziehbare unabhängige Kontrollmöglichkeiten der Zwischenresultate und Endergebnisse vorgesehen werden.

2 Zielsetzung

Die Qualität der dreidimensionalen Punktbestimmung wird von einer Vielzahl von einzelnen Prozessen und Parametern beeinflusst. Im Sinne des Qualitätsmanagements müssen für die Beurteilung der Qualität des Gesamtresultates die einzelnen an der Berechnung beteiligten Verfahren isoliert und im Einzelnen beurteilt werden können DIN (1995). Im Gegensatz zu Vorgehensweisen, die nur eine abschließende Bewertung der Ergebnisqualität ermöglichen und keinen Hinweis auf Optimierungsmöglichkeiten der gesamten Prozesskette geben, werden in diesem Beitrag Kenngrößen vorgestellt, die über die Beurteilung der einzelnen Teilprozesse Hinweise zu Defiziten im Gesamtprozess liefern und die gezielte Verbesserung einzelner Teilkomponenten erlauben.

2.1 Bestandteile der optischen Prozesskette

Die dreidimensionale photogrammetrische Punktbestimmung kann in folgende Teilprozesse unterteilt werden:

- Vorbereitung der Aufnahme,
- Bildaufnahme, Bildmessung und
- Ausgleichung des Bildverbandes.

Da die Ausgleichung des Bildverbandes am Ende dieser Prozesskette steht, sind hier zwar hohe Anforderungen an die optimale Bündelausgleichung und z.B. die Entdeckung grober Fehler und Ausreißer zu stellen. Mängel bei der Vorbereitung und Durchführung der Aufnahme können aber nur bei hoher Redundanz kompensiert werden.

2.2 Beurteilung der Qualität optischer Messketten

Über dieses Expertenwissen verfügt nicht jeder Nutzer, außerdem erlaubt die Kapselung der Softwarepakete oft nur bedingt die Analyse des gesamten Fehlerhaushaltes. Um für die Ausgleichung des photogrammetrischen Bildverbandes optimale Ausgangsbedingungen zu schaffen, werden die nachfolgend vorgestellten Kenngrößen für die Prozessschritte Vorbereitung der Aufnahme und Bildaufnahme entwickelt.

3 Definition von Kenngrößen

Unter Kenngrößen werden Zahlenwerte verstanden, die einen Teilprozess der optischen Prozesskette zahlenmäßig charakterisieren bzw. Entscheidungshilfen liefern, ob die Qualität des jeweiligen Teilprozesses der gestellten Anforderung genügt.

3.1 Vorbereitung der Aufnahme

Dieser Abschnitt umfasst die Auswahl der geeigneten Sensor-Optik-Kombination, der Punktsignalisierung, der Beleuchtung und Auswahl der Kamerastandpunkte.

3.1.1 Bildmaßstabszahl

Unabhängig von der zu lösenden Messaufgabe ist die Qualität der Ergebnisse wesentlich von der gewählten Bildmaßstabszahl abhängig.

Die Kenngröße Bildmaßstabszahl wird mit folgender Formel berechnet:

\[m_b = \frac{pel_i}{pel_c} = \frac{y}{c} \]
Es gilt:

\[m_b = \text{Bildmaßstabszahl} \]

\[y = \text{maximaler Abstand zwischen Kamera und Objekt} \]

\[c = \text{Kamerakonstante der eingesetzten Kamera} \]

pel_o = \text{Bildelementgröße am Objekt}

pel_i = \text{Bildelementgröße des Sensors}

Beispiel: \[y = 5000 \text{ mm}, \quad c = 25 \text{ mm}, \quad \text{pel}_o = 2 \text{ mm}, \quad \text{pel}_i = 0.009 \text{ mm} \]

\[m_{\text{psoll}} = \frac{\text{pel}_o}{\text{pel}_i} = \frac{2}{0.009} = 222 \]

\[m_{\text{pist}} = \frac{y}{c} = \frac{5000}{25} = 200 \]

Im vorgegebenen Beispiel wurde vom Auftraggeber eine Mindestbildelementgröße am Objekt von 2 mm gefordert. Die eingesetzte Digitalkamera hat eine Bildelementgröße von 0.009 mm. Aus dem Quotienten wird die erforderliche Bildmaßstabszahl \(m_{\text{bmin}} \) mit 222 berechnet.

Aus dem Verhältnis der geplanten maximalen Aufnahmeentfernung und der gewählten Kamerakonstante kann die tatsächlich existierende Bildmaßstabszahl \(m_{\text{bist}} \) mit 200 ermittelt werden. Mit der Forderung \(m_{\text{pist}} \leq m_{\text{psoll}} \) ist in diesem Beispiel das Kriterium „Bildmaßstabszahl“ erfüllt.

3.1.2 Zielmarkendurchmesser

Bei hohen Genauigkeitsanforderungen werden die zu bestimmenden Objektpunkte z. B. mit kreisförmigen Zielmarken versehen. Werden innerhalb der Auswertung die Bildkoordinaten der abgebildeten Zielmarken mit automatischen Verfahren ermittelt, wie z. B. mit Stern-, Ring-, oder Ellipsenoperator, muss ein Mindestdurchmesser der Zielmarken im Bild gewährleistet sein.

Beider Vorbereitung der Aufnahme muss im folgenden Beispiel dafür gesorgt werden, dass die Zielmarken nicht kleiner als 18 mm im Durchmesser sind. Bei einer nachträglichen Überprüfung eines Bildverbandes wird das Kriterium „Zielmarkendurchmesser“ als erfüllt angesehen, wenn der tatsächliche Zielmarkendurchmesser größer oder gleich 18 mm ist. Es ist noch zu diskutieren, ob die Beurteilung der Qualität nur auf dieser reinen ja/nein Entscheidung basieren soll oder auch Zwischenstufen möglich sind, da die abgebildeten Ellipsen auch bei nicht erreichtem Mindestdurchmesser gefunden werden, allerdings nicht mit der erwarteten Genauigkeit von z. B. 0.02 Bildelementen.

Die Kenngröße **Zielmarkendurchmesser** wird mit folgender Formel berechnet:

\[d_o = \frac{d_b \cdot \text{pel}_i \cdot y}{c} \]

Es gilt:

\[d_b = \text{Mindestdurchmesser der Zielmarke im Objekt} \]

\[d_o = \text{Mindestdurchmesser der Zielmarke im Bild} \]

\[c = \text{Kamerakonstante} \]

\[\text{pel}_i = \text{Bildelementgröße der eingesetzten Kamera} \]

\[y = \text{maximaler Abstand zwischen Kamera und Objekt} \]

Beispiel: \[d_b = 10 \text{ pixel}, \quad c = 25 \text{ mm}, \quad \text{pel}_i = 0.009 \text{ mm}, \quad y = 5000 \text{ mm} \]

\[d_o = \frac{d_b \cdot \text{pel}_i \cdot y}{c} = \frac{10 \cdot 0.009 \cdot 5000}{25} = 18 \text{ mm} \]

3.1.3 Zielmarkenkontrast

Die Kenngröße **Zielmarkenkontrast** wird mit folgender Formel berechnet:

\[k_{\text{ist}} = \frac{g_{\text{max}} - g_{\text{min}}}{g_{\text{max}} + g_{\text{min}}} \]
Es gilt:
\[
k_{\text{st}} = \text{tatsächlicher Kontrast im Bild} \\
k_{\text{sof}} = \text{minimaler Kontrast im Bild} \\
g_{\max} = \text{maximaler Grauwert innerhalb der abgebildeten Zielmarke (weiß)} \\
g_{\min} = \text{minimaler Grauwert innerhalb der abgebildeten Zielmarke (schwarz)}
\]

Beispiel: \(k_{\text{sof}} \geq 0.5, \ g_{\max} = 250, \ g_{\min} = 128 \)
\[
k_{\text{st}} = \frac{g_{\max} - g_{\min}}{g_{\max} + g_{\min}} = \frac{250 - 128}{250 + 128} = 0.32
\]

Die Beurteilung dieser Kenngröße ist nur im digitalen Bild direkt möglich. Durch den Einsatz digitaler Kameras, die sofort ausgelesen und deren Bilder z.B. auf dem Note-

3.1.4 Unschärferadiusdurchmesser

Photogrammetrische Bildverbände werden mit auf \(\infty \) fokussierten Objektiven oder mit gerasteten Fokussierungen aufgenommen. Die Schärfe der abgebildeten Zielmarken im Bild kann bei bekanntem Aufnahmeab-

Die Kenngröße Unschärferadiusdurchmesser wird mit folgender Formel berechnet:
\[
u = \frac{\begin{vmatrix} y - y' \\ y \\ \end{vmatrix} \cdot f^2}{(y_f - f) \cdot k}
\]

Es gilt:
\[
u = \text{tatsächlicher Unschärferadiusdurchmesser} \\
y = \text{maximaler Abstand zwischen Kamera und Objekt} \\
y_f = \text{fokussierter Abstand zwischen Kamera und Objekt} \\
f = \text{Brennweite} \\
k = \text{gewählte Blendenzahl des Objektivs}
\]

Beispiel: \(y = 6000 \, \text{mm}, \ y_f = 8000 \, \text{mm}, \ f = 25 \, \text{mm}, \ k = 8 \)
\[
u = \frac{\begin{vmatrix} 6000 - 8000 \\ 6000 \\ \end{vmatrix} \cdot 25^2}{(8000 - 25) \cdot 8} = 0.003 \, \text{mm}
\]

Falls das Objektiv auf \(\infty \) fokussiert wurde, gilt die Formel: \(u = \frac{f^2}{y \cdot k} \)

Bei einem maximal zulässigen Unschärferadiusdurchmesser von 0.010 mm, wird im vorgegebenen Beispiel das Kriterium „Unschärferadiusdurchmesser“ erfüllt, da \(u < u_{\max} \).

In der Praxis wird für analoge Bilder ein Unschärferadiusdurchmesser von ca. 30 \(\mu \)m gefordert. Bei digitalen Bildern entspricht der maximal zulässige Unschärferadius-

3.1.5 Bewegungsunschärfe

Bei der Bildaufnahme aus einem bewegten Fahrzeug oder bei der Aufnahme bewegter Objekte muss die Relativbewegung zwis-

Innerhalb eines Sicherheitsversuches wurde ein mit einer Geschwindigkeit von 68 km/h rechtwinklig zur Aufnahmeanachse fahre-

Die Kenngröße Bewegungsunschärfe wird mit folgender Formel berechnet:
\[
\Delta s' = \frac{\Delta t \cdot v}{m_b} \text{ mit: } \Delta s'_{\max} = \frac{1.5}{AV}
\]
Es gilt:
\[
\Delta \varepsilon_{\text{max}} = \text{maximal zulässige Bewegungsunschärfe}
\]
\[
\Delta \varepsilon' = \text{tatsächliche Bewegungsunschärfe im Bild}
\]
\[
v = \text{Geschwindigkeit rechtwinklig zur optischen Achse}
\]
\[
\Delta t = \text{Belichtungszeit}
\]
\[
\Delta t_{\text{max}} = \text{maximale Belichtungszeit}
\]
\[
m_b = \text{Bildmaßstabszahl}
\]
\[
AV = \text{Auflösungsvermögen des Sensors}
\]

Beispiel:
\[
v = 68 \text{ km/h} = 18.9 \text{ m/s}, \quad \Delta t = 0.2 \text{ ms}, \quad m_b = 400,
\]
\[
AV = 111 \text{ L/mm}
\]
\[
\Delta \varepsilon' = \frac{1.5}{AV} = \frac{1.5}{111} = 0.014 \text{ mm}
\]
\[
\Delta \varepsilon' = \frac{\Delta t \cdot v}{m_b} = \frac{0.0002 \cdot 18900}{400} = 0.009 \text{ mm}
\]
\[
\Delta t_{\text{max}} = \frac{\Delta \varepsilon'_{\text{max}} \cdot m_b}{v} = \frac{0.014 \cdot 400}{18900} = 0.296 \text{ ms}
\]

3.1.6 Passpunkteverteilung

Zwingend erforderlich für die Datumsdefinition bzw. die absolute Orientierung des photogrammetrischen Modells ist die Aufnahme von Passpunkten. Um eine ungünstige Lage von Passpunkten im Bild zu vermeiden, wird folgende Kenngröße festgelegt:

Passpunkteverteilung

![Passpunkteverteilung](image)

Abb. 1: Passpunkteverteilung.

Im Bild müssen Passpunkte in den Sektoren 1 bis 4 abgebildet sein.

Es ergibt sich daraus als Kenngröße:

\[
pp_i = 1, \text{ falls in Sektor } i \text{ ein Passpunkt liegt}
\]
\[
pp_i = 0, \text{ falls in Sektor } i \text{ kein Passpunkt liegt}
\]

mit \(i = 1, 2, 3, 4 \)

\[
v_p = pp_1 + pp_2 + pp_3 + pp_4
\]

Beider Vorbereitung der Punktsignalisierung und der Kamerastandorte ist die Passpunkteverteilung zu planen und die Zielmarken der Passpunkte sind mit höherer Genauigkeit z.B. geodätisch einzumessen.

3.2 Bildaufnahme

Die für die Bildaufnahme vorgestellten Kenngrößen sind sowohl für die digitale, als auch für die analoge Photogrammetrie anwendbar. Bei der Beurteilung der radiometrischen Eigenschaften hat die digitale Bildaufnahme einen erheblichen Zeitgewinn gegenüber der analogen Aufnahme, da eine Analyse des Bildmaterials unverzüglich erfolgen kann.

3.2.1 Kamerastandorte

Aufnahme-Ebenen

Aufriß
Grundriß

Aufnahme-Richtungen

Abb. 2: Kamerastandorte.

Im Bildverband sollten die Kamerastandorte möglichst in der Nähe der Positionen 1 bis 8 und in den Ebenen 1 bis 3 vorgesehen werden.
Es ergibt sich daraus als Kenngröße Kamerastandort:

\[k_{ij} = \sum_{i=1}^{3} \sum_{j=1}^{8} k_{ij} \]

mit \(i = 1, 2, 3, 4, 5, 6, 7, 8 \) und \(j = 1, 2, 3 \)

\(k_{ij} = 1 \), falls ein Kamerastandpunkt im Bereich \(i \) und in der jeweiligen Ebene \(j \) liegt, anderenfalls gilt \(k_{ij} = 0 \).

In dem idealisierten Beispiel des Rundumverbandes wird die Qualität der Kamerastandorte über den Zusammenhang \(k = k_{ij}/24 \leq 1 \) charakterisiert. Da je nach Messaufgabe unterschiedliche Bildverbände entstehen, die aufgrund örtlicher Zwänge mehr oder weniger stark von dem idealen Rundumverband abweichen, ist die Kenngröße \(k \) nur als Richtwert zu verstehen. Bei Nichteinhaltung des Kriteriums kann dieses ggf. einen Hinweis auf eine mögliche Optimierungsnötigung der Kamerastandorte geben.

3.2.2 Aufnahmewinkel

Der Aufnahmewinkel, unter dem ein Objektpunkt abgebildet wird, sollte nicht zu klein werden, da sonst die Zielen und Objektde tails zu stark verzerrt dargestellt werden. Für kreisförmige Zielmarken sollte der Aufnahmewinkel daher nicht unter 30° liegen (siehe Abb. 3).

Abb. 3: Aufnahmewinkel.

Die Abschätzung für den Aufnahmewinkel kann sowohl im Grundriß (Abb. 3) als auch im Aufriß vorgenommen werden. Bei näherungsweise bekannten Objektpunktkoordinaten und Koordinaten des Projektionszentrums der Kamera lässt sich der Aufnahmewinkel abschätzen.

Die Kenngröße Aufnahmewinkel wird z. B. im Grundriß mit folgender Formel berechnet:

\[\alpha = \arctan \left(\frac{Y_i - Y_o}{X_o - X_i} \right) \]

Es gilt:

\(\alpha = \text{Aufnahmewinkel} \)

\(Y_o = \text{Koordinate des Projektionszentrums} \)

\(X_o = \text{Koordinate des Projektionszentrums} \)

\(Y_i = \text{Koordinate des Objektpunktes} \)

\(X_i = \text{Koordinate des Objektpunktes} \)

Beispiel: \(Y_o = 10 \text{ mm}, \ X_o = 3600 \text{ mm}, \ Y_i = 2610 \text{ mm}, \ X_i = 100 \text{ mm} \)

\[\alpha = \arctan \left(\frac{2600}{3500} \right) = 36.6° \]

Die Berechnung dieser Kenngröße kann für jeden Kamerastandort und für jeden im Bild sichtbaren Objektpunkt durchgeführt werden.
3.2.3 Überdeckung

Aufnahme-Ebenen

Aufriß

Grundriß

Aufnahme-Richtungen

Abb. 4: Bildüberdeckung.

Die Kenngröße Überdeckung wird mit folgender Formel berechnet:

\[q_{\text{req}} = 1 - \frac{b \cdot c}{s' \cdot y} \]

Es gilt

- \(q_{\text{act}} \) = tatsächliche Überdeckung
- \(q_{\text{req}} \) = geforderte Überdeckung
- \(y = \) Abstand zwischen Kamera und Objekt
- \(c = \) Kamerakonstante
- \(s' = \) Bildformatseite
- \(b = \) Aufnahmebasis

Beispiel: \(q_{\text{act}} = 0.60 \), \(y = 10000 \text{ mm} \),
\[c = 9 \text{ mm}, \quad s' = 8.6 \text{ mm}, \quad b = 3000 \text{ mm} \]
\[q_{\text{req}} = 1 - \frac{b \cdot c}{s' \cdot y} = 1 - \frac{3000 \cdot 9}{8.6 \cdot 10000} = 0.686 \]

Mit der Forderung \(q_{\text{act}} \geq q_{\text{req}} \) erfüllt dieses Beispiel das Prüfkriterium „Überdeckung“. Eine gute Überdeckung spielt eine sehr große Rolle bei der Stabilität des Bildverbandes, der flexiblen Modellbildung und der Erhöhung der Redundanz in der Punktbestimmung.

3.2.4 Schnittverhältnis
Die Qualität der dreidimensionalen Objekt-punktkoordinaten ist abhängig vom Netzdesign und der vorliegenden Schnittgeometrie. Für die Beurteilung der Schnittgeometrie in photogrammetrischen Bildverbänden kann das Abstands-Basis-Verhältnis pro Kamerapaar genutzt werden.

Die Kenngröße Schnittverhältnis wird mit folgender Formel berechnet:

\[i_s = \frac{y_{\text{max}}}{b} \]

Es gilt:

- \(i_s = \) Schnittverhältnis
- \(b = \) Abstand zwischen benachbarten Kamerabasis
- \(y_{\text{max}} = \) maximaler Abstand zwischen Kamera und Objekt

Beispiel: \(b = 10000 \text{ mm}, \ y_{\text{max}} = 5000 \text{ mm} \)
\[i_s = \frac{y_{\text{max}}}{b} = \frac{5000}{10000} = 0.5 \]
Unter günstigen Bedingungen und Schnittwinkeln am Objekt von 90°, gilt \(i_1 = 0.5 \). Werden bei mindestens vier beteiligten Bildern Schnittwinkel zwischen 45° und 120° zugelassen, ergibt sich \(0.3 < i < 1.3 \).

Für die grobe Abschätzung der Genauigkeit der photogrammetrischen Objekt punktkoordinaten kann angesetzt werden:

\[
s_{XYZ} = i \cdot m_b \cdot s_{xy}
\]

Hiermit wird über das Schnittverhältnis die Unsicherheit der Bildkoordinatenauflinearung \(s_{xy} \) mit der Maßstabszahl \(m_b \) in den Objektraum \(s_{XYZ} \) übertragen. Da in Bildverbänden nicht mit Stereoaufnahmen aufgenommen, sondern in konvergenter Aufnahmeanordnung gearbeitet wird, kann die Genauigkeit der Ergebnisse streng genommen nur über das stochastische Modell der Ausgleichung abgeschätzt werden. Die Kenngröße „Schnittverhältnis“ ermöglicht jedoch für sämtliche Kamerakombinationen eine Grobabschätzung, d. h. ob z. B. die Kamerastationen für die dreidimensionale Punktbestimmung geeignet sind.

3.3 Skalierung und Kontrolle des Objektmodells

Zur Skalierung und Kontrolle des resultierenden Objektmodells werden entweder Pass- und Kontrollpunkte aufgenommen oder hochgenau kalibrierte Längenmaßstäbe in der Aufnahmeszene platziert und die Zielmarken der Maßstäbe photogrammetrisch erfasst.

3.3.1 Maßstabsdefinition

Zur Festlegung des Systemmaßstabs und zur unabhängigen Kontrolle der dreidimensionalen Punktbestimmung werden vier und mehr hochgenau kalibrierte Längenmaßstäbe benötigt. Die Anordnung erfolgt in drei zueinander senkrechten Richtungen und ggf. quer dazu mit einer Länge von mindestens 2/3 der maximalen Länge im Messvolumen (siehe Abb. 5).

![Abb. 5: Maßstabsanordnung.](image)

Die Kenngröße **Maßstabsdefinition** wird berechnet, mit:

\[
m_s = 1, \quad \text{falls Systemmaßstab in mehr als einem Bild sichtbar ist},
\]

\[
ansonsten gilt: \quad m_s = 0
\]

\[
m_{ki} = 1, \quad \text{falls Kontrollmaßstab in mehr als einem Bild sichtbar ist},
\]

\[
ansonsten gilt: \quad m_{ki} = 0 \quad \text{mit} \quad i = 1, 2, 3
\]

ergibt sich:

\[
m_i = m_{k1} + m_{k2} + m_{k3}
\]

Falls nach Abb. 5 in einem Bildverbänd nur der Systemmaßstab \(m_s \) vorgesehen wurde, besteht keine Kontrollmöglichkeit über unabhängige Strecken. Es ist daher als Größe für die Maßstabsdefinition \(m_i \) mindestens der Wert 1 anzustreben. Weiterhin wird gefordert \(m_i = 1 \).

3.3.2 Relative Längenmessabweichung

Die Kenngröße **relative Längenmessabweichung** wird mit folgender Formel berechnet:
\[s_{kd} = \left| \frac{d_s - d_i}{d_s} \right| \leq s_{sd} \]

Es gilt:
\(s_{kd} = \text{relative Längenmessabweichung} \)
\(d_s = \text{kalibrierter Soll-Abstand zwischen zwei Zielmarken} \)
\(d_i = \text{gemessener Ist-Abstand zwischen zwei Zielmarken} \)
\(s_{sd} = \text{maximal zulässige relative Längenmessabweichung} \)

Beispiel: \(d_s = 1000.100 \text{ mm} \)
\(d_i = 1000.060 \text{ mm} \)
\(s_{sd} = 1 : 20000 \)
\[s_{kd} = \left| \frac{1000.100 - 1000.060}{1000.100} \right| = 0.00004 = 1 : 25000 \]

Im vorgegebenen Beispiel ist das Kriterium „relative Längenmessabweichung“ erfüllt, da \(s_{kd} \) mit 1 : 25000 kleiner als die geforderte Längenmessabweichung \(s_{sd} \) ist.

4 Qualitätsangaben

4.1 Quantitative Beurteilung der Ergebnisse

Wird in der abschließenden Bewertung für jede Kenngröße, welche die Anforderungen erfüllt hat, ein Wertungspunkt vergeben, so ermöglicht die Summation sämtlicher Wertungspunkte die Beurteilung des Gesamtfehlerbudgets der Punktbestimmung. Aus der Gegenüberstellung der theoretisch erreichbaren Punktzahl zur tatsächlich erreichten ergibt sich ein Hinweis auf die Gesamtqualität der optischen Messkette.

4.2 Qualitative Beurteilung der Ergebnisse

5 Zusammenfassung

In diesem Beitrag wurde gezeigt, dass unter Zuhilfenahme unterschiedlicher Kenngrößen die einzelnen Teilprozesse der optischen Messkette untersucht und beurteilt werden können.

Da die Grenzwerte für manche Kenngrößen nicht in allen Fällen bereits hinreichend untersucht wurden, ist zu prüfen, ob die Prüfgrößen selbst sowie die Entscheidungsgrenzen noch entsprechend angepasst werden müssen. In den kommenden Monaten werden die vorgestellten Prüfkriterien in unterschiedlichen praktischen Anwendungen auf ihre Eignung untersucht.

Dieser Beitrag soll einerseits Einsteigern in die Anwendung der Nachbereichsphotogrammetrie Hilfestellung zur Optimierung der Aufnahme und Auswertung geben, andererseits wünschen sich die Autoren einen regen Meinungsaustausch zu diesem Thema mit den Berufscollegen.

Dank

Anlass für die Entwicklung der hier vorgestellten Kenngrößen sind die aktuellen Untersuchungen im Projekt „Qualitätsermittlung im Fahrzeugbau“. Die Automobilhersteller Volkswagen AG, Dr.-Ing. h.c. F. Porsche AG, Audi AG, BMW AG und DaimlerChrysler AG planen im Rahmen der internationalen ISO-Standardisierung,
Diese und ähnliche Kenngrößen zur Charakterisierung der optischen Messkette in einer erweiterten ISO-Norm aufnehmen zu lassen. Unser Dank gilt an dieser Stelle den o.g. Auftraggebern für die vielen Anregungen und konstruktiven Fragen im ISO-Arbeitskreis, ohne die dieser Artikel nicht entstanden wäre.

Literatur

Anschrift der Autoren:

Dr.-Ing. Manfred Wiggenhagen,

Dipl.-Ing. Karsten Raguse,

Universität Hannover, Institut für Photogrammetrie und Geoinformation (IPI),

Nienburger Str.1, D-30167 Hannover

e-mail: wigge@ipi.uni-hannover.de

raguse@ipi.uni-hannover.de

Manuskript eingereicht: Dezember 2002

Angenommen: Januar 2003
Frühe photogrammetrische Beiträge während deutscher Südpolar-Expeditionen

KURT BRUNNER, München-Neubiberg

Keywords: photogrammetry, plane table photogrammetry, Early German southern polar expeditions, antarctica

Zehn Jahre später erfolgte die zweite deutsche Antarktis-Expedition. Das Expeditionsschiff konnte jedoch nicht an der Antarktisküste landen, es wurde vom Eis eingeschlossen und wanderte mit ihm nach Norden. Das wissenschaftliche Programm und auch die vorgesehenen photogrammetrischen Aufnahmen zur Herstellung topographischer Karten konnten deshalb nicht stattfinden.

Diese Expeditionen zeigen die Leistungsfähigkeit der Photogrammetrie in der ersten Hälfte des vergangenen Jahrhunderts. Von großer Bedeutung ist, dass die kartographischen Ergebnisse dieser Expeditionen den Zustand antarktischer Küsten vor genau hundert bzw. vor ca. sechzig Jahren dokumentieren.

Summary: Early photogrammetric contributions during German southern polar expeditions. The first German southern polar expedition took place a hundred years ago from 1901 to 1903. The scientific results of this expedition were impressive. The cartographic results were also remarkable. A part of these maps were produced by means of plane table photogrammetry, an early one photogrammetric method.

The second German Antarctic expedition of 1911/12 occurred ten years later. However, the expedition ship could not land on the Antarctic coast because it was icebound and drifted to the north with it. Therefore the scientific program and also the planned photogrammetric mapping could not occur.

The „Schwabenland-Expedition“ was carried out in 1938/39. Two flying boats launched from the ship took aerial photographs by which some maps were derived.

These expeditions show the capability of photogrammetry in the first half of the last century. It is also important that the cartographic results of these expeditions document the state of the antarctic coast before a hundred respectively sixty years ago.

1 Einführung

Von November 1901 bis November 1903 fand die erste deutsche Südpolar-Expedition statt. Ihre wissenschaftlichen Resultate sind beeindruckend. Von Bedeutung ist auch die Dokumentation der Expedition durch eine große Zahl topographischer und thematischer Karten, wobei von Interesse ist, dass einige topographische Aufnahmen mittels Photogrammetrie erfolgten.

Auch für die zehn Jahre später, 1911/12 erfolgte zweite deutsche Antarktis-Expedition war der Einsatz terrestrischer Photogrammetrie vorgesehen, konnte aber nicht realisiert werden.

Diese bemerkenswerten Anwendungen der Photogrammetrie in der Antarktis durch deutsche Forscher bis zum Zweiten Weltkrieg, die in keiner Historie der Photogrammetrie gebührend vermerkt sind, sollen hier betrachtet werden. Schwerpunkt erhält dabei die erste dieser Expeditionen, die deutsche Südpolarexpedition 1901–1903, die vor hundert Jahren stattfand.

2 Die erste deutsche Südpolarexpedition

2.1 Ausstattung der Expedition

In der umfangreichen Liste wissenschaftlicher Geräte für diese deutsche Südpolarexpedition finden sich reichlich Geräte für geodätische und topographische Arbeiten, so auch ein Phototheodolit der Fa. Ott, Kempten, mit einem Bildformat von 12 cm x 16 cm und einer Brennweite von 148,2 mm. DRYGALSKI plante topographische Aufnahmen während der Expedition mittels Messtisch-Photogrammetrie und stand hierzu in Kon- takt zu SEBASTIAN FINSTERWALDER, der zur Nutzung des Ott’schen Phototheodoliten riet. Der Schriftverkehr mit ihm, aber auch mit der Fa. Zeiss, Jena, findet sich (zumindest teilweise) im vom Institut für Länderkunde, Leipzig, verwahrten Nachlass DRYGALSKIS.

2.2 Messtisch-Photogrammetrie

Hauptproblem der Messtisch-Photogrammetrie ist das Auffinden homologer Punkte sowie infolge der Notwendigkeit großer Basen die Schwierigkeit der richtigen Punkteidentifizierung.

Die notwendige Bestimmung der Bildkoordinaten x’ und y’ in beiden Bildern geschah dabei anfangs durch Lineale, später durch Komparatoren. Mit bekannter Kammerkonstante c lassen sich aus den beiden konvergent aufgenommenen Messbilden die Bildwinkel α und α’ als Horizontalwinkel sowie die Vertikalwinkel β und β’ ermitteln. Mit der Basis und den Bildwinkeln wer-
den dann Lage und Höhe des Geländepunktes konstruktiv bzw. rechnerisch bestimmt.

2.3 Expeditionsverlauf

2.4 Auswertung in der Heimat

Einen ersten Bericht über die wissenschaftlich äußerst erfolgreiche und ergebige Expedition legte Drygalski bereits bald nach der Expedition in einem umfangreichen Buchwerk vor (Drygalski 1904).

In Abb. 1 ist ein einfärbarer Ausschnitt aus der Karte „Das Inlandeis am Gaussberg“, Maßstab 1:15000 zu sehen. Im Zentrum der mehrfarbigen Karte liegt der „Gaussberg“. Das Relief ist mit Höhenlinien in einer Äquidistanz von 10 m dargestellt. Im westlichen Teil des Kartenaus-
Abb. 1: Ausschnitt aus der Karte „Das Inlandeis am Gaussberg“. Maßstab 1:15000.
schnitts zeigen beschriftete Vektoren die monatliche Eisbewegung in Meter. Die Karte ist abgedruckt als Tafel II in Band I der Dokumentation von Drygalski.

3 Die zweite deutsche Antarktis-Expedition

Im Mai 1911 begann die zweite deutsche Antarktis-Expedition unter der wissenschaftlichen Leitung des Geophysikers und bayerischen Offiziers Wilhelm Filchner (1877–1957). Ziel war die Weddellsee.

Vorher organisierte Filchner auf Grund der Erfahrungen der ersten deutschen Südpolar-Expedition eine „Vorexpedition“ nach Spitzbergen, also im arktischen Bereich, um Mannschaft und Material für den Einsatz in der Antarktis vorzubereiten bzw. zu testen.

3.1 Vorexpedition

3.2 Terrestrische Photogrammetrie auf Spitzbergen

Die Ausmessung der Bilder am Pulf-rich’schen Stereokomparator und die noch notwendige Konstruktion der Karte im Maßstab 1:100000 besorgte der Topograph der Preußischen Landesaufnahme Paul Seliger (Seliger 1911, Brunner 1994); analoge Auswertegeräte standen noch nicht zur Verfügung.

3.3 Expeditionsverlauf

Die zweite deutsche Antarktis-Expedition begann dann im Dezember 1911 mit dem Auslaufen der „Deutschland“ – einem umgebauten norwegischen eisgangen Schiff – aus Bremerhaven. Die „Deutschland“ gelangte Mitte Dezember in Treibis; im Februar 1912 wurde die Antarktis erreicht. Trotz zweier Versuche konnte das Schiff am eben entdeckten antarktischen Festland („Prinzregent Luitpold-Land“) bei einer westlichen geographischen Länge 35° in fast 78° Süd nicht landen. Die „Deutschland“ wurde danach vom Eis eingeschlossen und driftete neun Monate nach Norden. Im Dezember erreichte das Schiff Südgeorgien, wo die Expedition beendet werden musste (Przybyllok 1913, Filchner 1922).

Die mitgeführten Geräte für photogrammetrische Aufnahmen konnten somit nicht genutzt werden und die geplanten Kartenaufnahmen auf dem antarktischen Festland blieben aus. Lediglich einige kleinformatige Übersichtskarten der Weddellsee entstanden.
4 Die „Schwabenland-Expedition“

Am 19. Januar 1939 wurde das Zielgebiet bei ca. 4° West und 69° Südexist und bereits am 20. Januar 1939 wurde der erste Flug ins antarktische Festland vorgenommen, das erkundete Land erhielt den Namen „Neu-Schwabenland“.

Die Rückreise wurde im Januar 1939 angetreten und endete im April 1939 im Hamburger Hafen.

4.1 Bildflüge

Von Mitte Januar bis Mitte Februar 1939 führten die beiden Flugboote „Passat“ und „Boreas“ vom Flugmutterschiff „Schwabenland“ aus sieben Photoflüge durch; sie waren hierzu mit zwei Reihenmesskameras RMK C/5 der Firma Zeiss-Aerotopograph, Kamerakonstante 21 cm, Bildformat 18 cm × 18 cm, ausgerüstet. Die Messkameras waren dabei paarweise steuer- und backbord unter einem Winkel von 20° montiert.

4.2 Auswertung

5 Schluss
In den ersten vierzиг Jahren des vergangenen Jahrhunderts wurde die Photogrammetrie bei deutschen Expeditionsfahrten in ihren seinerzeitigen Entwicklungsphasen zur Entschleierung der Antarktis (und der Arktis) erfolgreich eingesetzt. Dies zeigt zum einen die Leistungsfähigkeit der Photogrammetrie.

6 Literatur

Anschrift des Autors:
Prof. Dr.-Ing. KURT BRUNNER, Lehrstuhl für Kartographie und Topographie, Universität der Bundeswehr München, D-85577 Neubiberg, Tel.: 089-6004-4049,
E-mail: kurt.brunner@unibw-muenchen.de

Manuskript eingereicht: November 2002
Angenommen: Dezember 2002
ISPRS Kommission VII Symposium „Resource & Environmental Monitoring“

vom 3. bis 6. Dezember 2002 in Hyderabad, Indien

Das Organisationssteam um Dr. R. R. NAVALGUND (Präsident der Kommission VII) und Dr. NAGARAJA (Leiter des Organisationskomitees), beide von der National Remote Sensing Agency (NRSA), konnte über 530 Delegierte begrüßen, darunter knapp 100 ausländische Teilnehmer aus 32 verschiedenen Ländern. Entsprechend groß war die Anzahl der eingereichten Artikel, über 400 Beiträge wurden abgegeben. Davon wurden ca. 150 in 30 Sitzungen als Vortrag gehalten. Etwa die gleiche Anzahl wurde in den Postersessions präsentiert.

Zu Beginn des Symposiums fand eine feierliche Eröffnungszeremonie statt, mit Grußworten von Dr. NAVALGUND, Dr. JOSEPH (Präsident der ISRS) und dem ISPRS-Präsidenten Prof. J. TRINDER. Nach Verleihung der Awards einiger indischer Organisationen für die Jahre 2001 und 2002 und Be grüßungsworten der Organisatoren wurde das Symposium mit einem traditionellen indischen Gesang für Glück und Gelingen und dem Entzünden eines Leuchters stimmungs voll begonnen. Prof. TRINDER eröffnete anschließend die begleitende Ausstellung im Garten des Hotels, auf der sich verschiedene Firmen und Organisationen des Fernerkundungs- und GIS-Bereichs aus unterschiedlichen Ländern präsentierten.

Am Eröffnungstag wurden zwei Sessions hintereinander abgehalten, zum einen die „Theme Session“ über nachhaltige Entwicklung, bei der in das Thema des Symposiums eingeführt wurde. Die Redner wiesen vor allem auf die Schwierigkeit der Definition geeigneter Indikatoren zur Bestimmung der Nachhaltigkeit einer landschaftsgestaltenden Maßnahme hin und darauf, dass heute noch nicht immer Daten der benötigten Auflösung zur Verfügung stehen.

In der anschließenden „Special Interest Session“ wurde vor allem auf die Leistungsfähigkeit gegenwärtiger Fernerkundungssensoren zur Umweltüberwachung und auf geplante zukünftige Sensoren eingegangen.

Y. KANEKO von der japanischen National Space Development Agency stellte den Stand und die Planungen in Japan vor, die sich vor allem durch eine geplante stärkere internationale Zusammenarbeit, hauptsächlich mit den USA, auszeichnen. V. JAYARAMAN von der Indian Space Research Organization zeigte die Entwicklungen in Indien auf, die sich durch starke Anwendungsabhängigkeit und zielgerichtete Spezialisierung der Sensoren auszeichnen. Für die nächsten vier Jahre sind nicht weniger als sieben neue Satelliten geplant, was die rege Fernerkundungstätigkeit in Indien zeigt.

Nach einer kurzen Teepause hielt die ISRS die „Vikram Sarabhai Memorial Lecture“ ab, was den Nichtmitgliedern die Gelegenheit zu einem ersten ausführlichen Be such der Ausstellung eröffnete.

Für den Abend hatten die Veranstalter ein kulturelles Programm organisiert, das wie die technischen Sessions ebenfalls in der luxuriösen Darbar Hall des Hotels Taj Krishna stattfand. Neben traditionellen indischen...
Gesängen und humorvollen Sketchen wurde ein Stück eines besonderen, nur in einem kleinen Gebiet Indiens beherrschten Tanztheaters gezeigt. Vor allem für die ausländischen Delegierten war dieses farbenfrohe Spektakel mit Sicherheit ein ganz besonderes Erlebnis. Nach Beendigung des kulturellen Programms wurden die Teilnehmer im Rahmen eines Willkommens-Dinners mit indischen Speisen bewirtet.

Zeitgleich zu den Präsentationen waren die Posterausstellungen geöffnet. Die einzelnen Beiträge waren dabei jeweils den ganzen Tag verfügbar. Dadurch konnten die Poster in den Pausen oder am Ende des Tages besucht werden.

In der Nachmittagsession des 5. Dezembers wurde einigen Firmen die Gelegenheit zur Präsentation ihrer Produkte gegeben. An diesem Tag war die Teilnehmerzahl etwas geringer, was vor allem an dem „social program“ gelegen haben dürfte, das für diesen Tag eine ganzjährige Stadtrundfahrt in Hyderabad und seiner Zwillingstadt Secunderabad anbot.

Am letzten Tag des Symposiums teilten sich die Delegierten morgens nochmals auf technische Sitzungen auf, nach dem Mittagessen gab es aber wieder gemeinsame Plenumsitzungen. Prof. TRINDER stellte zu Beginn der gemeinsamen Sitzung, wie schon auf den Sitzungen der anderen ISPRS-Kommissionen, die Neuorganisation der ISPRS zur Diskussion. Dabei entwickelte sich vor allem von Seiten der indischen Teilnehmer eine rege Beteiligung. Es zeigte sich, dass sich vor allem die in der Fernerkundung tätigen Diskussionsteilnehmer nicht richtig in der ISPRS vertreten fühlten. Prof. TRINDER hob hervor, dass gerade eine Trennung der Photogrammetrie und Fernerkundung in verschiedene Kommissionen nicht im Sinne der ISPRS sei, sondern viel mehr ein Zusammenführen der beiden Gruppen. Abschließend gab er bekannt, dass über die weiteren Entwicklungen in dieser Sache in den ISPRS Highlights und auf der Homepage berichtet werden wird.

Nach dieser Diskussion fassten die Leiter der einzelnen working groups die ihnen zugeordneten Sitzungen des Symposiums, d.h. die Vorträge und Highlights, kurz zusammen. Anschließend vergab die ISPRS Preise für die besten Artikel, Vorträge und Poster des Symposiums.

Prof. Ö. ALTAN, der Vorsitzende des Organisationsteams des ISPRS-Kongresses 2004 in Istanbul, zeigte den Delegierten danach im Rahmen einer Einladungsveranstaltung für die Konferenz, wie einfach und schnell man von Indien nach Istanbul kommt und was die Konferenzteilnehmer dort Interessantes erwarten wird.

Zum Abschluss sprach Prof. I. DOWMAN, der Generalsekretär der ISPRS. Er fasste seine persönlichen Eindrücke des Symposiums zusammen und hob dabei als bemerkenswert hervor, das oftmals die Probleme Indiens angesprochen und mit Hilfe der Fernerkundung Lösungsmöglichkeiten gesucht wurden. Des Weiteren zeigte er sich durch die teilweise sehr regen Diskussionen nach den Vorträgen beeindruckt. Schließlich dankte er den Organisatoren und überreichte ihnen im Namen der ISPRS einige Präsente. Der Präsident der ISRS,

Eberhard Steinle, Karlsruhe e-mail: steinle@ipf.uni-karlsruhe.de

Wechsel an der Spitze von CIPA

Mit dem Jahreswechsel 2002/2003 hat der neue Vorstand des CIPA (früher Comité International de la Photogrammétrie Architecture, jetzt The ICOMOS and ISPRS Committee on Documentation of Cultural Heritage) seine Arbeit aufgenommen. Damit wurde eine wichtige Entwicklungsphase abgeschlossen, die der bisherige Präsident, Prof. Dr. Peter Waldhäuser (Wien), während seiner fün jurigen Amtszeit sehr zielbewusst und erfolgreich geführt hat.

Die neuen Mitglieder im Präsidium von CIPA sind: Prof. Petros Patias, Griechenland, als Präsident; Robin Letellier, Kanada, und Prof. Cliff Ogleby, Australien, als Vizepräsidenten; Prof. Dr. Klaus Hanke, Österreich, als Generalsekretär; Dr. Michael Doneus, Österreich, als Webmaster; Prof. Pierre Grussenmeyer, Frankreich, als Schatzmeister. Das nächste internationale Symposium von CIPA findet vom 30. September bis 4. Oktober 2003 in Antalya (Türkei) unter der Leitung von Prof. Dr. Orhan Altan statt. Informationen über CIPA: http://cipa.icomos.org/

Jörg Albertz, Berlin

EuroSDR – European Spatial Data Research

Der Auftrag der EuroSDR besteht darin:
- Verfahren, Systeme und Standards für die Gewinnung, Verarbeitung, Darstellung, Wartung und Verteilung von räumlichen Basisinformationen zu entwickeln und weiter zu entwickeln. Dazu gehört die Förderung der Anwendung dieser Daten. Spezielle Beachtung soll dabei auf die weitere Entwicklung von Luftbild- und Weltraum-gestützen Verfahren für die Datengewinnung gelegt werden, auf Verfahren zur Extraktion von Informationen aus diesen Daten und auf die Integration dieser Informationen mit solchen aus anderen Quellen.

CHRIS PARESI, Generalsekretär EuroSDR
ITC, PO Box 6, NL-7500 AA Enschede, Tel.: +31-53-4874339, Fax: +31-53-4874335, e-mail: paresi@itc.nl

Hochschulnachrichten

Hochschule Vechta

An der Hochschule Vechta hat Diplom-Geograph MATTHIAS MÖLLER am 11. September 2002 zum Dr. rer. nat. promoviert. Gutachter der Dissertationsschrift mit dem Titel „Untersuchungen an extrem hoch auflösenden Flugzeugscannerdaten für urbane Fragestellungen und deren Integration in eine GIS-Umgebung“ waren Prof. Dr. MANFRED EHLERS (Hochschule Vechta), Prof. Dr. JÖRG ALBERTZ (Technische Universität Berlin) und Prof. Dr. JOSER STROBL (Universität Salzburg).

Die extrem hohe räumliche Auflösung legt einen Einsatz der Bilddaten für ein großmaßstäbliches Monitoring urbaner Räume nahe. Als Basis für die Untersuchung dient deshalb eine Beflegung der Stadt Osna- brück im Frühjahr 1999 durch das DLR. Diese Flugkampagne wurde unter operationellen Bedingungen durchgeführt und die Bilddaten im Rahmen dieser Arbeit zunächst bezüglich Aufnahme- und unter-

Aufgrund der hohen radiometrischen Auflösung kann aus den panchromatischen Bilddaten durch Methoden der Kantenverstärkung und Kantenfilterung versteckte Information so hervorgehoben werden, dass eine visuelle Auswertung erleichtert wird. Verschiedene Methoden der Bildfusion von hochauflösenden panchromatischen mit multispektralen Bilddaten werden hinsichtlich einer optischen Bildverbesserung auf ihre Eignung hin analysiert und bewertet.

Kontakt:
Dr. Matthias Möller, Kompetenzzentrum für Geoinformatik in Niedersachsen (GiN), PF 1553, D-49364 Vechta, Tel.: 04441-15383
mailto: mmoeller@gin-online.de
http://www.gin-online.de/mm
Persönliches

Dr.-Ing. OTTO HOFMANN Ehrenmitglied der DGPF

Die Schriftleitung der PFG gratuliert Dr. HOFMANN zu dieser ehrenvollen Auszeichnung.

Buchbesprechungen

Die Entwicklung der Menschheit ist durch die zunehmende Bildung und Ausweitung von Ballungsräumen geprägt. Da es sich dabei um ein globales Phänomen handelt, ist die satellitengestützte Fernerkundung die einzige Methode, um flächendeckend aktuelle und vergleichbare Informationen über Landnutzung und Bautätigkeit im natürlichen Umfeld zu erhalten.

Die ESA hat sich im Rahmen ihres Technologie-Transfer-Programmes dieser Anwendung angenommen. Der vorliegende repräsentative Band, welcher die eindrucks- vollsten (teilweise bereits publizierten) Aufnahmen der bedeutendsten Metropolen in hervorragender Druckqualität versammelt, ist ein erstes Produkt dieser Arbeit.

Jede Metropole und ihr Umland wird in Satellitenbildern verschiedener Sensoren, für Vergleichszwecke teils auch historischen Datums und mit terrestrischen Fotos vorge-
stellt. Fundierte Artikel von Autoren mit spezieller Ortskenntnis stellen die jeweilige geographische Lage und Geschichte sowie ökonomische und soziale Entwicklung dar. All das ergibt auch bei bekannten Städten neue Aspekte und Einsichten, so dass das Buch nicht nur bezüglich wenig bekannter Regionen höchstmöglich aufschlussreich ist.

Zu kritisieren wäre, dass bei den Satellitenbildern eine Maßstabsangabe fehlt, so dass oft selbst erfahrene Leser schwer die Ausdehnung eines abgebildeten Gebietes abschätzen können.

Fachlich interessierte würden sich die Angaben zu den Satellitendaten in der Bildunterschrift (statt bloß im Anhang) wünschen. Dafür kommt es so zu manchem lehrreichen Überraschungseffekt, wenn sich ein vermeintliches Luftbild als ausgezeichnete IKONOS-Farbkomposite herausstellt. Spezielle Auswertemethoden, wie Klassifikationsverfahren oder Interferometrie, werden mit guten Beispielen gezeigt, könnten aber noch zahlreicher sein.

Bilder von Erdebeobachtungssatelliten sind nicht nur informativ, sondern vor allem auch von hohem ästhetischen Wert. Daher eignet sich das Buch unter anderem sehr gut, um „fachfremden“ Personen anhand einer wichtigen Thematik die Schönheit und den hohen Nutzen der Fernerkundung nahe zu bringen.

RAINER KALLIANY, Graz

B. Resnik, Rostock

Kapitel 1 führt grundlegend in das Wesen und die Funktion thematischer Karten ein, legt somit das begriffliche Umfeld fest und skizziert die historische Entwicklung.

Aus Sicht des Rezensenten stellt das Kapitel 2 den wertvollsten Teil des Werkes dar. Wir begegnen heute zunehmend kartographischen Produkten, erzeugt so nebenbei im Studium, in Projekten, im Arbeitsumfeld, in den Medien, im Internet und an vielen anderen Stellen. Und obwohl die Kartographie als eine durchaus alte Wissenschaft disziplin die wesentlichen Regeln zur Wiedergabe räumlicher Phänomene in thematischen Karten schon lange definiert hat und Experten auch danach handeln, so ist eine Vielzahl der aus GIS- oder Mapping-Produkten erzeugten Karten einfach nur kartographisch schlecht. Daher bedarf es genau solcher Ab-

Kapitel 5 fasst nochmals zusammen und stellt die Produkte einander tabellarisch gegenüber. In den Anhängen werden ein umfangreiches Literaturverzeichnis sowie Anhangen (inkl. URL) von wichtigen Datenanbietern (Internationale Statistische Ämter und der nationalen Landesvermessungsämter) sowie der Kartographie-Produkteanbieter angegeben. Weitere Anhänge erklären die Beurteilungskriterien der Kartographieprodukte und geben Nutzungshinweise zur CD.

Ungeachtet der oben gegebenen Hinweise für eine der nächsten Auflagen, kann das Buch uneingeschränkt empfohlen werden: sowohl jedem Studierenden, der in irgendeiner Weise mit GIS und Karten zu tun hat, als auch Praktikern, die mit derartiger Software thematische Karten zu erstellen haben. Es ist gut lesbar geschrieben und ansprechend mit Abbildungen durchsetzt, so dass es auch im Selbststudium erarbeitet werden kann.

RALF BILL, Rostock

Das Wörterbuch ist für Fernerkundler generell, aber auch für Geodäten, Photogrammometer, Raumplaner und viele andere gedacht. Es sollte zum Bestand der einschlägigen Bibliotheken gehören. Es ist dem Buch vielfältige Nutzung zu wünschen.

PETER BANKWITZ, Potsdam

Der Inhalt des alljährlich erscheinenden GIS-Reports basiert auf Angaben der Firmen, die soweit möglich von Mitarbeitern des Verlages auf Plausibilität geprüft wer-

KATHRIN JAE NICKE, München

Je nach Vorkenntnissen kann sich der Leser in den drei Teilen des Buches vertiefend informieren:
1. Basiswissen zu Geo-Informationssystemen
2. Fallbeispiele und Erfahrungsberichte
3. Trends und Entwicklungen

Die Grundlagenbeiträge reichen von Informationen zu Geobasisdaten, über GIS-Grundlageninformationen bis hin zu GIS-Produkten, jeweils bezogen auf den kommunalen Bereich.

Ergänzt wird der hervorragend konzipierte Sammel-Band durch eine Begleit-CD, auf der zu allen Beiträgen PDF-Präsentationen in Farbe abgelegt sind.

Als Fazit bleibt festzuhalten, dass der vorliegende Sammelband das Thema „kommunaler GIS“ umfassend abhandelt und jedem, der sich mit dem Thema befasst nützliche Informationen und Anregungen für die eigene Realisierung bietet.

CARSTEN JÜRGENS, Regensburg

Einleitend werden 5 wesentliche Fragestellungen definiert, welche sich zu „die Vor- teile und Einsatzmöglichkeiten Geographischer Informationssysteme im Kontext historischer Gartenanlagen“, „übertragbare Erfahrungen aus anderen Disziplinen“ und „sinnvolle Software und Applikationen“ zusammenfassen lassen.

Der Ausblick auf ein künftiges Garteninformationssystem GARDIS in Kapitel 10 stellt den interessantesten, aber kurz gehaltenen Teil des Buches dar: Es wird eine Verbindung existierender und künftig interessanter Themengebiete in einem für das Management von Gartenanlagen definierten GIS skizziert. Darauf aufbauend könnten Ideen zum Customizing existierender Lösungen und die Anforderungen an ein derartiges System entwickelt werden. Das Buch schließt mit einem kurzen Ausflug in die 3D-
Visualisierung für den virtuellen Besuch von Gärten.
Zusammenfassend sollte zunächst festgestellt werden, dass es sich bei „GIS in der Gartenarchitektur“ nicht um ein Buch handelt, welches den Anspruch eines wissenschaftlichen Werkes erhebt, sondern vielmehr eine erste Einführung in eine Thematik darstellt, die an vielen Stellen eher Erzählcharakter aufweist (Ich-Form, Ausdrucksweise, sparsame Literatur). Vor diesem Hintergrund sind auch die terminologischen und sprachlichen Unschärfen zu bewerten.

PATRICK HOSTERT, Berlin

Vorankündigungen

2003

17. Mai: Die Fachrichtung Vermessungswesen der Uni Hannover und die Gesellschaft zur Förderung der Fachrichtung Vermessungswesen laden ein zum Generationen Treff Geodäsie der Universität Hannover. Auskünfte durch: Dr. Peter Lohmann, Tel.: +49-511-762 24 86, e-mail: lohmann@ipi.uni-hannover.de, http://www.ipi.uni-hannover.de/foerder/Einladung.pdf

22./23. May: 2nd Joint ISPRS WG III/6/IEEE/EARSeL Workshop on Remote Sensing and Data Fusion over Urban Areas (URBAN 2003) in Berlin. Auskünfte durch: Prof. Olaf Hellwich, WG III/6 Chair, Tel.: +49-30-314-22796, Fax: +49-30-314-211 04, e-mail: hellwich@fpk.tu-berlin.de und urban_2003@ele.unipv.it, www.fig.net/figtree/events/events2003.htm und www.tlc.unipv.it/urban_2003/

2.–5. Juni: 23rd EARSeL Symposium „Remote Sensing in Transition“ in Gent, Belgien. Auskünfte durch: Prof. Rudi Goossens, University of Gent, e-mail: rudi.goossens@rug.ac.be und earsel@meteo.fr

5.–7. Juni: Fourth International Workshop Remote Sensing and GIS Applications to Forest Fire Management, Innovative Concepts and Methods, in Gent, Belgien. Auskünfte durch: Dr. Emilio Chuvieco, Departamento de Geografía, Universidad de Alcalá, Spanien, e-mail: emilio.chuvieco@uah.es und earsel@meteo.fr, www.earsel.org

6./7. Juni: International Workshop „Coastal Zone“ in Gent, Belgien. Auskünfte durch: Dr. Rainer Reuter, Universität Oldenburg, e-mail: r.reuter@las.physik.uni-oldenburg.de und earsel@meteo.fr, www.earsel.org

27.–29. Juni: ISPRS, WG VII/4, 4th International Symposium Remote Sensing of Urban Areas 2003 in Regensburg. Auskünfte durch: Dr. Carsten Jürgens, Co-chair WG VII/4, Tel.: +49-941-943-3630/3613, Fax: +49-941-943-4933, e-mail: carsten.juergens@geographie.uni-regensburg.de www.urs-2003.uni.de und Dr. Gabor Remetey-Fulopp, Chair WG VII/4, Tel.: +36-1-301-40 52, Fax: +36-1-301-47 19, e-mail: gabor.remetey@fvm.hu

1.–3. Juli: ISPRS WG V/4 and IC WG V/III Workshop Vision Techniques for Digital Architectural and Archaeological Archives in Ancona, Italien. Auskünfte durch: Hirofumi Chikatsu, Chair WG V/4, e-mail: chikatsu@g.den-dai.ac.jp und Gabriele Fangi, Co-Chair WG V/4, Tel.: +39-71-220 47 42, Fax: +39-71-220 47 29, e-mail: fangi@popcsi.unian.it und fangi@mta01.unian.it, www.ing.unian.it/struttura/fimet/fangi/workshop isprs2003/workshopisprs2003.htm

10./11. Juli: ISEIS 2003 Annual Conference on Systems Science and Information Technology for Environmental Applications in Regina, Kanada. Auskünfte durch: Prof. Dr. Gordon Huang, Tel.: +1-306-585-4095, Fax: +1-306-585-4855, e-mail: gorddon.huang@uregina.ca, www.iseis.org

1.–5. September: 49. Photogrammetrische Woche im Institut für Photogrammetrie der Universität Stuttgart. Auskünfte durch: Konferenzsekretärin Martina Kroma, Geschwister-Scholl-Str. 24 D, D-70174 Stuttgart, Tel.: +49-711-121-3201, Fax: +49-711-121-3297, www.ifp.uni-stuttgart.de e-mail: martina.kroma@ifp.uni-stuttgart.de

8.–9. September: Joint Workshop of ISPRS WG IV/3, 6 & 7 Challenges in Geospatial Analysis, Integration and Visualization II in Stuttgart. Abgabetermin für Abstracts: 1. 5. Auskünfte durch Dr. Jochen Schiewe, Tel.: +49-4441-155 58, Fax: +49-4441-154 45, e-mail: jschiewe@fzg.uni-vechta.de, http://www.iuw.uni-vechta.de/personal/geoinf/jochen/isprs03.htm

9.–11. September: 23. Wissenschaftlich-Technische Jahrestagung der DGPF „Auf dem Weg zu operationellen Prozessketten in Photogrammetrie, Fernerkundung und Geoinformation“ in Bochum. Auskünfte durch: Dr. Klaus-Ulrich Komp, Präsident DGPF, e-mail: Praesident@dgpf.de, Dr.-Ing. Manfred Wiginhagen, Sekretär DGPF, e-mail: Sekretarer@dgpf.de und Prof. Dr.-Ing. Franz-Josef Heimes, FH Bochum, FB Vermessung und Geoinformatik, Lennershofstr. 140, 44801 Bochum, Tel.: 0234-3210517, Fax: 0234-3214223, e-mail: franz-josef.heimes@fh-bochum.de und www.dgpf.de

17.–19. September: ISPRS Joint Conference of WG II/IV, III/4, III/5, III/6 Photogrammetric Image Analysis (PIA’03) in München. Auskünfte durch: Prof. Helmut Mayer, Tel.: +49-89-6004-3429/34 55, Fax: +49-89-6004-40 90, e-mail: Helmut.Mayer@UniBw-Muenchen.de oder: pia03@remotesensing-tum.de http://serv.photo.verm.tu-muenchen.de/pia03 http://www.remotesensing-tum.de/pia03

22./23. September: ISPRS WG I/5 Workshop Theory, Technology and Realities of Inertial/GPS Sensor Orientation in Barcelona. Auskünfte durch: WG I/5 Chair Prof. Karsten Jacobsen, Tel.: +49-511-762-24 85, Fax: +49-511-762-24 83, e-mail: karsten@ipi.uni-hannover.de

6.–8. Oktober: ISPRS WG I/2, I/5 & IC WG II/IV Workshop High Resolution Mapping from Space 2003 in Hannover. Auskünfte durch: WG I/5 Chair Prof. Karsten Jacobsen, Tel.: +49-511-762-24 85, Fax: +49-511-762-24 83, e-mail: karsten@ipi.uni-hannover.de

6.–10. Oktober: 4th International Conference on 3-D Digital Imaging and Modeling in Banff/Alberta, Kanada. Auskünfte durch: e-mail: 3dimconf@nrc.ca, http://www.3DIMconference.org

15.–18. Oktober: Meeting of ISPRS WG VI/3 Geo-Information for Practice in Zagreb, Kroatien. Auskünfte durch: Ljerka Rasic, Tel.: +385-1-3657-386, Fax: +385-1-6157-389, e-mail: ljerka.rasic@dg.u.tel.hr und WG VI/3 Chair: Ulrike Karin Rivet, e-mail: ulrike@eng.uct.ac.za

Oktobrer: ISPRS WG VII/6 Monitoring and Modeling of Global Environmental Change – How to link Local with Global? in Tokyo. Auskünfte durch: Prof. Yoshifumi Yasuoka, Tel.: +81-3-5452-6409, Fax: +81-3-5452-6408, e-mail: yyasuoka@iis.u-tokyo.ac.jp

10.–14. November: 30th International Symposium on Remote Sensing of Environment in Honolulu/Hawaii. Auskünfte durch: ISRSE, e-mail: isrse@email.arizona.edu, oder: Steve Brown, e-mail: brownie@ag.arizona.edu

3.–5. Dezember: ISPRS Joint Workshop WG II/5 & WG II/6 on Spatial Analysis and Decision Making in Hong Kong. Auskünfte durch: Prof. Chen Jun, Pres.Com.II, e-mail: chenjun@nsl.gov.cn oder: Rob Lemmens, Secr.WG II/5, e-mail: lemmens@ite.nl
STARIMAGER SI-200 – Eine neue digitale hoch auflösende Luftbildkamera

Der breite Dynamikbereich der CCD Chips mit einer Aufzeichnungstiefe von 11 Bit und mehr erlaubt auch sehr kleine Grauwertunterschiede gut kenntlich zu machen, so zum Beispiel in Schattenzonen. Wegen des Hochleistungsstabilisierers haben die Rohbilder (Level 0) nur sehr kleine Verzerrungen und gute Bildschärfe. Das System erlaubt auch Schrägaufnahmen, indem der Stabilisierer entsprechend montiert wird (vergleiche das obere Bild, bei dem die Fassaden von Häusern entlang einer Straße sehr gut repräsentiert sind).

Die Installation auf einer Helikopterplattform erlaubt tiefe Flughöhen mit geringer Geschwindigkeit und damit sehr hoher geometrischer und radiometrischer Auflösung. Auch kann damit gut unter einer Wolkendecke geflogen werden, was den aktiven Flugzeitbetrieb deutlich erweitert. Das System wurde ursprünglich für die Aufzeichnung linearer Strukturen, wie etwa Straßen, Flüsse, Bahmlinien etc. konzipiert. In der Zwischenzeit hat es aber seine Nützlichkeit auch für allgemeine Aufgaben der Datenakquisition für GIS und Mapping unter Beweis gestellt. Der Footprint beträgt 3,5 cm bei einer Flughöhe von 450 m über Grund.

Durch die Kombination von nahezu orthogonalen Projektionen in Flugrichtung und perspektiver Abbildung quer dazu ergeben sich nur wenige Verdeckungen, die durch eine zusätzliche Querbefliegung kompensiert werden können. Die mit der Dreifachüberdeckung einhergehende Redundanz erlaubt eine bessere Genauigkeit und Zuverlässigkeit bei automatischen Auswerteverfahren, insbesondere bei der Bildzuordnung.

Neue, dem Sensormodell angepasste Methoden der Auswertung sowie die dazugehörige Applikationssoftware (Userinterface, Entzerrung, Orthobildgeneration, Triangulation, Image Matching zur DSM und DTM Generierung etc.) werden gegenwärtig an der Professor für Photogrammetrie des Instituts für Geodäsie und Photogrammetrie der ETH Zürich entwickelt. In diesem Heft, S. 85–98, findet sich ein Beitrag von ARMIN GRÜNE und LI ZHANG zur Sensor- und Trajektorienmodellierung und Aerotriangula-
tion, mit ersten empirischen Genauigkeits-untersuchungen. Diese Arbeiten beziehen sich noch auf das Vorläufermodell TLS, welches allerdings eine dem STARIMAGER sehr ähnliche Architektur aufweist.

Erläuterung der Abbildungen (Bilder erstellt mit dem Vorläufermodell TLS):
– Oben: Farbaufnahme eines Straßenabschnitts in Tokyo im Schrägmodus.
– Unten: Nadiraufnahme in Yokohama
– Unten rechts: STARIMAGER montiert am Helikopter

ARMIN GRUEN & LI ZHANG, Zürich

Neuerscheinungen

ALEXANDER ZIPP & JOSEF STROBL, (Hrsg.), 2002: Geoinformation mobil. VIII, 230 S., Softcover. Herbert Wichmann, Hüthig Fachverlage, Im Weiher 10, 69121 Heidelberg, e-mail: kundenservice@huethig.de. ISBN 3-87907-373-2. € 40,–

JOACHIM HÖHLE, 2003: Automatic Georeferencing of Aerial Images by Means of Topographic Database Information. 41 pages, ISP publication nr. 287. Orders to: Department of Development and Planning, Aalborg University, Fibigerstraede 13, DK-9220 Aalborg, Tel.: 45-9635 8419, e-mail: bentej@i4.au.dk, ISSN 1397-3169, ISBN 87-90893-47-6. € 6,–