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Camera-IMU Calibration Using a Tilted 
Calibration Board 

MARKUS KLEINERT1, UWE STILLA2 

Zusammenfassung: Für mobile Einsatzkräfte ist die Kenntnis der eigenen Position eine 
große Hilfe, wenn sie an unbekannten Orten zeitkritische oder gefährliche Aufgaben 
erledigen sollen. Eine automatische Bestimmung der eigenen Position ist jedoch schwierig, 
wenn Funksignale abgeschattet sind und gängige Verfahren der Satellitenortung somit nicht 
verwendet werden können. Um hier Abhilfe zu schaffen, wollen wir eine Kombination aus 
Inertialmesseinheit (IMU) und Kamera verwenden, um fortwährend eine 
Koppelnavigationslösung zu berechnen. Voraussetzung für diese Art der Sensordatenfusion 
ist die Kenntnis der relativen Lage (Translation und Rotation) der 
Sensorkoordinatensysteme. Diese kann beispielsweise durch Beobachtung der Punkte eines 
Kalibriermusters bestimmt werden. Dabei wird oft davon ausgegangen, dass das verwendete 
Kalibriermuster an der Richtung der Schwerkraft ausgerichtet ist, damit die notwendige 
Kompensation der Gravitation in den Beschleunigungsmessungen erfolgen kann. In unserer 
Arbeit wird ein solches Kalibrierverfahren vorgestellt, wobei im Unterschied zu gängigen 
Verfahren aus der Literatur nicht davon ausgegangen wird, dass das Kalibriermuster an der 
Gravitationsrichtung ausgerichtet ist. Stattdessen wird die Richtung der Gravitation 
bezüglich des Kalibriermusters in den Ausgleichungsprozess einbezogen. Weiterhin wird die 
Kalibrierung auch für ein erweitertes IMU-Fehlermodell durchgeführt. 

1 Introduction 

1.1 Envisaged application 
Being able to orient themselves in unknown environments is crucial for first responders in order 
to successfully accomplish their task. Failing here has potentially severe consequences, e.g. 
firefighters could become trapped in closed parts of a building or rescuers do not arrive at the site 
of an accident in time in extended buildings. For these tasks it may already be helpful to see 
one’s position and heading direction laid over an aerial image of the surrounding area because 
this enables the user to roughly infer his or her position within a building. If the location of the 
target, e.g. the site of an accident, is also marked on the map or aerial image this should 
noticeably facilitate the navigation task. 
In open environments the determination of position and heading is usually easily achieved using 
a satellite navigation system, such as GPS, and possibly a compass. However, due to occlusions 
and multipath effects, satellite signals are usually not available or severely distorted in built 
environments. Likewise, soft iron effects disturb the heading estimates obtained with a compass 
near reinforced concrete, especially in buildings. 
One possibility to overcome these problems is to build up radio beacons whose position can be 
determined accurately, as suggested in (MCCROSKEY et al. 2007). Using such beacons, the 
position of a pedestrian can be determined by at least four range measurements.  
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1.2 Camera-IMU sensor data fusion and calibration 
The main drawback of the aforementioned method is that it requires a significant effort to build 
up the external infrastructure needed for positioning. Additionally, reinforced concrete may 
hamper the distribution of radio signals inside the building even if the beacons are located in 
windows or door openings. Therefore, it is of interest to develop alternative positioning 
techniques which do not rely on external infrastructure at all. To this end, we aim at exploiting 
the complementary sensor measurements of an inertial measurement unit (IMU) and a camera. 
While the camera as a bearings sensor provides a way to accurately estimate relative motion up 
to scale, the IMU measures acceleration and angular velocity which yield a short-time accurate 
estimate of displacement and scale when integrated over time. 
In order to perform sensor data fusion of inertial and visual measurements, the relative 6-DOF 
transformation between the two sensor frames needs to be known. This problem is typically 
addressed by moving the sensor system in front of a planar calibration pattern. Based on the 
known locations of the points observed in the images, the sensor-to-sensor transformation as well 
as the pose of the sensor system can be estimated similar to what is done when calibrating a 
camera. For this purpose, inertial measurements are integrated to obtain estimates of relative 
motion between subsequent image exposures. To perform this integration, the direction of the 
gravity vector relative to the sensor frame needs to be known in order to compensate the effect of 
gravity on acceleration measurements. Therefore, most calibration methods rely on a 
checkerboard which is aligned with gravity. In this work we want to address this problem by 
augmenting the estimation problem such that the direction of the gravity vector in the 
checkerboard’s frame is also estimated during calibration. This approach only requires an initial 
estimate of the direction of gravity and thereby facilitates lab calibrations. The relatively low-
cost IMUs we deal with are usually subject to measurement bias and axis misalignment errors. 
Therefore, we also examine if the calibration can be improved by estimating these offsets too. 

2 Related work 

In one of the first articles on this topic, (LOBO & DIAS 2007) use a two-step approach to obtain 
the parameters describing the relative motion between a camera and an IMU. In order to obtain 
the leverarm, i.e. the translation vector, they rotate the system around perpendicular axes passing 
through the center of the IMU’s coordinate frame while inferring the camera’s motion from 
checkerboard observations. This enables the estimation of the component of the translation 
vector lying in the plane perpendicular to the rotation axis. Thus, rotations about two 
perpendicular directions suffice in principle to estimate the leverarm. For an independent 
estimate of the rotation between the two sensors the direction of acceleration is observed during 
standstill in the IMU’s frame while the nadir direction is estimated in the camera’s frame by 
observing the vanishing points of a checkerboard pattern which is lying on a ground plane whose 
normal direction is parallel to the direction of gravity. Repeating this process several times yields 
a set of corresponding direction vectors which are subsequently used to estimate the rotation. 
The main drawback of this method is that it seems to require a significant amount of user 
interaction during calibration. However it provides a way to compute initial values of relative 
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rotation and the leverarm for subsequent refinement if little is known about the sensor system, 
e.g., when the mechanical specification is not available. 
A state-of-the-art Kalman-filter based approach to camera-IMU calibration is given in (MIRZAEI 
& ROUMELIOTIS 2008). To perform the calibration, the sensor system only has to be moved in 
front of a planar calibration grid which is aligned with the nadir direction. The authors present a 
non-linear observability (determinability) analysis to show that the state variables related to the 
transformation between the two sensors are completely observable if the sensor system is 
rotating about at least two perpendicular axes. In addition, it is shown that the uncertainty of 
estimated parameters decreases monotonically and that the observability does not depend on 
linear accelerations, i.e., it is sufficient to rotate the sensor system during calibration. The authors 
compare the results obtained with their extended Kalman filter (EKF) with the batch algorithm 
described in (MIRZAEI & ROUMELIOTIS 2007). The batch solution performs a Gauss-Newton 
optimization to simultaneously minimize reprojection error pertaining to the observations of 
checkerboard corners and pose-pose constraints created from inertial measurements. They report 
similar performance for both algorithms, although the batch solution seems to be slightly more 
accurate according to the presented results. This may be expected because during the batch 
optimization all relevant Jacobians are updated when state estimates improve and a new iteration 
of the estimation algorithm takes advantage of the improved Jacobians. 
(HOL et al. 2010) present a hybrid estimation scheme where an EKF is used to estimate the 
system’s motion given fixed values for the parameters of the calibration and additional nuisance 
parameters. In a second step these additional parameters are estimated using an iterative 
estimation procedure such as Gauss-Newton. Similar to the approach taken in this work, they 
estimate the direction of gravity as well as the IMU’s biases as additional nuisance parameters. 
A number of authors estimate the camera-IMU transformation parameters during operation of the 
system, i.e., along with the sensor pose required for navigation. This usually also requires 
simultaneous estimation of the location of observed features. Therefore this task is more 
challenging than the lab calibration. For instance, (JONES & SOATTO 2011) employ an EKF to 
simultaneously estimate the pose of the sensor system, the position of observed features, the 
direction of gravity w.r.t. the first camera frame, and the camera-IMU calibration parameters. 
They also discuss the observability for different kinds of trajectories by examining which 
configurations are not discernible based on sensor readings. In this way they arrive at the 
conclusion that all parameters are observable if the acceleration and the direction of the rotation 
axis are not constant. To alleviate this, they suggest switching between an autocalibration mode 
when the motion allows to estimate all parameters and a normal mode otherwise. 
Similarly, (LUPTON & SUKKARIEH 2012) estimate the direction of gravity w.r.t. the first sensor 
frame, the camera-IMU calibration parameters and the position of tracked point features also in 
the first sensor frame using a sliding-window batch optimization (bundle adjustment) 
incorporating inertial and visual measurements. It is argued, that defining the datum by fixing the 
pose of the first camera and estimating the direction of gravity in that frame improves the 
linearization because the Jacobians are calculated with values close to the true trajectory in this 
case. 
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3 Problem formulation 

After a review of relevant coordinate systems, we describe sensor measurement models relating 
the measurements to the system’s motion and the parameters to be estimated. Based on these 
models, error terms are derived, which can be minimized using Gauss-Newton optimization. The 
relationship between the different parameters and the measurements are compactly expressed as 
a graphical model. 

3.1 Coordinate frames 
The relevant coordinate systems used in this work are shown in Fig. 1.  As a bearings sensor, a 
camera measures directions relative to its coordinate frame {c}. Inertial measurements are 
obtained by the IMU in the body frame {b}. However, since IMUs usually consist of an 
assembly of many sensors, it cannot necessarily be expected that the measurement axes are 
orthogonal and equally scaled, as discussed in the following section. Finally, a coordinate system 
{p} is associated with the checkerboard pattern such that its axes are aligned with the pattern’s 
rows and columns and its origin is coincident with the upper right corner. For the calibration task 
the six parameters describing the pose of the checkerboard pattern are fixed to define the datum, 
and the system’s motion as well as the direction of gravity are estimated relative to this 
coordinate system. The main purpose of system calibration is to find the parameters of the rigid 
body transformation from frame {c} to frame {b} or vice versa. 

3.2 IMU measurement model 
An IMU measures acceleration and angular velocity in its own coordinate frame. These 
measurements are in general corrupted by systematic errors arising from sensor axis 
misalignment, additive bias, scale factor errors, and scale factor non-linearity, cf. (Farrell & 
Barth 1999). We do not attempt to estimate the 18 non-linearity coefficients for either sensor. 
From the datasheets provided by the manufacturer of one of the inertial sensors used in our work 
(Analog Devices ADIS16405), we conclude that axis misalignment and scale factor errors are 
negligible for the gyroscopes given the level of accuracy we expect to need. For the 
accelerometers however, the axis misalignment error in the order of 0.5° seems to be too severe 
to ignore. Therefore, two accelerometer error models were implemented: First, a simple model 
only taking white noise and bias into account. Second, a more elaborate model that also 
considers scale factor and misalignment errors. Thus, the accelerometer and angular rate 
measurements are related to their true values as follows: 

   

{c}

{b}

{p}

g

Fig. 1: Coordinate frames relevant for this work. 
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𝑎𝑚 = 𝑀−1𝑎 + 𝑏𝑎 + 𝑛𝑎
𝜔𝑚 = 𝜔 + 𝑏𝜔 + 𝑛𝜔

   (1) 

Here, the leading superscript 𝑚 indicates measured values. The vector of true accelerations is 
denoted by 𝑎, while the angular rate vector is denoted by 𝜔. The vectors 𝑏𝑎, 𝑏𝜔 contain the 
biases, which change in time according to a random walk process. 𝑛𝑎, 𝑛𝜔 are zero-mean, white 
Gaussian measurement noise terms.  
The matrix 𝑀 compensates scale factor and misalignment errors of the accelerometer sensor 
triad. For the simple acceleration measurement model 𝑀 is a unit matrix of dimension three. 
Otherwise it is given by 

𝑀−1 = �
𝑠𝑥 −𝑚𝑥𝑧 𝑚𝑥𝑦
𝑚𝑦𝑧 𝑠𝑦 −𝑚𝑦𝑥
−𝑚𝑧𝑦 𝑚𝑧𝑥 𝑠𝑧

�, (2) 

where diagonal elements are scale factors and the remaining entries are misalignment 
parameters. Note that the misalignment parameters also take into account that the axes may not 
be orthogonal. Therefore, it is assumed that the six off-diagonal elements are independent, and 𝑀 
contains nine independent entries. 
In order to utilize inertial measurements for displacement estimation, the effects of 
misalignment, scale factors, and biases have to be compensated to obtain an estimate of the true 
values whose integration yields an estimate of the sensor’s displacement. This is achieved by the 
following equations: 

𝑎� = 𝑀�( 𝑎 − 𝑏�𝑎)𝑚

𝜔� = 𝜔𝑚 − 𝑏�𝜔
    (3) 

 
Where the hat denotes estimated values. The integration is performed by the subsequent 
equations: 

�̂�𝑏,𝑡+𝜏
𝑝 = �̂�𝑏,𝑡

𝑝 𝐶(𝜔�𝜏)
𝑎�𝑝 = �̂�𝑏,𝑡

𝑝 𝑎� +  𝑔�𝑝

�̂�𝑡+𝜏 = �̂�𝑡 + 𝑣�𝑝 𝑡𝜏 + 1
2

𝑎�𝑝 𝜏2
  (4) 

In the above equations 𝐶(𝜑) is the rotation matrix belonging to the Rodrigues vector 𝜑, 𝐶𝑏,𝑡
𝑝  

describes the rotation between the IMU and the pattern, 𝑣𝑝  is the IMU’s velocity relative to the 
pattern, and 𝜏 is the time duration between samples. Eqs. (3)-(4) provide a simple first-order 
Euler integration for inertial measurements that can be used to calculate the sensor’s motion 
between successive images. Note that the integration in Eq. (4) depends on the gravity estimate 
𝑔�𝑝 . 

3.3 Image measurement model 
The image measurement model describes how the known locations of checkerboard corners are 
related to the coordinates of their projections in the image plane. It consists of two parts: First, 
the projection, distortion, and sensor models, which are mainly determined by the kind of lens 
and the properties of the CCD-chip inside the camera (Hartley & Zisserman 2000). Second, the 
coordinate transformation from the calibration pattern to the camera’s frame. Here it is assumed 
that the parameters of the projection model are known from a camera calibration procedure done 
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beforehand. Since the specific properties of the projection model are not of importance for the 
calibration task at hand, the projection is just denoted by a function 𝜋 and not considered further. 
In this work the pose of the whole sensor system is identified with the IMU’s pose. Therefore, 
the coordinate transformation between the pattern and the camera is a composition of the 
transformations from the pattern to the body (𝑇𝑝𝑏) and from body to camera (𝑇𝑏𝑐). Thus, the image 
measurement model directly depends on the sought camera-IMU calibration parameters. It is 
given by: 

𝑧𝑚 = 𝜋(𝑇𝑏𝑐𝑇𝑝𝑏 𝑋𝑝 ) + 𝑣   (5) 
Here, 𝑣 is a vector with white, Gaussian noise terms and 𝑋𝑝  is the known position of a corner on 
the calibration pattern. 

3.4 Graphical model formulation 
The dynamic Bayesian network shown in Fig. 2 gives an overview of the relationship between 
the parameters in the model equations (green nodes) and the measurements (blue nodes). The 
rectangular node (p) contains the corner positions on the calibration pattern, which are fixed due 
to datum definition. They are connected to poses and the camera-IMU calibration (cT) via 
measurements (zt) according to Eqn. (5). Inertial measurements (ut), bias estimates (bt), and 
IMU calibration parameters (cI) restrict the motion between successive frames according to Eqn. 
(4). The direction of gravity relative to the calibration pattern is also part of node (cI). The bias 
changes according to a random walk process whose noise is given by (nt). Note that the bias is 
assumed to be almost constant for a number of timesteps. Thus, new bias nodes are only 
introduced after time intervals whose duration depends on bias instability, a parameter obtained, 
e.g., from the manufacturer’s datasheet. 
Summing up all of the constraints contained in the above model gives rise to an error term, 
which depends on all the parameters to be estimated. This error term can be minimized 
iteratively using Gauss-Newton optimization. 
 
 

Fig. 2: Bayes network graph for the calibration 
problem. 
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Fig. 3: The camera-IMU system used in 
this work. 

 

 
Fig. 4: Trajectory calculated from checkerboard 
observations (red) and smoothed trajectory 
(green). 

4 Results 

4.1 Experimental setup 
This section presents preliminary results obtained with the calibration procedure described in the 
previous section. The system used for data acquisition is shown in Fig. 3. It comprises an 
ADIS16405 IMU and a BASLER SCOUT SCA-1400 industrial camera equipped with a 2.7 mm 
Fisheye lens. To obtain a synchronized data stream, the camera was triggered by the IMU 
(hardware trigger) with approximately 5 Hz. 
During calibration, the camera was moved in front of a checkerboard calibration pattern, mainly 
performing rotations about at least two axes. The corners of the checkerboard were extracted and 
refined using the checkerboard detection and subpixel refinement algorithms provided by the 
publicly available OpenCV library. Zero-mean Gaussian noise of 2.0 pixels was assumed for the 
checkerboard corner locations extracted this way. To obtain noise parameter values for the IMU, 
the corresponding values from the IMU’s datasheet were increased by approximately 25% to 
take account of modelling errors. Initial values to build up the model shown in Fig. 2 were 
obtained by first resectioning the exterior camera orientation using the observed checkerboard 
corners and their known position in space. In a second step these first estimates for exterior 
camera orientation and the initial estimates for the camera-IMU transformation were combined 
to obtain initial values for the IMU’s pose and velocity. The initial estimates for the camera-IMU 
transformation were taken from the mechanical specifications. Gaussian noise with a standard 
deviation of 0.1 m and 15° for the relative translation and rotation of the two sensors was added 
to these values in order to evaluate how the solution depends on the parameters used for 
initialization. 
Fig. 4 shows the IMU’s trajectory before (red), and after (green) applying Gauss-Newton 
minimization for one dataset. The IMU’s final coordinate frame is shown for both trajectories in 
a slightly darker color. Small blue crosses mark the location of checkerboard corners. Since the 
z-axis points in the estimated direction of gravity, the angle between the plane containing the 
corners and the z-axis corresponds to the estimated angle between the checkerboard and the 
direction of gravity around the long side of the checkerboard.  
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Tab. 1 presents the results obtained from 11 calibration runs using the extended error model, 
which includes accelerometer misalignment parameters. The rows contain the mean of all 
estimates (�̅�), the mean of the standard deviations estimated for the parameters (𝜎�), the empirical 
standard deviation (𝜎𝑒), and the mean deviation from the mechanical setup (Δ𝑣����) for the leverarm 
and the relative rotation error both given in the camera’s frame. Additionally the mean estimated 
scale factors and mean misalignment parameters are shown with the corresponding uncertainty 
estimates (empirical standard deviation) in Tab. 2 as quantities without units. 
Results for the simple accelerometer measurement model are shown in Tab. 3. In this case the 
misalignment matrix is simply the identity and thus not restated here. 
Tab. 1: Calibration results (averaged) for the camera-IMU transformation parameters (extended IMU error 
model). 

 Axis �̅� 𝜎� 𝜎𝑒 Δ𝑣���� 

𝑝𝑏𝑐  [cm] X 
Y 
Z 

-0.64 
4.09 
-14,23 

0.18 
0.19 
0.23 

0.29 
0.26 
0.21 

-0.64 
-0.91 
-0.67 

Ψbc  [°] X 
Y 
Z 

1.25 
-0.49 
0.05 

0.033 
0.036 
0.066 

0,08 
0,062 
0,093 

1.25 
-0.49 
0.05 

Tab. 2: Calibration results (averaged) for accelerometer scale and misalignment parameters. 

𝑀�−1 = �
1.001 −0.0004 −0.0026

0.0037 1.003 0.0027
−0.0003 −0.0003 0.999

� 𝜎𝑒(𝑀�−1) = �
0.0022 0.0016 0.0018
0.0021 0.0012 0.0027
0.0035 0.0035 0.0017

� 

Tab. 3: Calibration results (averaged) for the camera-IMU transformation parameters (simple IMU error 
model). 

 Axis �̅� 𝜎� 𝜎𝑒 Δ𝑣���� 

𝑝𝑏𝑐  [cm] X 
Y 
Z 

-0.79 
3.86 
-14,3 

0.17 
0.18 
0.23 

0.26 
0.25 
0.2 

-0.79 
-1.14 
-0.74 

Ψbc  [°] X 
Y 
Z 

1.28 
-0.43 
0.13 

0.028 
0.027 
0.062 

0.077 
0.076 
0.11 

1.28 
-0.43 
0.11 

4.2 Discussion 
For the extended as well as for the simple accelerometer error model, the empirical standard 
deviation calculated from estimated calibration parameters is considerably lower than the 
standard deviation of the noise that was added to the initial values at the start of each calibration 
run. This indicates that coarse initial estimates of the parameters can be improved by the 
calibration. The rotations about the X- and Y-axes of the camera’s coordinate system and the 
translation in Y-direction differ from the values taken from the mechanical specifications by 
more than three standard deviations, when considering the empirical standard deviation. 
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Therefore, it can be expected to obtain better results by using the values obtained by the 
calibration procedure. This is not the case for the remaining parameters, whose estimates seem to 
be compatible with the values from the datasheets. Moreover, the estimation procedure is 
probably overconfident as can be seen by comparing the empirical standard deviations with the 
estimated ones (The estimated standard deviations displayed in Tab. 1 and Tab. 3 were not 
scaled by the mean of the estimated variance factor, which is 0.34 for the extended IMU error 
model and 0.35 for the simple error model). This suggests, that the estimation process is still 
biased, possibly due to unmodeled errors, e.g., arising from device synchronization problems. 
When comparing the estimates obtained with the extended error model in Tab. 1 with the 
estimates for the simple model in Tab. 3, we note that they lie within one standard deviation of 
each other (again using the empirical standard deviation). Thus, we conclude that it is not 
possible to improve the calibration using the extended accelerometer error model with the 
procedure presented in this paper and the particular sensor system that was used in this work. 
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