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Abstract: In recent years, 3D models containing both geometric and semantic information 
have become of great public interest. The geometric information of 3D models can be 
provided by (a combination of) photogrammetric methods, laser scanning and traditional 
surveying. For providing the semantic information for 3D urban models in an automated 
way, we established an end-to-end approach for classifying images of building facades into 
five different utility classes (commercial, hybrid, residential, specialUse, underConstruction) 
by using Convolutional Neural Networks (CNNs). We did several experiments on different 
data sets with various CNNs for evaluating the performance of this approach. Using Class 
Activation Maps (CAMs), we examined which features are learned during the training 
process in order to sort the facades into the considered classes. 
 

1 Introduction 

In the last few years Artificial Neural Networks (ANNs) have become state of the art in various 
research areas like image recognition, object recognition and speech recognition. ANNs are 
weighted graphs whose parameters ࣂ are trainable. Using ANNs is said to be Deep Learning. 
Particular ANNs that have been originally inspired by the human visual cortex are called 
Convolutional Neural Networks (CNNs). They proved to be very useful in the visual domain due 
to their properties like locality, parameter sharing and dimension reduction (RUSSAKOVSKY et al. 
2015). The architecture of a CNN can be seen in Fig. 1. 
Our aim is to establish an end-to-end approach for classifying street-level images of building 
facades into five different utility classes (see Tab. 1) by using CNNs. This is a highly complex 
real-world task struggling with various problems depending on image properties, object 
properties and environmental factors (variation of object scale and orientation, changing amount 
of buildings per image, cropped facades in images, occlusions, changing illumination, …). 
Moreover, the appearance of a facade is not necessarily in accordance with the actual usage of 
the building, e.g. there can be a medical practice in a former purely residential building without a 
constructional change of the facade. We assume, this discrepancy cannot be solved within the 
visual space. 
For training the CNNs we use labeled Google Street View (GSV) images. The labels are 
acquired by the linking between labeled LoD3 building models and GSV images provided by 
TUTZAUER & HAALA (2017). The subsequent aim - using the trained CNN - is to enrich any 3D 
urban model where the semantic information is not already known.  
We experiment on different data sets (see 2.2 Data Preparation) with various CNNs (VGG16, 
VGG19 (SIMONYAN & ZISSERMAN 2014), Resnet50 (HE et al. 2016), InceptionV3 
(SZEGEDY et al. 2016), self-designed networks) in order to investigate the performance of our 
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end-to-end approach where no hand-crafted features are used. In order to examine which features 
are learned during the training process, we make use of Class Activation Maps (CAMs) 
visualizing areas being important for the network’s decision (SELVARAJU et al. 2016). A human 
interpreter can derive the learned features by looking at those important areas. Furthermore, with 
the help of CAMs we investigate how our trained CNNs perform on data that has different 
properties than the used training data. Classification results and CAMs are shown in 2.4 Results. 

 
Fig. 1:  Architecture of a CNN for multiclass classification with an input layer (here: RGB image), 

multiple hidden layers and an output layer. The amount of classes ݊௦௦௦ defines the size of the 
output layer representing the estimated label vector ࢟ෝ. Spatial dimensions ݓ and ݄ depend on 
the input image and the used convolutions (and poolings). The depth ݀ of hidden convolutional 
layers depends on the amount of used convolutional kernels applied to the previous layer. Each 
depth slice is a so-called activation map. 

Recent years have shown a great effort in scene understanding and consequently, extending 
3D urban models with semantic information. Similar to our task, MOVSHOVITZ-ATTIAS et al. 
(2015) perform a fine-grained multi label classification of store fronts exhausting GSV data. It 
can be seen as a more detailed classification of our class commercial. MARTINOVIC et al. (2015) 
do segmentation and labeling of facades in 3D space. Unlike us, they classify only components 
of facades whereas we classify the facades as a whole. Therefore our classification is on a higher 
abstraction level. 

Tab. 1: Considered classes of building facades for our end-to-end approach. 

name definition 

commercial purely commercial use 
hybrid mixture of commercial and residential use 
residential purely residential use 

specialUse 
anything else not matching the other four 
classes, e.g. gyms and churches 

underConstruction 
sites being under construction independently 
on their actual building class 

2 Setup and Training of the CNNs 

The aim of our end-to-end approach is to provide an automated pipeline for extracting semantic 
information in images showing building facades. As a first step, we perform image classification 
considering only five different classes (see Tab. 1) as we want to investigate the feasibility of 
such a pipeline when using CNNs. In order to learn features properly, a huge amount of labeled 



38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München – Publikationen der DGPF, Band 27, 2018 

703 

data for the training process has to be provided. As there doesn’t exist any benchmark for our 
purposes, we have to provide a labeled data set on our own (see 2.2 Data Preparation). A labeled 
data set consists of images ࢞ labeled with a correspondent label ࢟, i.e. tuples (࢞,  We provide .(࢟
different data sets with images for training (train set), for validating the network’s performance 
during the training process (validation set) and for evaluating the network’s performance after 
the training process (test set). Results are shown in 2.4 Results.  

2.1 Pipeline 

In order to use CNNs for image classification you have to train them by using ground truth data 
(see 2.3 Training). A labeled input image (࢞,  is fed to the CNN, processed by its current (࢟
parameters ࣂ which produce a predicted label vector ̂࢟. The label vector can be interpreted as a 
probability density function over the considered classes. This output is compared to the ground 
truth ࢟ (one-hot label vector). The discrepancy between ̂࢟ and ࢟ is backpropagated during the 
network wherefore the parameters ࣂ are updated (LECUN et al. 1998). The more labeled data are 
available for the training, the better the parameters can anneal to their ground truth values and 
the better is the achieved classification. Once training is done one can process any new unseen 
data considering the CNN as a black box accomplishing the classification (see Figure 2).  

 

Fig. 2:  Concept of the classification pipeline using CNNs. An input image showing a facade is 

processed by the CNN producing a probability density function over the considered classes 

2.2 Data Preparation 

Providing a big enough labeled data set in order to deal with the problem’s complexity is a big 
challenge and a very tedious task. We provide different data sets for binary and multiclass 
classification tasks in order to investigate the impact of the separability of classes. All images are 
RGB images from GSV and labeled based on the fine-grained labeling given by TUTZAUER & 

HAALA (2017). These labels have to be sorted into our coarse classification given in Tab. 1. 
Obviously, in the real world there are more facades of residential buildings than facades 
belonging to other classes causing imbalanced data sets, initially. With the help of a priori data 
augmentation (horizontal flipping, warping, cropping, jittering and modification of saturation) 
we created equally distributed training data sets. I.e. every considered class has the same amount 
of samples. 

2.3 Training 

Generally, ANNs can be seen as function approximation machines consisting of a huge amount 
of parameters ࣂ which are learned during a training process by using a labeled train set 
(supervised learning). The schematic representation of an ANN is given in Figure 2. Equation (1) 
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shows the mathematical representation of the function approximation machine (left side) and its 
ground truth relation (right side) with perfectly known parameters	ࢀ resulting in perfect labels ࢟. 

̂࢟ ൌ ݂ሺ࢞, ࢟  ሻࣂ ൌ ݂ሺ࢞,  ሻ  (1)ࢀ
The learning process adapts the originally randomly initialized parameters ࣂ in an optimal sense. 
Mathematically speaking, the learning process is an optimization problem where the trainable 
parameters have to minimize a cost function ܥሺ࢟,  ̂࢟ ሻ measuring the discrepancy between̂࢟
and ܥ .࢟ is a proxy measure for the classification error. Due to the architecture of CNNs the 
learned parameters are stored in convolutional masks. Hence, they can be interpreted as feature 
detectors. We used RGB images of size 400px × 400px. Our train set consists in total of 75.000 
images (15.000 images per class) due to data augmentation. Validation set and test set consist of 
350 images each (70 images per class). 

2.4 Results 

Our work shows, that an overall accuracy of approximately 64% can be achieved with current 
state-of-the art models (VGG16, VGG19, ResNet50, InceptionV3) when being evaluated on data 
sets provided by us. As expected, classes specialUse (accuracy: 25.71%) and underConstruction 
(accuracy: 48.57%) perform worse than the other classes due to their definitions (high intra-class 
variance, bad separability) and lower the overall accuracy by approximately 18%. Furthermore, 
residential performs best (accuracy: 98.57%), which is pleasant as the majority of real-world 
buildings belongs to this class.  

 

Fig. 3: Some examples of correctly classified images overlaid with CAMs showing the class-specific 
important areas. The image of class specialUse shows a kindergarten (bottom left) with 
bricolages at the windows. The respective color of the CAM represents the importance 
regarding the network’s prediction 
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By looking at images of correctly classified images overlaid with CAMs (see Figure 3) we can 
collect a subset of learned features for each class (see Table 2). Interestingly, they are similar to 
features a human operator would use instinctively. CAMs base on the activation maps of the last 
convolutional layer of a trained CNN. These activation maps contain high-level features while 
conserving the spatial information (which is discarded by fully connected layers). The gradient 
of the predicted class with respect to the activation map shows the importance regarding the 
network’s decision. I.e. the CAM is class-specific.  

Tab. 2: Extracted learned features (interpreted by using CAMs) 

class features 

commercial 
windows (arrangement, size, amount), advertising panels/signal colors, 
shop windows, big doorways, roof shape (flat roof), huge chimneys 

hybrid 

windows (arrangement, size, amount), advertising panels/signal colors, 
shop windows, roof shape (saddle roof), roof extensions (e.g. dormers, 
chimneys or antennas), environmental objects (sky, vegetation, cars, 
humans), big doorways 

residential 

windows (arrangement, size, amount), roof shape (saddle roof), roof 
extensions (e.g. dormers, chimneys or antennas), environmental objects 
(sky, vegetation, cars, humans), arrangement/skyline of adjacent 
buildings 

specialUse building shape, decorated windows, special doorways 

underConstruction scaffolds, cranes 

 
(a shows a correctly predicted construction site overlaid with its CAM. By evaluating CAMs we 
could locate the problems for the image classification task. There are misclassifications due to 
not detected features and misclassifications due to misinterpreted features (see (b). Apart from 
these misclassifications, there are classifications that contribute to the classification error as 
predictions and ground truth labels differ due to different focusing. From a human point of view 
the building covering the majority is decisive for labeling, but CNNs only take care of features 
with the most impact on predictions - independently of location and size within the image. 
Basically, these predictions are not necessarily false predictions, but they still are lowering the 
overall accuracy if they do not match the human-given label. As a consequence, the classification 
of building facades, currently realized in form of image classification, underestimates the real 
power. (c shows exemplarily an image of such a “false” prediction overlaid by its corresponding 
CAM. 
Results of our binary and ternary classifiers show that classification results can be improved by 
improving class separability, i.e. by reducing the intra-class variance (overall accuracies for the 
binary/ternary case: approximately 88% / approximately 73%). Our pragmatic approach was to 
reduce the amount of classes in order to avoid a new labeling.  
In addition to that, CAMs are used to investigate how trained CNNs perform on different data 
representations. For that purpose, CAD models in LoD3, textured meshes (textured with images 
of Google Earth) and cut out buildings of GSV images are considered (see Figure 5). In the 
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following, we refer to them as non-image representations as the first two are 3D models and the 
latter are cut out images only. These representations have also been used by a user study on the 
human ability to perceive building classes from geometric representations (TUTZAUER & HAALA, 
2017).  

(a): Correct prediction (b): False prediction (c): “False” prediction 

Fig. 4:  Example images overlaid by corresponding CAMs of correct and false predictions for binary 
classification. The small bell tower in Figure 4b is mistaken as a chimney causing a false 
prediction. The “false” prediction in Figure 4c is a result of the discrepancy between human 
labeling and automatic labeling. The transformer house occupying the major area is decisive for 
the human-given label. The CNN focuses on the marginal residential building 

Since data has to be provided to the network in the same manner like during training, trained 
CNNs cannot be applied instantaneously to the considered non-image representations. As we 
trained our CNNs on 400×400×3 sized images we have to provide RGB images of the same size 
to the networks. Therefore, snapshots of those non-image representations are taken.  
Figure 5 shows snapshots of different non-image representations overlaid by corresponding 
CAMs. All representations have in common that there is no environmental information. A small 
exception is the LoD3 model generated by SketchUp. A human is placed automatically next to 
every 3D model by the program. This is worth mentioning, as human is an important feature for 
classes hybrid and residential (see Table 2). Please note, snapshots of textured meshes are taken 
from a bird’s eye view which differs significantly from the exposure direction of our training 
images (street-level images).  
Figure 6 exemplarily shows a correctly predicted building throughout all representations overlaid 
by corresponding CAMs. The first row shows snapshots of LoD3 models whereby in the left 
image the human is removed. It can be seen that the same areas activate for ground truth class 
hybrid (neglecting the human part in the right image). Removing the human means removing the 
most important feature (see the change of CAM’s coloring and the worsening of the prediction 
confidence). This shows the importance of environmental objects for the classification. 
The lower left shows the snapshot of the textured mesh representation. Its exposure direction 
differs from street-level images used for training the network. The lower right image shows the 
cut out GSV image (overlaid by its CAM) which achieves the best result.  
To summarize, the more information is carried by the representation (e.g. color, environmental 
objects, etc.) and the more the representation converges to the representation used during 
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training, the better becomes the classification result. Snapshots of Figure 6 show that CNNs are a 
manifestation of weak Artificial Intelligence. CNNs can solve tasks reliably they are familiar 
with. The more the task’s preconditions or the task itself differs from the task during training, the 
more limited is the classification quality.  

Fig. 5:  Snapshots of different non-image representations that have been classified correctly overlaid by 
corresponding CAMs (ground truth in first row: commercial, ground truth in second row: hybrid, 
ground truth in last row: residential). The first column shows snapshots of LoD3 models. The 
second column shows snapshots of textured meshes (textured with Google Earth images). The 
last column shows cut out Google Street View images 
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Fig. 6:  Snapshots of different non-image representations of the same building and the corresponding 
CAMs. Please note, the building is oriented differently in the snapshots. The ground truth label 
is class hybrid. The upper row shows a snapshot of the LoD3 model without a human (left) and 
one snapshot with a human (right). The second row shows a snapshot of the textured mesh 
(textured with Google Earth images) and a cut out Google Street View image (from left to right). 

3 Conclusions and Outlook 

The presented end-to-end approach achieves promising results for enriching 3D urban models 
automatically with semantic information. The overall error of 36% reflects the complexity of this 
real-world classification task and immediately suggests to reduce the classification error in future 
work. This can be achieved by gathering more training data. Avoiding “false” predictions might 
be insoluble in the context of image classification (see (c). In future work we suggest to go from 
image classification to object detection and object classification where this kind of 
misclassifications do not apply. Alternatively, a multi-label data set should be provided. In such a 
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data set, every image is tagged with all classes whose instances are visible in the image - sorted 
by covering area in descending order.  
We have to note that reality is far too complex in order to label all images properly into the 
considered classes. It would be interesting to see how and in how many classes images are 
clustered by an unsupervised learning method. Based on these results one could rethink the 
current classes.  
In order to form a judgment of the CNNs’ performance, we want to conduct a user study on our 
data sets and determine human performance for comparison. We know there are images where 
humans have problems to classify the facades correctly. 
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