
Gemeinsame Tagung 2014 der DGfK, der DGPF, der GfGI und des GiN (DGPF Tagungsband 23 / 2014) 

1 

Downscaling land surface temperatures from MODIS data to 
mesoscale resolution with Random Forest regression 
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Zusammenfassung: Für diese Studie wurde ein ca. 32.000 km2 großes Testgebiet im öst-
lichen Mittelmeerraum ausgewählt, das sich durch wechselhafte Verhältnisse hinsichtlich 
Topographie und Landnutzung auszeichnet. Untersucht wurde, mit welcher Genauigkeit aus 
MODIS-Tagesprodukten der Landoberflächentemperatur LST (mit nomineller Sensor-
auflösung von ~1 km) räumlich besser aufgelöste LST-Daten (240 m) abgeleitet werden 
können. Der für das „downscaling“ gewählte Random Forest-Regressionsansatz erwies sich 
unter den genannten Randbedingungen als sehr praktikabel, da nur wenige und standard-
mäßig verfügbare Datenfelder zur zuverlässigen Modellierung der 240 m-LST ausreichten. 
Wie bei jedem „downscaling“-Ansatz erwies sich die Abbildung lokal auftretender Werte-
ausprägungen im unteren bzw. oberen Randbereich der Werteverteilung als problematisch.  

 

1 Introduction 

Land surface temperature (LST) derived from thermal-infrared (TIR) satellite imagery is a key 
parameter in environmental modeling (KUSTAS & ANDERSON, 2009). Biophysical processes from 
local to global scales are governed by the spatial distribution of LST through the modulation of 
surface energy fluxes. Among the numerous applications, estimation of evapotranspiration for 
water resources management is of particular interest in times of increasingly limited freshwater 
supplies around the world.  
Routine monitoring of ET requires satellite imagery with fine spatial and temporal resolutions at 
the scale of human influence (KUSTAS ET AL., 2003). Currently available satellite imagery re-
flects a tradeoff in resolution requirements. Landsat TM/ETM+ thermal imagery provides spatial 
resolutions sufficient to map LST at field scales (~100 m) but has a long repeat cycle of 16 days. 
Continuous monitoring efforts are further limited by cloud cover during times of image 
acquisition. MODIS LST products from NASA's Terra/Aqua platforms are available daily, great-
ly enhancing temporal sampling of temperature distributions, but are restricted to coarse spatial 
resolutions (~1 km). Downscaling (also referred to as thermal sharpening or disaggregation) 
refers to methods enhancing the spatial resolution of remotely-sensed imagery commonly by 
regression-type approaches (ATKINSON, 2013). Visible (VIS) and near-infrared (NIR) reflectance 
data provide information about vegetation cover and surface albedo which are physically linked 
to LST through the surface energy budget (SANDHOLT ET AL., 2002) and are generally available 
at higher spatial resolution than TIR imagery. Accordingly, earlier downscaling efforts utilized 
the VI – LST relationship to estimate subpixel variations in surface temperature. 
Most of these methods exploit the well-known negative correlation between LST and vegetation 
indices (VI) to fit linear regression models at the coarser resolution of TIR imagery and apply  
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this functional relationship to finer resolution VI data fields to generate LST maps with increased 
spatial resolution (KUSTAS ET AL., 2003; AGAM ET AL., 2007). These approaches assume that one 
unique, scale invariant functional relationship between LST and VIs exists within the image. 
However, consistent VI – LST relationships may be limited to landscapes dominated by green 
vegetation with homogeneous air and soil conditions (GAO ET AL., 2012). This assumption is 
supported by INAMDAR AND FRENCH (2009) who found NDVI to be an inconsistent predictor of 
LST in large regions with heterogeneous environmental conditions and mixed landscapes. 
Recent studies explored non-linear downscaling methods to overcome existing limitations in 
complex landscapes. YANG ET AL. (2010, 2011) utilized artificial neural networks (ANN) to 
estimate subpixel surface temperatures based on land cover information. A regression tree 
approach which uses shortwave reflectance data to predict disaggregated LST was developed by 
GAO ET AL. (2012) and found to outperform VI-based linear models in irrigated agricultural areas 
and heterogeneous naturally vegetated landscapes. BINDHU ET AL. (2013) proposed a hybrid 
model which disaggregates LST by fitting a polynomial function to the hot edge of NDVI-LST 
feature space and subsequently models the resulting residuals with an ANN.  
From the existing studies it may be concluded that recent non-linear models tend to outperform 
VI-based methods but are generally more difficult to implement. In this paper, we specifically 
address the issue of downscaling MODIS data in large, heterogeneous regions comprised of 
mixed landscapes. Our objective was to evaluate the usability of Random Forest regression to 
downscale MODIS 1-km LST products to 240 m spatial resolution.  
Random Forest regression is adequate for modeling LST as it can handle continuous and 
categorical data, which allows, for example, the incorporation of land use information into the 
model. Additionally, no pre-specified functional relationship between dependent and indepen-
dent variables is assumed. Target resolution and selection of predictor variables are among the 
most important issues to be considered in any downscaling approach. A modest target resolution 
of 240 m was chosen to align LST data fields with the maximum available resolution for MODIS 
surface reflectance bands. Predictor variables were restricted to readily available MODIS data 
and auxiliary data fields that can be derived from digital elevation models. Additionally, MODIS 
1-km LSTs were corrected for an emissivity-related low temperature bias (WAN ET AL., 2002) 
before downscaling. The downscaling model was tested in a region in the eastern Mediterranean 
comprised of mixed landscapes with environmental conditions varying over short distances. 
To assess the performance of the downscaling procedure, it was at first tested with synthetic low 
resolution data derived from Landsat imagery by applying an aggregation procedure that 
simulates the MODIS spatial response. The downscaling approach was subsequently applied to 
the bias-corrected MODIS imagery to evaluate model performance with real low resolution data 
and determine the influence of the bias correction on downscaling results. 

2 Material and methods 

2.1 Study area 
The study area is located in the eastern Mediterranean and encompasses the Jordan River valley 
and its broader environs. Fig. 1 depicts a false color composite of the region that covers an area 
of about 32,000 km2. Elevation ranges from -420 m to 2800 m above sea level. Climate is highly 
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variable showing a steep temperature gradient from the Mediterranean Sea in the west to the 
Arabian Desert in the south east with most of the study area lying in the transition zone. Land 
cover is mixed including irrigated croplands, rainfed agricultural areas, forests, grass lands and 
barren surfaces. Land surface temperatures at the time of image acquisition ranged from 294.5 K 
to 325.4 K and 294.1 K to 327.1 K for Landsat and MODIS imagery, respectively, excluding 
water and clouds. Additionally, a subset covering the Hula valley, an irrigation agriculture site in 
the northern part of the study area with large small scale variations in surface temperature, was 
selected to evaluate the implemented downscaling model. 

2.2 Data preprocessing and aggregation 
This study used data from the Landsat-7 ETM+ and MODIS sensors acquired over the Jordan 
River region on 21 March 2001. MODIS surface reflectance (MOD09GA), land surface tempera-
ture (MOD11A1, MOD11B1) and land cover (MCD12Q1) products were obtained from the 
Land Processes Distributed Active Archive Center (LP DAAC) and registered to UTM WGS 84  
 

 
Fig. 1: Location of the study area from a Landsat-7 false color composite. The white rectangle 
corresponds to the Hula valley (used as spatial subset for evaluation purposes). 
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Zone 36 N. Reflectance products were resampled to 240 m resolution. Land surface temperature 
products were resampled to 960 m (MOD11A1) and 4800 m (MOD11B1) resolution, respective-
ly. Land cover data were resampled to 480 m resolution. Two Landsat images covering the study 
area were mosaicked, radiometrically calibrated and geometrically registered to the MODIS data. 
Reflective Landsat channels were converted from radiance to reflectance by applying the em-
pirical line method with MODIS surface reflectances as reference data fields. Surface tem-
peratures were retrieved from Landsat TIR data using the single channel algorithm of JIMENEZ-
MUNOZ ET AL. (2009). The MOD11B1 product was used to rectify MODIS LST data fields 
contained in MOD11A1 for errors in surface emissivity over bare and sparsely vegetated areas 
(WAN ET AL., 2002; LIU ET AL., 2006). SRTM elevation data were acquired from the Global Land 
Cover Facility (GLCF) at 3 arc second resolution, geometrically registered to MODIS imagery 
and resampled to 60 m nominal resolution with the cubic convolution algorithm. From the DEM 
slope and incidence angle maps were derived. 
Landsat surface reflectances and LST were aggregated to resolutions required for model fitting 
and evaluation by applying a weighted average scheme that simulates the MODIS spatial 
response (NISHIMA ET AL., 1997). Scaling of thermal data was carried out by first converting LST 
to radiance using the Stefan-Boltzmann law. MODIS surface reflectances were aggregated for 
model fitting purposes from 240 m to 960 m by spatial averaging. Land cover data was scaled to 
240 m resolution through nearest neighbor resampling. Coarse resolution land cover data was 
generated by assigning each 960 m resolution element to the class comprising the majority of 
240 m pixels with ties being resolved by nearest neighbor resampling. DEM-derived data fields 
were generated by first upscaling the elevation data by spatial averaging and subsequently 
calculating slope, aspect and incidence angles. 
 

2.3 Downscaling 
Downscaling LST to higher spatial resolutions requires predictor variables that correlate with 
LST and are observable at higher spatial resolutions. Factors determining LST on local scales 
include the radiation budget, especially shortwave radiation input, and land surface charac-
teristics as albedo, vegetation cover and soil moisture (SANDHOLT ET AL., 2002). On regional 
scales surface air temperature patterns become important as air temperatures and LST strive for 
thermal equilibrium through the transfer of sensible heat. Air temperatures and therefore LST 
generally decrease for example with increasing surface elevation. VIs are the most common 
predictors in LST downscaling as they generally show strong negative correlations with thermal 
imagery. For larger regions the predictive strength of global VI-based models diminishes as the 
VI – LST relationship is modified by additional factors (e.g. solar energy input, air temperature 
patterns, topography) and varies with different land cover types (ZAKŠEK & OŠTIR, 2012; 
INAMDAR & FRENCH, 2009). 
Predictor variables in this study were limited to readily available and thus operationally usable 
datasets. Surface reflectances provide information about land surface albedo and vegetation 
cover. Solar energy input at the land surface is largely controlled by the terrain parameters slope 
and incidence angle that can be derived from digital elevation models. Land cover information 
was included to account for further dependencies between LST and land use. 
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Random Forests is a nonlinear statistical ensemble method that constructs a large collection of 
de-correlated regression trees to model the relationships between input and response variables 
(BREIMAN, 2001). Random Forest offers several advantages in LST prediction compared to 
simple linear regression. The relationship between predictor and response variables is entirely 
determined from the training sample. As no pre-specified functional relationship is assumed, the 
method is able to adapt to a wide range of environmental conditions. Additionally, the model can 
handle a large number of inputs, including continuous and categorical variables, and can be 
easily extended with additional predictors.  
Most downscaling procedures follow a similar processing chain. Input data, available at higher 
spatial resolution, are aggregated to the coarser resolution of LST data fields to build a regression 
model that relates input variables to LST data. The regression model is applied to the fine 
resolution input variables to predict LST at finer spatial resolution. To ensure consistency with 
coarse resolution LST, downscaled fine resolution LST data fields are re-aggregated to the 
coarser resolution and the residuals between original and predicted values are calculated and 
added to the fine resolution predictions.  
The Random Forest downscaling model was built using scikit-learn, a machine learning library 
implemented in Python (PEDREGOSA ET AL. 2011). Land surface temperature data fields at 960 m 
resolution were first converted to radiances. Surface reflectances from the near-infrared and 
visible red spectral bands, topography, and land cover data were used as independent variables to 
train the Random Forest regression model at 960 m, which was subsequently applied to the high 
resolution predictors to generate 240 m radiance data. These were re-aggregated to 960 m 
resolution and the differences between the re-aggregated model output and the original 960 m 
radiance data were computed. Residuals obtained at the coarse resolution were then added back 
to the downscaled data fields before final conversion to LST. 

3 Results 

Downscaling results for MODIS imagery and Landsat-derived coarse resolution LST were 
evaluated using the 240 m Landsat LST data fields as reference. Model quality was assessed by 
visual inspection of downscaled imagery and calculation of the statistical measures root mean 
squared error (RMSE) and coefficient of determination (R2). Statistics were also computed for 
LST data fields that were uniformly disaggregated from 960 m to 240 m spatial resolution to 
provide a framework to further assess the downscaling model. The evaluation was carried out for 
the complete study area and a subset in the northern part of the region covering an irrigation 
agriculture site. Figure 2 depicts the Landsat reference surface temperatures and downscaled 
imagery from MODIS and Landsat at 240 m resolution for the complete region. 
Major surface temperature patterns are similar in all images but the reference temperature field 
clearly conveys more high spatial frequency content than the downscaled LST maps. A distinct 
blurring effect is particularly visible in the downscaled MODIS LST data, as downscaling results 
based on degraded Landsat temperature fields show significantly more contrast. 
Statistical results for the complete region are summarized in table 1. Downscaled imagery 
achieved RMSE of 1.47 K and 2.24 K for Landsat and MODIS data, respectively, while uniform 
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Fig. 2: Landsat reference land surface temperatures at 240 m resolution (a) and downscaled LST from 
Landsat (b) and Terra MODIS (c). 

disaggregation yielded errors of 1.80 K and 2.51 K. Correlation with reference LST improved 
from R2 = 0.84 to R2 = 0.91 for downscaled Landsat LST and from R2 = 0.72 to R2 = 0.80 for 
MODIS surface temperatures. 
Similar results were obtained for the Hula valley subset (table 2). Downscaling improved RMSE 
from 2.23 K to 1.61 K for Landsat data and from 2.84 K to 2.60 K for MODIS imagery 
compared to uniform disaggregation. Increases in correlation were comparatively larger than for 
the complete study area with R2 values of 0.80 and 0.58 for downscaled Landsat and MODIS 
LST maps compared to the uniform case, which yielded R2 values of 0.61 and 0.38, respectively. 
 
Tab. 1: Downscaling statistics (uniform and Random Forest downscaling) for the complete region. 

Data RMSE R2 
MODIS (uniform) 2.51 0.72 

MODIS (Random Forest)) 2.24 0.80 
ETM+ (uniform) 1.80 0.84 

ETM+ (Random Forest) 1.47 0.91 
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Tab. 2: Downscaling statistics (uniform and Random Forest downscaling) for the Hula valley subset. 

Data RMSE R2 
MODIS (uniform) 2.84 0.38 

MODIS (Random Forest) 2.60 0.58 
ETM+ (uniform) 2.23 0.61 

ETM+ (Random Forest) 1.61 0.80 
 
Land surface temperature distributions for original and downscaled data and both sensors are 
depicted for the subset area in figure 3 (next page), which displays the visual characteristics of 
downscaled LST maps in more detail. Downscaling of coarse resolution Landsat surface tem-
peratures reproduced the spatial patterns visible in the reference data. Box-shaped artefacts 
commonly introduced in VI-based linear models through normalization with coarse resolution 
LST data (JEGANATHAN ET AL., 2011) are barely visible indicating improved prediction of fine 
resolution LSTs prior to the addition of model residuals derived at the coarse resolution. Spatial 
patterns are less well defined in the downscaled MODIS LST map, which shows a distinct 
blurring effect. 
Figure 4 depicts scatterplots for downscaled and reference LSTs for the Hula valley subset. 
MODIS data shows more scatter around the 1:1-line compared to Landsat LSTs. Downscaled 
LSTs are biased in regions of high and low surface temperatures with a tendency to overrate LST 
for low and underrate LST for high reference temperatures. This bias is more pronounced for 
downscaled MODIS imagery and for high surface temperatures (in both cases). 

 
Fig. 4: Scatterplots for downscaled Landsat and MODIS LST (240 m) with respect to 240 m Landsat LST 
reference for the Hula valley subset. 

4 Discussion 

Evaluation results underline the usability of Random Forest regression for downscaling LST in 
mixed landscapes with large scale temperature variations, although the downscaling method per-
formed significantly better for coarse resolution Landsat-derived surface temperatures than for 
MODIS LSTs. Landsat downscaling results are comparable to those reported in VI-based linear 
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Fig. 3: LSTs for the Hula valley subset: a) Landsat LST 960 m, b) downscaled Landsat LST 240 m, 
c) MODIS LST 960 m, d) downscaled MODIS LST 240 m, e) Landsat reference LST 240 m. 

regression downscaling studies (KUSTAS ET AL., 2003; AGAM ET AL., 2007; JEGANATHAN ET AL., 
2011). In this case, Random Forest regression provides the advantage of adapting to temperature 
variation induced by variable topography and land cover type, while reducing box-shaped 
artefacts introduced by normalization of downscaled temperatures with coarse resolution data. 
Discrepancies between MODIS and Landsat downscaling results can be partly attributed to 
sensor differences, since Landsat LSTs were used as reference at the target resolution. However, 
larger improvements of the match between downscaled and reference LST compared to simple 
uniform disaggregation for Landsat data and a sharper visual appearance indicate further 
complications regarding MODIS LST downscaling. The true resolution of the MODIS 1-km 
LST product is lower than its nominal resolution owing to the influence of the sensor’s point 
spread function which smoothes high spatial frequency variation in the image. Coarse-resolution 
Landsat data were generated with the approximate MODIS spatial response to account for this 
effect; though downscaling results indicate that the degradation of real MODIS imagery is larger 
than anticipated. Additionally, MODIS 1-km LSTs were corrected with the corresponding 5-km 
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LST data fields to correct for the emissivity-related low temperature bias in the 1-km LST 
retrieval algorithm. While this improves the match between MODIS and Landsat-derived LST, it 
also further degrades the quality of the LST data fields used to fit the Random Forest model at 
the coarse resolution. The blurring effect exhibited by downscaled MODIS LST is therefore 
likely related to a lack of high spatial frequency information necessary to fit robust relationships 
between predictor and response variables. 
The systematic bias associated with downscaled temperatures corresponding to pixels in the tails 
of the true temperature distribution at the fine scale is a common problem in all downscaling 
procedures (BINDHU ET AL., 2013), which can be linked to the characteristics of the data used to 
fit the model. Images acquired at coarse spatial resolution can be conceptualized as a low pass 
filtered representation of the landscape. With decreasing spatial resolution, intra-pixel variability 
also decreases and an increasing number of pixels will consist of mixed surfaces with different 
temperatures, so that at 1 km spatial resolution extreme temperatures are largely smoothed out. A 
lack of extreme temperature pixels in the training data thus prevents the correct prediction of 
temperature conditions for the fine target resolution. 

5 Summary and conclusions 

Random Forest regression was evaluated as a method to downscale LST from MODIS LST pro-
duct resolution (~ 1 km) to a resolution of 240 m to align LST data fields with MODIS surface 
reflectance bands (in the visible red (620-670 nm) and near-infrared (841-876 nm)). The down-
scaling method is applicable at large spatial scales in regions with mixed landcover and requires 
only a small number of readily available input data sets. Downscaling results were comparatively 
better for Landsat-derived coarse resolution LST which can be attributed to the additional degra-
dation of MODIS data caused by correcting the 1-km MODIS LST product for low temperature 
bias with the 5-km MODIS LST product. Failure of downscaling methods to account for surface 
temperature extremes at the fine spatial scale remains an unresolved problem. An approach to 
correct this systematic bias would improve downscaled LST estimates considerably. 
Furthermore, better downscaling accuracies could be achieved with additional model input data 
(e.g. additional surface reflectance bands, more detailed land use and land cover maps). Despite 
these unresolved issues, Random Forest regression represents an improvement over VI-based 
linear regression models for large scale applications and can easily be applied to LST data from 
different sensors or sensor combinations and adapted to available input datasets. 
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