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The Power of the Links

HANS-PETER BAHR, Karlsruhe

Zusammenfassung: Relationen in Graphen — ein
mdchtiges Werkzeug. Wissen ist eine sehr niitzli-
che Metapher bei semantischer Kognition und
Bildverstehen. Die in diesen Bereichen entwickel-
ten Verfahren basieren meist auf einer einzigen,
geschlossen Methodik und vernachléssigen die
Synergie bei Nutzung verschiedener Ansitze je
nach Aufgabe. Im Zusammenhang mit Wissens-
repriasentation sind verschiedene Verfahren vor-
geschlagen und auf ihre Eignung hin untersucht
worden, wie neuronale Netze (implizit) oder se-
mantische Netze (explizit). Die Vorstellung, dass
der Erfolg in der Kombination verschiedener Me-
thoden liegen konnte, ist bisher noch nicht weit
genug erforscht worden. Jedoch gibt es eine Ge-
meinsamkeit vieler Modelle, welche Wissen repra-
sentieren wollen: Der Graph. Der Grund dafiir
ist, dass ,,Wissen‘ mit seinen beiden Basiskom-
ponenten, den Fakten und den Regeln, charak-
teristischerweise die Fakten den Knoten und die
Regeln den Relationen zuordnet.

Auf diesem Hintergrund zeigt die Veroffentli-
chung die theoretischen Gemeinsamkeiten von
zweli expliziten Modellen, welche sich als effektive
Standardverfahren erwiesen haben, semantische
Netze einerseits und Bayesnetze andererseits. Bei-
de geben eine sehr allgemeine Struktur vor, wel-
che die Formalisierung von vielerlei Arten Wissen
erlaubt. Da gibt es gemeinsame Elemente, wie die
Ablage von Deterministik in den Knoten (geo-
metrische Primitive, Objekte, Koordinaten, Be-
griffe...). In den Relationen bieten beide Modelle
unterschiedliche Moglichkeiten: Da gibt es Be-
griffe in semantischen Netzen (,,Teil von*; ,,Spe-
zialisierung®’; ,,Instantiierung® ...) und stochasti-
sche Eigenschaften in Bayesnetzen — zusammen
mit einer groBen Zahl von Optionen.

Wie die Literatur zeigt, erscheinen die meisten
Wissenschaftler von Faktenwissen fasziniert (wel-
ches sich in den Knoten findet) und erkennen we-
niger die Bedeutung des Regelwissens (welches in
den Relationen enthalten ist). Aus diesem Grunde
versucht der Aufsatz das ,,michtige Werkzeuge
der Relationen in Graphen® herauszustellen
(Woobs 1975, BRACHMANN 1977), und zwar an-
hand von semantischen und Bayesnetzen als Bei-

Summary: “Knowledge” is a very useful meta-
phor in cognitive semantics and image understan-
ding. The developed procedures in this field are
mostly conveyed by a single methodology neglec-
ting the benefits of synergy when interrelating dif-
ferent approaches. In knowledge representation,
for instance, different algorithms have been sug-
gested and validated like Neural Nets in the im-
plicit domain or Semantic Nets in the explicit do-
main. The awareness of the power lying in the
combination of different methods has not yet been
studied to the necessary extent. However, there
is a common feature in many of the models which
try to represent knowledge: the graph. The reason
for this is that knowledge with its two basic com-
ponents, facts and rules, characteristically assigns
the facts to the nodes and the rules to the links.

With respect to this, the paper shows the theo-
retical relationship between two explicit models
which have proved to be two effective “‘standard”
models, the Semantic Nets on the one hand and
the Bayesian Nets on the other. Both give a very
general structure which allows the formalisation
of many kinds of knowledge. There are common
elements like the representation of deterministic
features in the nodes (geometrical primitives, ob-
jects, coordinates, terms). In the links, both mo-
dels offer different opportunities: there are seman-
tic expressions in Semantic Nets (part, specialisa-
tion, instantiation) and stochastic properties in
the Bayesian Nets — including a large variety of
options.

As literature shows, most scientists seem to be
fascinated by factual knowledge (which is in the
nodes) and fail to see the importance of inferential
knowledge (which is in the links). Therefore this
paper is intending to point out the power of “what
is in the links” (Woobps 1975, BRACHMANN 1977)
given for both Semantic and Bayesian Nets as ex-
amples. Starting from the analysis of results which
have been attained in recent research general fin-
dings of the potential of interrelations will be gi-
ven. Nodes without links literally make no sense
and vice-versa. With relation to image understan-
ding, an object without its context is not fully des-
cribed. It is not surprising that the metaphor “un-
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spielen. Ausgehend von einer Analyse neuerer
Forschungsergebnisse werden allgemeine Ein-
sichten iiber das Potential von Relationen vermit-
telt. Knoten ohne Relationen machen offensicht-
lich keinen Sinn. Bezogen auf Bildverstehen ist
ein Objekt ohne seine Umgebung nicht vollstin-
dig beschrieben. Es ist nicht verwunderlich, dass
die Metapher ,,Verstehen* aus der natiirlichen
Sprache entlehnt ist. Auf diesem Felde ist das Ar-
gument noch klarer, da ein isolierter Begriff
strenggenommen ohne Sinn ist: Die Bedeutung
eines Begriffes liegt in seinem Kontext. Dies gilt
gleichermaBen fiir die Sprache wie fiir ein Bild.

derstanding’ has been taken from natural langua-
ge. Here the matter is even more evident as a term
in isolation does not exist in reality. The meaning
of a concept is in its context. This holds true for
both language and image.

1 Introduction

MAKATO NAGAO (1990) defines knowledge
by means of the following equation:
L,KNOWLEDGE = COGNITION + LO-
GIC* where knowledge comprises two very
different and apparently antagonistic com-
ponents.

COGNITION, which refers to “truth” (in
the sense of the “true/false dicotomy’’) can
occur in quite different forms. It implies a-
priori knowledge (a “model”’) that combi-
ned with further cognition instances (“‘da-
ta”) leads to new understanding (“‘results”).
Therefore, acquisition of knowledge requi-
res “intelligent reasoning”.

LOGIC, on the other hand, has to be un-
derstood bearing in mind that knowledge
can only exist in structured form. The or-
dering principle applied may be constructed
following quite different criteria since cog-
nition is not equal for all human beings,
which is particularly evident for spatial cog-
nition (MARK et al. 1999).

The acquisition and the representation
of knowledge through computer techno-
logy is based on metaphors. What under-
lies the concept of metaphor is the fact
that expressions used to describe ideas
in a given context are taken out of such
context and applied to a given situation
within a new context (LAKOFF & JOHNSON
1984, LANDES 1999). Due to this transfor-
mation, the original conceptual content
undergoes modifications, a condition that

has to be taken into account in subsequent
work.

The transference to the computer of these
eminently human mental activities which
comprise what was formerly known by the
unfortunate term ‘‘artificial intelligence”,
occurs almost simultaneously in many dis-
ciplines, and always in discrete steps.

In what follows, we are going to devote
our attention to image analysis, knowing
that similar developments are in progress in
other areas of knowledge. It would be des-
irable to look for natural relationships be-
tween image analysis, cognition science and
theoretical linguistics since in all these fields
concepts are the central subject of study.
Unfortunately, possible synergy has so far
deserved little attention.

2 Models (Examples)

Man defines knowledge. He tries to transfer
his understanding (his models) using the
structures given by the computer, his tool.
Such effort can lead to implicit (“‘heuristic’)
solutions or to real explicit (knowledge-ba-
sed) systems. In the latter, knowledge acqui-
sition and knowledge processing are separa-
ted. In the case of implicit solutions, the sy-
stem is trained by man, and in such a case
we speak of systems capable of learning.

Itisimportant to point out that in both cases
the elements of knowledge acquisition are
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established by man. In the case of implicit
solutions, the object model is less complete
than in a-priori object models, which are ex-
plicitly formulated. The requirements as to
structuring posed by logic are considerably
higher in the second case than in the first.

The procedures of image analysis that ha-
ve been developed and have found worldwi-
de applications are uncountable and diverse.
It is the aim of this paper to point out com-
mon grounds in different existing models,
taking as examples four well known proce-
dures.

2.1 Neural nets

To describe this alone there exists enormous
quantities of literature (PRECHTELT 1995).
To copy physiological functions of the hu-
man brain constitutes a typical implicit pro-
cedure. The empty structure of the given net
comprises input and output nodes and, de-
pending on the approach chosen, different
intermediate layers. The underlying princip-
le is that all input concepts are related to
all output concepts whereas the instantia-
tion of each net depends on learning based
on real data driven by a human operator
and quantified by weights and distributions.

Fig. 1 shows the structure of a Neural net
to recognize and store land use classes (SEGL
1996). In opposition to traditional multi-
spectral classification in this case not only
the spectral signatures but also further ob-
ject features like size and shape were taken
into consideration. Like the system of the
Neural net and different from the maximum

Input layer
° Inner layer
Qutput layer

Qutput

Fig. 1: Neuronal network (taken from SEGL 1996).

likelihood classifier, man can easily fuse and
process simultaneously different features li-
ke color, texture, shape, size, compactness,
etc.

Each node contains object classes and ob-
ject attributes while the links contain the
trained relations between these concepts, gi-
ven by weights or stochastic distributions.

2.2 Delaunay nets

In contrast to the purely implicit procedures
of Neural nets, those based on Delaunay
nets already show features of an explicit a-
priori object model. The example given be-
low, however, is an object model at a very
elementary stage.

Fig.2 shows the net of isolated pixels
which had been assigned with high likeli-
hood to the class “‘sealed”. It is the result
of a Landsat-TM image classification cor-
responding to a settlement area (SCHILLING
& VOEGTLE 1996). The structure of the sealed
surfaces in the given context can be derived
from the shape and size of the triangles. For
example, shape may be numerically expres-
sed by a compactness factor C = P?/4 A,
where P is the perimeter and A the area of
the triangles. Thus it is possible to segment
the outline of settlement areas. Streets out-

Fig. 2: A Delaunay net composed of pixels as-
signed to ,,sealed surface'' (SCHILLING & VOEGTLE
1996).
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side the enclosed settlement areas are shown
by characteristically long stretched chaines.
It is also possible to segment surfaces within
settlement areas representing vegetation or
different concentration of buildings located
within the sealed areas.

The procedure applied by Delaunay net
has gone beyond implicit methods since the
object model given through the assignment
of the different types of triangles to different
object classes is an a-priori set.

Nodes always contain values of one and
the same class (‘“‘sealed surface’). Although
links as such do not convey information in
themselves, the resulting triangles support
the meaning of the object nodes. The mea-
ning is given by the geometry, the “Gestalt”
of the net.

2.3 Bayesian nets

These are classical representatives of the ex-
plicit case and give the a-priori modeling of
the occurrence of object components, their
relationships inherently including their pro-
bability.

Fig. 3 shows a dynamic Baysian net for
the recognition of buildings (K ULSCHEWSKI
1999, KocH 2000). The letters mark random
variables of the corresponding objects, in
this case related to the recognition of buil-
dings. All significant features were descri-
bed, like, for example, parts of aspect (At),
aspect (A), occlusion (V), buildings (G), fre-
quency of aspects (H,), angle of view (Z),
for the regional elements, and attributes of
the lines (R, N, P, S) for local primitives.

building place
[
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Fig. 4: A semantic net (from QuinT 1997).
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Fig. 3: Baysian net (see KuLscHEwski 1999).

The components are written as random
variables (X, ... X,) at the nodes. Between
random variables exist densities which point
towards that random variable for which the
density is given. Thus, the Bayesian net
establishes a system of uncertainties which
is represented as a closed graph.

For Bayesian nets, the random variables
are in the nodes and their relationships is
given by densities. The Bayesian net models
the probability for random variables inclu-
ding their relationships.

2.4 Semantic nets

Here objects and their semantics (meanings)
are modeled. This also occurs explicitly sin-
ce both relationships and their meaning are
given a-priori. Fig. 4 is a simple example of
a semantic net. Concepts are connected by
meaningful relationships like “part link”
(bst), “‘specialization link”, and “instan-
cing”.

pe parking IotJ
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Depending on the motivation, both ob-
jects and their relationships may be expan-
ded as necessary. QUINT (1997) has been the
first to apply semantic nets to aerial image
interpretation showing that it is possible to
assign an initially random series of graphic
primitives to a given semantic net and that
in this way it attains meaning. Since mea-
ning is modeled in semantic nets, it goes
much beyond the iconic level. This leads to
the possibility to establish comparisons at
high level image processing for different re-
presentations of the real world, like e.g.
maps and images.

In the semantic net displayed, objects are
found in the nodes similar to the other ex-
amples given. However, the links between
the concepts are expressed by semantic re-
lations. This introduces meaning, a main
feature in image understanding, which we
shall investigate more deeply in the next pa-
ragraph.

3 The Meaning in Graphs

In all the examples previously given, know-
ledge was structured as graphs. It is indeed
evident that both fundamental components
of knowledge (facts and rules) can be extre-

mely well represented by nodes and links
(BAHR 1998). We find therefore objects, the
concepts, in nodes and their relationships,
the context, i.e. the meanings, in the links.
This explains inherent capability of nets to
generally represent these two basic compo-
nents of knowledge.

In Tab. 1, the starting point is always ““fact
1" which stands for the object (the concept)
“sealed surface”. Two different rules relate
node 1 to node 2 and to node 3.

In the case of NEURAL NETS, the sy-

stem is trained by means of exemplifying da-
ta in such a way that the rule “small and
compact’ leads to the concept “house” (fact
2) and the rule “large and linear’ to the con-
cept “‘street”. Rules can be established in a
primitive way by just weights or else by set-
ting parameters in distributions.
In the case of DELAUNAY NETS we can
see in Tab. 1 that rules are represented by
only the two alternatives: “‘near’” and “far”.
Consequently this leads in the first case to
“same object” and in the second to “diffe-
rent object”. As explained in chapter 2, the
geometry of Delaunay triangles may be in-
terpreted more widely than the example gi-
ven in Tab. 1. The geometric nature of reas-
oning becomes evident here.

Tab. 1: Comparison of properties for net-based knowledge representation.

A
e

@ m;o‘?

Neural net Delaunay net Bayesian net Semantic net
(trained) (given) (given) (given)
Fact 1 Sealed surface Sealed surface Sealed surface Sealed surface
Rule 1 Small, compact Near p(x, C); =0,1 Part of
Rule 2 large, linear Far p(x, C), =09 Instance
Fact 2 House Same object Changed Street
Fact 3 Street Different object Unchanged Gildestraat




28 Photogrammetrie « Fernerkundung  Geoinformation 1/2001

In the case of BAYESIAN NETS there
are objects (concepts) in the nodes: in the
example given in Tab. 1, this is the class
““sealed surface”. In the links there are den-
sities. Rule 1 assigns a low probability (0,1)
for the case that the class of node 1 had
changed. Correspondingly, a high probabi-
lity (0,9) corresponds to the case of no chan-
ge of that class. This example shows the way
in which uncertainties are dealt with in
Bayesian nets.

Finally, the example for SEMANTIC
NETS also starting with sealed surfaces,
shows the relationship between nodes 1, 2
and 3 as “part of” and “instantiation”. In
the case of link 2, instance corresponds to
the Gildestraat while the “part of”” link leads
to the object “street” which has not been
instantiated.

These four examples show common fea-
tures as well as differences. The nodes of the
graphs represent deterministics like graphic
primitives, coordinates, concepts, classes,
objects, instances or whatever name might
be chosen. However, segmentation of the
image into such classes or objects is the final
aim of image interpretation in almost all si-
tuations. By doing this it is often forgotten
that an object taken out of its context lite-
rally “makes no sense””. When analyzing a
group of trees, for example, it is of utmost
importance to know whether they are in se-
mantic relation to the concept forest, park,
garden or to that of arboretum.

The contextual information is given by
the links. The individual realisation may be
of semantic, stochastic, geometric nature or
be trained. A single relationship can ob-
viously only model context at an elementary
level. Only the analysis of more complete
net makes it possible to represent more so-
phisticated relationships.

An example was given for Delaunay nets
where contextual information was limited to
geometrical features, like distances and sha-
pe. These geometrical features, however, re-
present knowledge that is being modeled for
further image interpretation. In the case of
Bayesian nets, the relationships between the
nodes connote densities about the existence
of concepts of the following nodes. Together

with their modeling in form of random va-
riables, this leads to a system of evaluations
of inherently uncertain messages for the
whole Bayesian net. When speaking of Se-
mantic nets, the importance of context be-
tween objects of the nodes is more directly
recognizable. The meaning is given “‘expres-
sis verbis”. Finally, Neural nets show in the
links weights or distributions, which are
characteristic for the occurrence of certain
associations. In these nodes there may be a
combination of very different types of ob-
jects; but their association through links
must set meaning, quantitatively given by
numbers. Weight and distribution show simi-
larities with densities of the Bayesian nets but
they are generated in a quite different way.

Nevertheless, it is necessary that the rela-
tionships for image interpretation must be
quantified in all cases. This constitutes the
greatest problem in modeling, since rigo-
rously speaking it is often a mere estimation.
It is at this point that the a priori knowledge
of the human operator acquires its relevan-
ce. The estimation can be drawn in as im-
plicit training like in Neural nets or it can
be incorporated in other cases from a priori
knowledge like the information driven from
the form of the triangles in the Delaunay
nets, the densities in Bayesian nets and the
associations of concepts in semantic mode-
ling.

4 Modeling Semantic Neighbour-
hood

The representation of knowledge by means
of graphs has lead to quite different results
as has been shown throughout the examples
above. Although both nodes and links do
not “make sense” in an isolated domain, in
image processing attention has traditionally
centered in the nodes, for example, in the
segmentation of objects, in land use or en-
vironmental monitoring. The task is then
“deterministic”, that is to say that the pro-
blem lies in finding a clear answer to a clearly
stated question the same way in which tra-
ditional cartography had to assign unique
types of land use for classes out of a given
land use catalogue.
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However, a complete description of ob-
jects during image interpretation requires in
addition the description of relationships be-
tween objects.

In graph theory, we generally write an un-
directed attributed graph in the following
way

749 =(V, €, 7,0)

(see KuLsCHEWSKI 1999)
where nodes are represented by v and the
relationships by € with their corresponding
list of attributes y and @. The relationship
between an ordered pair of nodes v,, v, is

e = (Vi Vi)

Geometrical or topological relationships
lead to the concept of neighbourhood.
Neighbourhoods are in general but not ne-
cessarily free of contradictions according to
the laws of Euclidian geometry and may be
visualised in clear correspondence with the
,,real world*. For instance neighbourhoods
N of binary surface elements yields

e = N(f;, f).

Expanding geometrically modeled neigh-
bourhoods, we now introduce ‘“‘semantic
neighbourhoods™ SN, taking g as binary se-
mantic primitives:

e = SN (g;, &)

In opposition to N, this equation repre-
sents a semantic relationship between two
elements. Semantic (conceptual) properties
differ due to their very nature from geome-
trical properties in the way that they are not
“factually” describable. The fuzziness in-
corporated by SN, however, is a necessary
property of the “‘real world™.

An example from image classification
shall make this clear: classes of land use not
only overlap with their spectral signatures
— they are not only spectral neighbours
(which leads to the well known problems in
multispectral classification) but they are
conceptual neighbours as well. For instance,
the conceptual contents of “deciduous fo-

rest”,  “‘coniferous forest”, ‘“‘water”,
“swamp”’, “hyacinth’ and “grass” may sha-
re similarities depending from the context
in which they are found.

For example, in Fig. 5 the problem is to
compose the land use class “swamp”. The
five subclasses do give completely different
semantic concepts but they share the proper-
ty of being “part of” links pertaining to
swamp. The attributes corresponding to the
classes in the nodes are, for example, coor-
dinates, spectral signatures, size of areas,
compactness, texture, etc. Thus, it is possib-
le to describe sufficiently the concepts invol-
ved in Fig. 5 with exception of the concept
“swamp’’ which also suffers variation in the
common language since it may contain
scientific, pedologic, phytogeographic, or
genetic meaning.

The problems arising from this situation
can only be solved through context, i.e., by
establishing the relationship to its semantic
environment. Part of this is also the infor-
mation contained in the list of attributes for
the relationships @, in Fig. 5. The double
indexes show the associations between each
subclass (h, d, ¢, w, p) to the class “swamp”’
(s). These contain properties of the semantic
neighbourhood, SN, by means of which it
is possible to recognize the subclasses as
“part of swamp” and to assign them to that
class.

The required information does not purely
consist of semantic components; geometri-
cal components like distance between nodes
and size of the area involved are necessary
too, as well as statistical data referring to
occurrence and distribution of the different
“parts of class” corresponding to the con-
cept “‘swamp’’.

The analysis of semantic neighbourhood
in the given example shall show the possi-
bility and, moreover, the necessity to com-
bine different models of knowledge repre-
sentation. This is possible by means of at-
tribute lists of both nodes and links. In these
lists appear side by side associative, geomet-
rical, topological, physical and statistical at-
tributes.

The example evidences e. g. similarities of
semantic and Bayesian nets. The “part of”
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Fig. 5: Explaining semantic neighbourhood; Y, o are attributes of nodes and relations, respectively.

link among the nodes in Fig. 5 has to list
certain conditions. When the concepts in the
nodes are written as random variables and
the links as densities, the original semantic
land use structure is transferred to a Baye-
sian net. Thus a directed graph is generated
in which the arrow points towards the node
“swamp’’.

It is obvious that Bayesian nets model
knowledge in a more general way than se-
mantic nets do, because it is clear that the
semantic components can be straightfor-
wardly integrated to them.

5 Conclusion

It is the aim of all modelling approaches,
whether spatial or not, to structure “’know-
ledge” in the sense of MAKATO NAGAO. It
therefore should be clear that all the examp-
les given show common features. This is an
insight which may not be immediately evi-
dent. The concepts “facts” and “‘rules” —
which play a central role because of their
clear simplicity — lead logically to graphic
representation. It was shown that different
modeling approaches have common roots
and may be combined.

In all cases we find neighbourhoods of dif-
ferent kinds, for concepts in the nodes and
for relationships in the links. This occurs
both in the geometrical and in the semantic
domain. Agreement (“fitting”) in the sense
of “neighbourhood” leads to the concept of
“Isomorphism” (HOFSTADTER 1979). This

does not require a perfect identity of the
graphs but acceptable geometrical and se-
mantic neighbourhood within tolerable
(“error”) limits.

Isomorphism is also an important con-
cept in theoretical linguistics where it desi-
gnates “identity of form” (words) in langua-
ge. It might be helpful to analyse in more
detail and take into account findings in lin-
guistics — more precisely, in psycholinguis-
tics (LAKOFF 1988). One of the modern the-
ories is that although a word (good, for ex-
ample) seems to be self-understanding, in
different contexts its co-text is liable to mo-
dify its meaning in such a way that it beco-
mes quite a different concept. Compare:

a good boy  good weather

good company  a good student

Good boy!  Good bye! Good morning! a good price

Concepts and concept interpretation are
a core issue of image analysis. To quantify
and find mathematical equivalents for se-
mantic contents in imagery is a challenge
we are facing.

In order to understand (decode) a senten-
ce, it is necessary to know its individual con-
text, because the meaning is in the context.
This insight can be fully transferred to image
understanding (decoding). In graphs repre-
senting spatial knowledge for both language
and imagery, the context comes out at the
relations. This constitutes the role, the po-
wer of the links.
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