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Robustification of Tangent Angle Function Snakes

ANDRZzEJ BORKOWSKI, WROCLAW and SIEGFRIED MEIER, Dresden

Abstract: The internal energy E,  of conventional
snakes contains the first and second derivatives
of the coordinates with respect to arc length.
Therefore, the Eulerian equations equivalent to
the variation problem are of the fourth order, and
the coefficient matrices of the linear equation sys-
tems belonging to it are pentadiagonal. If E, is
parameterized with respect to the curve direction
and curvature, the Eulerian equation of these so-
called tangent angle function snakes is now only
of the second order, and the coefficient matrix of
the linear system is tridiagonal. This comparati-
vely simple snakes algorithm works quickly and
reliably on smooth curves. Used on the carto-
graphic displacement of line objects, shape distor-
tions show up on strongly curved and non-equi-
distant digitized lines. The causes for the defects
were examined, eliminated, and, so, the procedure
robustified.

Zusammenfassung: Robustifizierung der Tangent
Angle Function Snakes. Die innere Energie E,,
konventioneller Snakes enthdlt die ersten und
zweiten Ableitungen der Koordinaten nach der
Bogenldnge. Deshalb sind die zum Variations-
problem é&quivalenten Euler-Gleichungen von
vierter Ordnung und die Koeffizientenmatrizen
der zugehorigen linearen Gleichungssysteme pen-
tadiagonal. Parametrisiert man £, nach der Kur-
venrichtung und -krimmung, so ist die Euler-
Gleichung dieser so genannten Tangent Angle
Function Snakes nur noch von zweiter Ordnung
und die Koeffizientenmatrix des linearen Systems
tridiagonal. Dieser vergleichsweise einfache
Snakes-Algorithmus arbeitet schnell und zuver-
lassig an glatten Kurven. Angewendet auf die kar-
tographische Verdrangung von Linienobjekten
zeigten sich Formstorungen an stark gekriimmten
und ungleichabstindig digitalisierten Linien. Die
Ursachen der Defekte wurden untersucht, besei-
tigt und damit das Verfahren robustifiziert.

1 Introduction

Aswell known, the snakes technology is der-
ived from the energy minimum principle.
Since the latter is a universal one, also al-
ternative tasks can be solved with snakes
(MEIER 2000), aside from recognition and
extraction problems of digital image proces-
sing like, for example the displacement of
line objects in digital cartography and in ter-
minal outputs of semantic information of
any kind (BURGHARDT & MEIER 1997).
Hereby, the internal energy (shape energy)
with the elasticity and the stiffness term is
used to retain the original shape of the lines
as much as possible. In these terms, typical
curve characteristics like direction and cur-
vature are contained implicitly.

The shape-retaining line displacement
suggests parameterizing the shape energy di-

rectly in respect to curve direction and cur-
vature. From this, a new species of snakes
is derived with only one Eulerian equation
of, yet, a different kind and, after its discre-
tization, also a differently structured equa-
tion system with considerable consequences
for the numerical calculation (paragraph 2).
The new snakes algorithm developed by
Borkowski et al. (1999) is somewhat faster
than the original one created by Kass et al.
(1987) and delivers approximately the same
stable solutions to sufficiently smooth and
dense enough digitized lines. Nevertheless,
undesirable shape distortions up to breaks/
corners were found on strongly curved,
nonequidistant digitized lines from time to
time during tests with real data. The causes
for the instabilities were examined, elimi-
nated and, so, the algorithm robustified
(paragraph 3).
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2 Basic Relations of Tangent Angle
Function Snakes

In the conventional snakes model (Kass et
al. 1987), compare to Tab. 1, the internal
energy E,, from the elasticity term and the
stiffness term are combined in linear fash-
ion. The prior contains the first derivatives,
the latter the second derivatives of the pla-
nar coordinates x = x(s), y = y(s) in respect
to the arc length s. The parameters o and f3
weigh down both terms respectively, as well
as E,, against the external energy E,,. They
can be constant or position-dependent. Fur-
thermore, they can be changed (interactive
controlling). The Eulerian equations in Tab.

1 are noted down for constant « and f. As

they are of the fourth order in x, y, five
points are needed in the discrete approxima-
tion. The coefficient matrix A4, of the linear
equation systems with respect to the x, y-
coordinates is pentadiagonal. If £, from the
curve direction ¢ (s) and its first derivative
¢ (s), identically with the curvature, is com-
bined, the Eulerian equation comes about
in ¢(s). Therefore, we have called the new
species of snakes described in detail by Bor-
KOWSKI et al. (1999) Tangent Angle FUnc-
tion Snakes (TAFUS). Their main charac-
teristics, when compared to conventional
snakes, are the following (compare Tab. 1):

In lieu of two Eulerian equations of the
fourth order in x(s), y(s), there is, now, one
equation of the second order in ¢ (s), thus,

Tab. 1: Basic relations of Tangent Angle Function Snakes (left) compared with those of conventional
snakes (right). The points denote derivations with respect to the arc length s. For details see

chapter 2.
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discretely, only one equation system to be
solved. The coefficient matrix A4, is tridia-
gonal with a very noticably better condition
than 4,. The TAFUS-solution, however, is
not unique: the new side directions of the
deformed polygon snakes are obtained, yet
not the new side lengths. In order to be able
to calculate the coordinates of the deformed
snakes an additional condition is called for:
of course, we determined that the snakes
points move vertically to the snakes direc-
tion. These transversal displacements can be
calculated at small changes in direction d¢
by way of the arc formula and lastly, from

Fig.1: Displacement by the TAFUS algorithm.
The polygon snake direction ¢,_, turns into the
new direction ¢, ,+ dp. For computation of
coordinates of the displaced point P, see Tab. 2.

this, the coordinates. Otherwise, the coordi-
nates are determined by means of an inter-
section (a section of two straight lines noted
in point-direction equations); compare
Fig.1 and Tab. 2.

The term E,,, is shown in Tab. 1 as conflict
energy in the case of (cartographic) line ob-
ject displacement: E, , > 0 if the distance of
neighboring line objects a = a(s) is smaller
than a given hardcore distance & = const,
E,., =0, if no conflict exists with @« > h. The
derivatives of E,, with respect to x,
(snakes) or with respect to ¢(TAFUS),
which constitute the inhomogenities of the
linear equation systems in both models,
aside from the hardcore distance /1, contain
conflict change da/ds along s and in the sna-
ke-model additionally the direction ¢ as well
as the curvature ¢ in the TAFUS-model.
For both, the different coefficient matrices
(A, Ap) as well as the inhomogenities (b,
bJ,; bw) TAFUS must be controlled different-
ly from conventional snakes for obtaining
equivalent results.

3 Robustification of Tangent Angle
Function Snakes

The TAFUS-algorithm works dependably
on sufficiently smooth, equidistant and den-
sely enough discretized curves. In tests with
real data shape distortions were obtained
when the curves were highly curved, had

Tab. 2: Computation of the TAFUS coordinates X, y, by the arc formula (left) or by intersection
(right); see also Fig. 1. Deviations between the results of both methods are outlined in chapter 3, ii).
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breaks/corners and/or had been locally va-
riably digitized. In order to robustify the
procedure, the possible causes for defects
were sought:

1) Definition of the conflict energy (see Tab.
1).

According to the definition Em diminishes
from the position of the maximum (a = 0)
to the position of the just eliminated conflict
(a = h) in linear fashion. If E,, is set up as
exponentially decreasing in a, the snake at
first comes close in an iteratively fast way
but then in a slower one to the position
sought. Our tests have shown that the qua-
lity of the solution is independent of a spe-
cial monotonely decreasing function type
for E,,.

i) Calculation of the coordinates (see Tab. 2).
In the iterative algorithm, the direction
changes d¢ and the coordinates changes dx;,
0y, are small quantities. Therefore, the new
coordinates X,, y, of snake points P, had, up
to now, been approximated with the arc for-
mula. This solution was compared to the
correct one: Intersecting, starting from
points P, ,, P, with directions ¢,_,, t; (see
Fig. 1 and Tab.2).
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Fig. 2: Deviation of position (in percent) compu-
ted by two variants according to Tab. 2, related
to the curvature radius r, and as function of the
break angle « (in degree), and of the change
df=d¢ of the polygon side direction ¢ (in de-
gree). For discussion see chapter 3, ii).

The position error of the approximated
solution depends on d¢, o and the local cur-
vature radius r of the curve. In Fig.2 the
lines of the equal position deviation are
shown in respect to r; for example, if
op =4°, o =90° a deviation of 10% is ob-
tained, thus 1 mm for » = 10 mm. On real
line objects, the order of the magnitude of
one percent is, as a rule, hardly ever surpas-
sed. Therefore, the undesirable defects could
be eliminated by intersecting to only a small
degree (not completely).

iil) Spacing of digitized data.

Irregular spacing has shown itself to be
the main source for instabilities. In the
conventional snakes-algorithm, deviations
from the equidistance, with the exception
of long pieces of straight lines (without
interpolated points), hardly play a role
(BURGHARDT & MEIER 1997). They are,
however, of importance to the TAFUS-al-
gorithm.

The necessity for interpolating the data
at first seems to be a disadvantage, rather
causing the reduction of the TAFUS poten-
cies. But this is only partially so, for also in
the conventional snakes-algorithm there is
interpolation and this even in every iteration
step for finding out the respective conflict
energy E,,. Fig.3 shows that this is neces-
sary: E,, is calculated from the discrete di-
stances «, between the points of closely
neighboring pieces of curves: E, , > 0, ex-
pressed by distances @, which are smaller
than a given hardcore distance / (Fig. 3,
right). If, however, polygon side lengths sur-
pass the value 24, then ¢, < hand E,,, =0
are possible (Fig. 3, left) although a conflict
exists In this case, not only E,, but also

0E,./]0p ~ 0a/ds, meaning the change of
conflict along the curve(s) and, thus, the in-
homogenity of the linear equation system
(see Tab. 1), is calculated incorrectly in a
local neighborhood of the critical spots, es-
pecially when small and large point distan-
ces alternate. The defects named can be eli-
minated by a onetime approximated equidi-
stant interpolation of the input data. How-
ever, one needs to, then, work with more
extented data sets.
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E ext=0

Fig.3: Numerical computation of the external energy E

see chapter 3, iii).

The situation is shown in the test example
in Fig. 4. The line objects, which partially
touch or even cover each other (a), were not
equidistantly digitized (b). The displace-
ment solution with the TAFUS-algorithm
(c) shows shape distortions; especially
breaks were increased. With the interpolat-
ed data shape-stable solutions are obtained
by means of the arc formula (e) as well as
by intersecting (f).

4 Conclusion

The interpolated data in Fig.4 (d) so-to-
speak represent a vectorial pendant to regu-
lar raster data, yet with directions ¢, €
(0,2 m). Therefore, in the TAFUS-algorithm
with vector data also small, especially arbit-
rary small changes d¢, are possible; yet in

Eext>0

from interpolated data. For discussion

ext

the grid with an 8-neighborhood only dis-
crete direction breaks of about at least /4.
Thus, the TAFUS-algorithm is limited to
special applications. The same goes also for
several other snakes models created in the
digital image processing like ribbons, twins,
ziplocks, and others. The TAFUS-model is
no exception in this respect.

In the transition from the continuous Eu-
lerian equations to the linear equation sy-
stems, the equidistant discretization is, of
course, supposed. Yet, irregularly digitized
line objects occur rather often in practice,
for example in the geo-data storage ATKIS
used in Germany. Hereby, the TAFUS-al-
gorithm reacts more sensitively than con-
ventional snakes. Instabilities regarding the
curve shape can, however, be avoided by
using approximative equidistant data.
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Fig. 4: Test example. Variants of line objects displacement by the TAFUS algorithm with non-regular

and regularized data, discussed in chapter 3
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