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Parameters Influencing Forest Gap Detection Using 
Canopy Height Models Derived From Stereo Aerial Imagery 
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MAIKE PETERSEN2 & VERONIKA BRAUNISCH1,3 

Zusammenfassung: Lücken sind wichtige Strukturelemente für die Waldbiodiversität. Zur 
automatisierten Kartierung von Lücken in Relation zur umgebenden Bestandeshöhe und –
bedeckung entwickelten wir eine Methode, welche auf von Stereo-Luftbildern abgeleiteten 
Kronenhöhenmodellen (CHMs) und einem LiDAR- Geländemodell beruht. Zur Evaluierung 
der Methode und der Bestimmung der wichtigsten Fehlerquellen wurden in einem 1021 ha 
großen Modellgebiet im Schwarzwald (Südwestdeutschland) die Kartierergebnisse aus drei 
Befliegungen (2009, 2012, 2014) verglichen. Die Befliegungen von 2009 und 2012 hatten 
eine Bodenauflösung von 20cm und eine Überlappung von 60 % in Flugrichtung und 30% 
quer. 2014 war die Bodenauflösung 10cm und Überlappung 80%, respektive 60%. Die 
Validierung erfolgte durch visuelle Stereointerpreation. Schattenvorkommen und die 
geometrischen Grenzen der Stereobildauswertung wurden als Hauptfehlerquellen erkannt. 

 
Abstract: Gaps in the canopy are important elements for forest biodiversity. We developed a 
method based on Canopy Height Models (CHMs) derived from stereoscopic aerial imagery 
and a LiDAR-based Digital Terrain Model (LiDAR DTM) to automatically delineate forest 
gaps in relation to height and cover of the surrounding forest. To evaluate the factors 
affecting the mapping accuracy, we compared the results from three different flight 
campaigns (2009, 2012 and 2014) in a 1021-ha model region in the Black Forest, 
Southwestern Germany. The public campaigns of 2009 and 2012 were taken with an overlap 
of 60% within stripe and 30% between stripes and an overall resolution on ground of 20cm. 
Data from 2014 had a 10cm resolution and an overlap of 80% within stripe and 60% 
between stripes. The validation was done by visual stereo-interpretation. Shadow occurrence 
and geometric limitations of the stereo aerial imagery were identified as main error sources. 

 

1 Introduction 

Forest gaps are considered important structural elements in forest ecology. They play a key role 
in forest regeneration processes (GETZIN et al. 2014) and provide suitable habitat structures for 
animal species that depend on semi open habitats (SIERRO et al. 2001; MÜLLER & BRANDL 2009; 
ZELLWEGER et al. 2013). Canopy gaps are therefore of great interest for research in the fields of 
stand structure and regeneration dynamics as well as biodiversity and nature conservation. In 
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addition to the widely used traditional field-data collection for identification and quantification 
of the canopy gaps in ecological studies, the use of remote sensing data has been recently 
recognized as a good source of suitable data enabling the analysis of the canopy structure at 
various, often broad spatial scales. The first method that is usually chosen for forest gap 
detection (VEPAKOMMA 2010; VEPAKOMMA et al. 2012) and habitat mapping for biodiversity and 
nature conservation purposes (SEIBOLD et al. 2014; BRAUNISCH et al. 2014; BÄSSLER et al. 2010) 
is Light Detection and Ranging (LiDAR) that is considered to deliver a more detailed picture of 
the horizontal and vertical forest structure than any other remote sensing system. However the 
recent technical advances in the field of digital photogrammetry demonstrate the great potential 
of the automatic image matching for the generation of Canopy Height Models (CHMs) and for 
deriving important forest parameters (STRAUB et al. 2013; WANG et al. 2015; KOTREMBA 2014, 
BETTS et al. 2005). Thus, to assess the viability of gap detection based on publicly available data 
we focused our research on CHMs derived from the standard stereo aerial imagery and the 
official LiDAR based Digital Terrain Model (LiDAR DTM), which are delivered in regular time 
intervals by the regional mapping agency of Baden-Württemberg (LGL). We aimed for a gap 
mapping tool which would deliver standardized and replicable results when applied on publicly 
available data either in form of original aerial imagery, point clouds or a raster CHM.  
Gaps were detected and delineated in relation to height and cover of the surrounding forest in 
three steps: (1) open and dense forest are identified, (2) dense forest is classified into low and 
high forest and (3) gaps are extracted in the latter two classes. The method is described in 
ZIELEWSKA-BÜTTNER et al. (2016). In this conference paper we present parameters influencing 
the method performance with regard to canopy gaps detection (1). In addition we test in more 
detail the benefits of using a shadow mask (2) and discuss effects associated with variance in 
flight conditions (3). We also consider the variance introduced by different image matching 
algorithms (4). Finally, the influence of spatial resolution and overlap of the stereo aerial images 
are presented comparing the results obtained with data of different flight campaigns (5).  

2 Material and Method 

2.1 Study area 

The study area of 1021 ha (excluding the mountain lake surface of the Huzenbacher See) is 
located in the State of Baden-Württemberg, Southwestern Germany, in the northern Black Forest 
(8° 34’ E, 48° 58’ N). It is characterized by a heterogeneous topography with elevation ranging 
from 493 to 941 m, and a high variance in forest successional stages. Most slopes (77,5 %) are 
very steep (> 20°) or strongly inclined (10 - 20°) (AG BODEN 1996). Among the dominant tree 
species are Norway spruce (Picea abies L.) with admixture of Silver fir (Abies alba Mill.) and 
Scots pine (Pinus sylvestris). The broadleaved tree species account for less than 30 % in most (> 
80 %) forest stands. The area is covered by a dense forest road network of 187 m/ha and 
underlying different protection regimes.  

2.2 Remote sensing data 

As primary input data for the method development, aerial imagery datasets from three flight 
campaigns (2009, 2012, 2014) were used. Data (including the absolute orientation of the images) 
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were provided by the state agency of spatial information and rural development of Baden-
Württemberg (LGL) as pan sharpened, 4 channels (red, green, blue and near-infrared (RGB 
NIR)) stereo aerial images with radiometric resolution of 8 (2009) and 16 (2012 and 2014) bit. 
Data of 2014 originated from a special flight campaign of the Black Forest National Park. The 
overall spatial resolution of the imagery was 20 cm with an overlap of 60 % (end lap) and 30 % 
(side lap) in 2009 and 2012; and 10cm, 80% and 60% respectively, in 2014. In line with our goal 
of using only publicly available data, we limited the additional data used in the study to the 
products of the LGL (LiDAR DTM) or internal data of the forestry administration (forest road 
network dataset).  

Tab. 1: Technical characteristics of the aerial image data used in the method development (2009, 2012) 
and the higher resolution and overlap data comparison (2014) (from ZIELEWSKA-BÜTTNER et al. 2016, 

modified) 

Year 2009 2012 2014

Camera UltraCamXp DMC II 140 – 006 UltraCamXp
Panchromatic / color lens focal 
length 

100 / 33 mm 92 mm 100.5 mm

Resolution 20 cm 20 cm 10 cm
Overlap 60 % / 30 % 60 % / 30 % 80 % / 60 %

Image type 
Digital color infrared

(RGB NIR)
Digital color infrared 

(RGB NIR)

Pansharpened digital 
color infrared 

(RGB NIR)
Angle-of-view from vertical, 
cross track (along track) 

55° (37°) 50,7° (47,3°) 55° (37°)

No. of stripes in the block file 3 6 4
No. of pictures in the block file 23 48 69
Flight date 23.05.2009 01.08.2012 17.07. – 19.07.2014

 

2.3 Gap mapping method 

The gap mapping method was based on Canopy Height Models (CHMs) of 1 m ground 
resolution including the potential vegetation points of height between -1 and 55 m vs. the LiDAR 
DTM. The Digital Surface Models (DSMs) serving as basis for the CHMs generation were 
calculated from the stereoscopic aerial imagery using two image matching algorithms: Leica 
Photogrammetry Suite enhanced Automatic Terrain Extraction (LPS eATE (ERDAS 2012)) and 
Semi Global Matching (SGM XPro (Hexagon Geospatial 2015). As the two algorithms returned 
different point clouds partially complementing each other, in the initial study for the method 
development we decided, based on visual assessment, for a combination of three point clouds 
from eATE and SGM processed with the pyramid levels 0, 1 and 2 respectively to reach the best 
point coverage in a reasonable processing time. The detailed settings of both algorithms and the 
single processing steps are given in ZIELEWSKA-BÜTTNER et al. (2016). The point cloud editing 
was carried out with LAStools (ISENBURG 2014) whereas the LAS to a raster transformation was 
done in ArcGIS (“LasDataset to Raster”). For the gap detection a constantly closed surface was 
produced by filling the no-data areas with a including inverse distance weighting (IDW) 
interpolation method.    
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The gap detection was carried out in ArcGIS 10.3 (ESRI 2014) (raster and vector based) in three 
steps: (1) identification of open and dense forest, (2) classification of dense forest into height 
classes of low and high forest and (3) gap extraction in the latter two classes. We defined gaps as 
canopy openings in dense forest (>=60% canopy cover) of at least 10 m² reaching through all 
forest strata down to maximum 2 m vegetation height in high forest stands (>=8 m height) and 
down to maximum 1 m in low forest stands (<8 m height). A minimum stand size of 0.3 ha is 
related to the size of the conventional minimum stand size in Baden-Württemberg (MATHOW 

2016). Areas with canopy cover less than 60% and exceeding 0.5 ha were classified in line with 
AHRENS et al. (2004) as “open forest”, where the free spaces between the trees are considered as 
inherent stand characteristic and thus not mapped as gaps. 10 m² is the minimum size of a gap 
defined in line with MÜLLER & WAGNER (2011) and SCHLIEMANN & BOCKHEIM (2011). The 
maximum gap-vegetation height was set to 2 m after BROKAW (1982) and adapted by the authors 
to 1 m in the lower stands.  

2.4 Validation  

To evaluate the gap mapping performance we compared the automatic mapping results with the 
visual stereo-interpretation of the original aerial imagery on an independent dataset of sample 
plots using Stereo Analyst for ArcGIS 10.2 (GEOSYSTEMS GMBH 2014). As we expected the 
results to vary in relation to the terrain situation, 120 plots with a radius of 25 m (covering 2.4 % 
of the dense forest area) were placed according to a stratified random design into stands of three 
steepness classes (0-10°, 10-20°, >20° (AG BODEN 1996)) and four aspect classes (N, E, S, W), 
resulting in 12 terrain classes represented by 10 sampling plots each. Gaps with an area of at 
least 10 m2 inside the plot (168 in 2009 and 171 in 2012) were visually assessed, delineated and 
compared with the automatically mapped gaps located with at least 10 m² inside the evaluation 
plot. The gap–absence was evaluated on circles of 95 m² (mean size of the visually mapped gaps 
in both years) randomly placed in dense forest within the sampling plots in an amount equal to 
the visually verified gaps per year. At least 8 m² (80% of the minimum gap size) of overlap with 
the visually identified gaps was needed to confirm the correct classification of the automatically 
detected gaps or to classify a “non-gap” circle as incorrect. The agreement between visual and 
automatic mapping was then quantified in form of overall, producers´ and users´ accuracy as 
well as Cohen’s Kappa. An effect of selected parameters such as height of the surrounding 
forest, shadow occurrence (assessed visually), gap size, slope, aspect and gap location in relation 
to forest road, skidding trail or an open area (storm throw, open forest) on gap mapping results 
was tested using the Conditional Inference Trees (ctree) vignette of R-package “partykit” 
(HOTHORN et al. 2006).  
To evaluate the influence of the missing original height information on the gap mapping 
performance, a no-data mask was generated as a raster of 1 m resolution from the final point 
clouds (combination of eATE and SGM pyramid 1 and 2 point clouds) of 2009 an 2012. It 
included only the raster cells, where no points were directly matched during the image matching 
process. As for the gap detection a constantly closed surface was used, by a comparison with the 
no-data mask the resulting improvement in accurracy was evaluated.  
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To quantify the effect of sun elevation on the image quality, we calculated a shadow mask for the 
data of 2009 and 2012. We definded as shadow an area without any textural differenciation. The 
classification was done by a visually defined threshold. As the data from the two study years had 
diffent radiometric resolution, two different methods had to be used to calculate the shadow 
fraction in the aerial images. For the images from 2009 that had been resamped to 8-bit 
resolution we used for this year a Ratio S calculated according to SARABANDI et al. (2004) as 
S=arctan(Blue/max {Red/Green}). For 2012 data with 16-bit resolution we used the Intensity 
channel of the transformed images (CONRAC CORP. 1980).  

2.5 Comparison with data of higher overlap and resolution  

To evaluate the potential influence of higher resolution and overlap of the aerial imagery on the 
method performance, PETERSEN (2015) applied the gap mapping method to a study polygon of 
95 ha located in the south-western corner of the original research area (Fig. 1) using data from a 
special flight campaign of the National Park Black Forest in 2014 (Tab. 1). Gap mapping results 
based on these pansharpened RGB NIR aerial imagery of 10 cm resolution and 80% and 60% 
end and side lap were compared with those obtained from the lower-resolution public data of 
2012, using the eATE algorithm for point cloud generation. The CHMs used for gap extraction 
in 2014 were calculated based on the LiDAR derived DTM of the National Park Black Forest, as 
obtained from their own flight campaign in 2015.  

 
Fig. 1: Location the test area for comparison of 2012 and 2014 data within the original study area 

presented on the background of the available orthophotos from 2012 and 2014.  

3 Results   

3.1 Gap mapping results 

We detected 4575 (2009) and 4667 (2012) gaps in the dense forest of the study area using the 
automated method, what results in a total gap density of 4.9 gaps per ha (7.2 % of the dense 
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forest area) in 2009 and 4.7 gaps per ha (6.3 %) in 2012. Considering the forest height classes, 
more gaps (13.7 and 14.6 N/ha in 2009 and 2012) covering a greater area (45 and 46 ha 
respectively) were mapped in the forest stands lower than 8 m compared to the higher forests 
with a gap density of 2.0 and 2.8 N/ha and mapped gap area of 25 and 16 ha in 2009 and 2012, 
respectively. The most (> 75%) of all detected gaps in both study years were very small or small 
(less than 100 m²) accounting for 13 % and 23% of the total gap area per year in 2009 and 2012, 
respectively. The visual validation resulted in an overall accuracy of 0.90 and 0.82 in 2009 and 
2012 and the corresponding Kappa values of 0.80 and 0.66 (Tab. 2). Producer´s accuracies 
greater than 0.96 confirmed almost all automatically detected gaps as correctly classified. Yet, a 
fraction of the visually identified gaps were not detected during the automated mapping process, 
which is reflected in lower user´s accuracies of 0.84 in 2009 and 0.72 in 2012. However, more 
than 70 % of the visually but not automatically identified gaps in both study years were adjacent 
to the automatically mapped gaps, what suggest that gaps were correctly localized, but  they 
were detected with a too small extent. 

Tab. 2: Mapping accuracies of automatically generated gaps per year and forest high class derived from 
a comparison with the results of visual interpretation (accessed with 95 % confidence interval (CI)) (from 

ZIELEWSKA-BÜTTNER et al. 2016, modified) 

 Producer´s 
accuracy  

User´s 
accuracy  

Producer´s 

accuracy 

User´s 

accuracy  

Kappa Overall 
accuracy  

 Gap Gap “Non-gap” “Non-gap” with 95 % CI 

2009  DF 0.97 0.84 0.84 0.97 0.80 0.90 

          LF 0.98 0.93 0.68 0.89 0.73 0.93 

          HF 0.98 0.70 0.87 0.98 0.73 0.88 

2012  DF 0.96 0.72 0.73  0.96 0.66 0.82 

          LF 0.98 0.85 0.59 0.94 0.93 0.86 

          HF 0.96 0.52 0.76 0.96 0.84 0.79 

3.2 Shadow occurrence 

Among the variables tested only the height of the surrounding forest and shadow occurrence 
significantly affected the gap mapping results. The occurrence of full shadow in the lower 
sections of the forest canopy was identified as the main cause for gap mapping omission errors in 
both years (ctree, p<0.001). This was confirmed also by means of visual verification, as the most 
of the visually identified but not automatically mapped gaps (70%–87%) were identified in areas 
of total or partial shadow. The height of the surrounding forest stands (LF and HF) is strongly 
linked to shadow occurrence as it determines the depth in the canopy, to which the light can 
penetrate. Despite similar producer´s accuracies of 0.96-0.98 and overall accuracies of more than 
0.79, gaps in LF were mapped with higher user´s accuracies than those in HF (0.93 vs. 0.70 in 
2009 and 0.85 vs. 0.52 in 2012).  
The shadow masks identifiying complete shadow cells covered 29 % of the study area in 2009 
and 16 % in 2012. However, the comparison with the location of automatically mapped gaps 
showed that only less than 5 % of the gaps were automatically detected in these areas. Shadow 
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occurrence was mostly linked to steep slopes and exposition as well as to heterogeneous vertical 
structure and stand height (Fig. 2), indicating a strong influence of the sun angle and associated 
time of data acquisition. The two flight campaigns of 2009 and 2012 were carried out in May and 
August, so the sun position at the time of data aquisition didn´t correspond which produced 
shadow in different areas (Fig. 2). 

 
Fig. 2: Example of complete shadow and no-data cells distribution in a steep part of the study area 

around the mountain lake “Huzenbacher See” 

3.2.1 Image matching algorithm 

The amount and distribution of no-data cells was influenced by the algorithms and pyramid 
levels of the images used for point matching. The area with no data ranged between 38% with 
SGM pyramid level 2 in 2012 and 9 % with SGM pyramid level 1 in 2009. Combining different 
algorithms and pyramid levels led to a reduction of no-data within the study area to less than 3%. 
Evaluating whether missing information in some raster cells could be a reason for a fraction of 
the undetected gaps, we found that only about 10 % of the visually, but not automatically 
identified gap cells (gap area) in both years belonged initially to the no-data cells.  
The distribution of no-data and shadow raster cells (Fig. 2) revealed that the points were 
mismatched not only in shadowy areas of the forest stands (8 % (2009) and 5 % (2012) of no-
data cells intersected with the shadow mask) but also in low forest stands and on hilltops where 
aerial photographs should theoretically deliver good material for image matching. No-data cells 
were often located along flight strips (2009) or at the outer parts in the overlapping zone of the 
images (both years).  

3.2.2 Image resolution and overlap 

Comparing the results based on the original data from 2012 and the high-resolution dataset of 
2014, a slightly larger amount of open forest (3 % in 2012 and 2 % in 2014) was mapped for 
2012. Also the percentage of low forest was higher in 2012 (21 %) than in 2014 (14 %) (Fig. 3). 
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To be able to compare the results of the gap mapping of both years the study area was reduced 
by the area that had been classified as open forest within either of the datasets. For the remaining 
area of 94 ha a larger total gap area was obtained with the dataset of 2012 (4.9 ha) compared to 
the dataset of 2014 (2.5 ha) though a larger number of gaps was identified in the latter (2012: 
240 gaps, 2014: 281 gaps). The reason for this can be found in the size of the mapped gaps. 
While more very small (10 m² - 30 m²) and small (31 m² - 100 m²) gaps were detected with the 
dataset of 2014 there were more large (100 m² - 1000 m²) and very large gaps with a size of more 
than 1000 m² mapped with the data of 2012 (Fig. 4). The large and very large gaps were located 
mostly within the class of low forest or along forest tracks. 

 
Fig. 3: Results of the automated gap mapping in the test area for the comparison of data with different 

resolution and overlap: 1) results from 2012 (20 cm, overlap 60% /30%), 2) results from 2014 
(10 cm, 80% /60%), 3) Zoom-in window as example for a comparison of 2012 and 2014 results. 
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Fig. 4: Distribution of gap sizes in the dataset of 2012 (blue bars) and 2014 (red/orange bars). “High” 
and “low” indicate high and low forest stands.  

4 Discussion and Conclusions 

Gap mapping from stereo aerial imagery with 20 cm resolution and 60/30% overlap proved to 
deliver promising results, with a good overall method performance and even very good results in 
low stands. Depending on the quality of the aerial imagery and the input CHM as well as the 
height of the surrounding forest and the associated shadow occurrence, the results in stands 
higher than 8 m were moderate to insufficient, depending on the study year. The mapping results 
might also depend on the topography and the structure of the forest stands. GINZLER & HOBI 
(2015) observed better mapping accuracies in a flat terrain than in rugged mountainous 
topography, which also characterised our study area, whereas ADLER et al. (2014) found that 
even in flat terrain different DSM matching algorithms produce different results, especially in 
highly structured canopy situations. In addition, mountainous forests are likely more structured 
than intensively managed stands in the lowlands. 
Shadow occurence in aerial images is related to exposition, surface characteristics and caused by 
sun inclination and angle. Therefore the occurence and distribution of shadow varies a lot 
between the different flight campaigns, especially in hilly areas comparable to our study area. 
Comparing the overall amount of shadow within the images with the shadow pixels within the 
classified gaps, we see that only a very small portion of gaps was detected in the shadow areas. 
This can be influenced by a strong fragmentation of the shadow areas with single patches not 
bigger that 10m² (minimum gap size). It can also be interpreted, that shadow pixels may have 
influenced negatively the image correlation for point matching within stand surface openings. 
The latter argument was confirmed by the visual interpretation of the gaps as 70-80% of visually 
interpreted gaps that hadn’t been detected automatically were located in partial or total shadow.  
The superimposition of no-data areas with shadow areas showed no direct correlation. The 
appearance of no-data areas was more related to the geometric characteristics of the image, as 
they mainly occurred along image und flight strip borders.  
By combining point clouds generated with two different image matching methods we expected a 
compensation effect and improvement of the point cloud structure in areas where no points were 
matched using only one of the algorithms. The results of our study underline the importance of 
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the image matching method. Not all algorithms perform equally well with regard to specific 
mapping goals e.g. detection of canopy gaps, mapping of the tree tops or calculation of forest 
stand parameters. Developments in technology and image matching algorithms are rapid, which 
makes the choice of the “best” algorithm combination very difficult, with “best” being often only 
valid for the used data and software combination.  
The data used to analyse the influence of image resolution and overlap originated from two 
different years. The images with 20 cm resolution and 60/30 % overlap were taken in 2012, 
whereas the images with 10 cm resolution and an overlap of 80/40 % were from 2014. However, 
as there were no disturbances in the two years between the flights, and the forest stands wasn’t in 
an age-class where natural mortality causes the disappearance of single trees, a decrease in 
detected gaps would have been expected. Nevertheless, the number of forest gaps increased from 
240 to 281 with simultaneous decrease in size. This change in average gap size could be either 
explained by vegetation growth, at the gap edges, which reduces gap size. The increasing 
number of very small and small gaps could be explained ingrowth of vegetation, partially closing 
larger forest gaps, leaving more and smaller gaps behind. A visual examination, however, 
showed that the many of these very small and small gaps detected in 2014 where not mapped in 
2012. Especially within high forest stands the number of detected gaps rose by almost 30 % 
while the amount of high forest only increased by 8 % between the years. This increase can not 
only be explained by ingrowth but by a better insight into the canopy structure due to a higher 
image overlap and resolution in the 2014 data. 
The results from different flight campaigns indicate shadow occurrence and geometric 
limitations of the aerial imagery as serious constraints, both bearing a high potential for 
improvement. Flight campaigns should consider the issues arising from varying flight time and 
associated solar altitude. Moreover, an increase in spatial resolution and overlap of the aerial 
images could considerably improve the spatial accuracy of the results. Further improvements can 
be expected from an amelioration of the image matching algorithms. The use of shadow and no-
data masks proved useful for the interpretation and evaluation of the automatically produced gap 
maps and we recommend them especially for change detection. Further research on these topics 
could help to optimize and standardize future flight campaigns, so that they can be used for 
reliable monitoring of gaps and other forest structure parameters.  
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