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Summary: With the increasing availability of high 
resolution data, remote sensing is gaining impor-
tance for agricultural management. Sensor constel-
lations such as RapidEye or Sentinel-2 have a strong 
potential for precision agriculture because they pro-
vide spectral information throughout the cropping 
season and at the subfield level. To explore this po-
tential, methods are required that accurately trans-
fer the spectral information into biophysical param-
eters which in turn permit quantitative assessments 
of plant growth on the field. Boundary condition for 
a successful monitoring, e.g., a repeated derivation 
of the biophysical parameters is to cope with the 
challenge of enormous data amounts, i.e. to select 
the input data that is most relevant.

In this study, biophysical parameters of winter 
wheat, namely the fraction of absorbed photosyn-
thetic active radiation (FPAR), the leaf area index 
(LAI) and the chlorophyll content (expressed by 
SPAD), were modelled with RapidEye data in 
Mecklenburg-West Pomerania, Germany, using 
Random Forest based on conditional inference 
trees. Focus was set at the selection of the most im-
portant information out of spectral bands and indi-
ces for parameter prediction on winter wheat. In-
situ and remote sensing observations were grouped 
into phenological phases in order to examine the 
importance of single spectral bands or indices for 
modelling biophysical reality in the several grow-
ing stages of winter wheat. The coefficient of deter-
mination for FPAR (LAI; SPAD) ranged between 
0.19 and 0.83 (0.33 and 0.66; 0.21 and 0.45). Model 
accuracy was linked with the phenological phase. 
The results showed that for each biophysical pa-
rameter, different spectral variables become im-
portant for modelling and the number of important 
variables depends on the phenological time span. 
The prediction of biophysical parameters for short 
phenological groups often depends only on one to 

three variables. The results also showed that in the 
phenological phase of fruit development, the model 
accuracy is the lowest and the determination of the 
importance is comparatively vague.

Zusammenfassung: Wichtige Variablen aus Rapid-
Eye-Zeitreihen für die Modellierung biophysikali-
scher Parameter von Winterweizen. Hochaufgelös-
tes Monitoring agrarwirtschaftlicher Flächen ge-
winnt immer mehr an Bedeutung. Aus fernerkund-
licher Sicht beruht dieses Monitoring auf der robus-
ten Ableitung verschiedener biophysikalischer Pa-
rameter aus räumlich und zeitlich hoch aufgelösten 
Fernerkundungsdaten, z.B. RapidEye oder Senti-
nel-2. Ziel aktueller Forschung ist es, die biophysi-
kalischen Parameter FPAR (Fraction of Absorbed 
Photosynthetic Active Radiation), LAI (Leaf Area 
Index) und den Chlorophyllgehalt aus fernerkund-
lichen Daten zu ermitteln. Hierbei reizen die gro-
ßen Datenmengen häufig die Berechnungskapazi-
täten aus. Somit wird eine umsichtige Reduzierung 
der zu verarbeitenden Datenmenge die Anwend-
barkeit dieser Methode verbessern.

In der vorliegenden Studie wurden conditional 
inference Random Forests eingesetzt, um zum ei-
nen die biophysikalischen Parameter unter Ver-
wendung von RapidEye Szenen zu modellieren, 
und zum anderen die Bedeutung der einzelnen Ein-
gangsparameter (Spektrale Bänder des RapidEye 
und Vegetationsindizes) zu quantifizieren. Die di-
rekt auf dem Feld und die fernerkundlich erhobe-
nen Beobachtungen des Winterweizens wurden in 
unterschiedliche Entwicklungsstadien (phänologi-
sche Gruppen) eingeteilt. Bei der Modellierung des 
FPAR (LAI; SPAD) wurden hierbei Bestimmt-
heitsmaße zwischen 0.19 und 0.83 (0.33 und 0.66; 
0.21 und 0.45) erreicht. Dies zeigt, dass die Genau-
igkeit der Modellierung der jeweiligen biophysika-
lischen Parameter stark von der entsprechenden 



286 Photogrammetrie • Fernerkundung • Geoinformation 5 – 6/2016

1	 Introduction

Recently launched and upcoming satellite 
missions like the Sentinel systems will high-
ly increase the amount of spatiotemporal data 
provided by remote sensing (Bontemps et al. 
2015). This kind of high resolution data offers 
great opportunities among others in agricul-
ture (Franke & Menz 2007). Remote sensing 
based information of high spatial and tempo-
ral resolution can for instance be beneficial for 
agricultural applications like precision farm-
ing and crop yield estimation (Haboudane et 
al. 2004, Ahmadian et al. 2016). These appli-
cations demand accurate and up to date infor-
mation on the vegetation (Jin et al. 2013), e.g. 
on the phenological state and on vegetation 
growth such as biomass production, e.g. ex-
pressed by absorbed photosynthetically active 
radiation (FPAR), the leaf area index (LAI), or 
chlorophyll content. One example is the study 
of Eitel et al. (2007), where the nitrogen sta-
tus of winter wheat was predicted to support 
farmers with the information whether to ap-
ply supplemental fertilizer during the growing 
period of the crop. However, such applications 
useful for precision agriculture are still rare.

In order to observe and analyse vegeta-
tion using biophysical parameters, several re-
mote sensing approaches were proposed in the 
past (Hall et al. 1995, Mutanga & Skidmore 
2004, Le Maire et al. 2011). One option is em-
pirical modelling, i.e. the identification of an 
optimal statistical relation between spectral 
measurements, e.g. vegetation indices, and in 
situ observations. The suitability of empirical 
approaches varies among the biophysical pa-
rameters because they vary in their complex-
ity. Linear statistical approaches may be suf-
ficient for the derivation of FPAR at least for 

phänologischen Gruppe abhängt. Darüber hinaus 
zeigen die Ergebnisse, dass die Bedeutung der un-
terschiedlichen Eingangsparameter für die unter-
schiedlichen biophysikalischen Parameter und un-
terschiedlichen Entwicklungsstadien stark unter-
schiedlich ist. Häufig sind es nur bis zu drei spek-

trale Variable, die einen Parameter in den kurzen 
Entwicklungsphasen beschreiben. Die Ergebnisse 
zeigen auch, dass das Modellieren biophysikali-
scher Parameter im phänologischen Stadium der 
Fruchtreife am ungenauesten ist.

some crops (Myneni & Williams 1994, Lex 
et al. 2013). However, e.g. for the derivation 
of LAI, there are strong indications that one 
vegetation index or spectral band cannot ex-
plain the biophysical reality of the vegetation 
cover over the entire growing season (Viña et 
al. 2011, Lex et al. 2013), because the physi-
cal appearance of the crop and, moreover, can-
opy parameters like cover fraction and plant 
height vary with the phenological stages of 
crops. Thus and not exclusively for crops, dif-
ferent univariate and multivariate, linear and 
non-linear statistical methods have been ap-
plied for monitoring biophysical parameters 
of vegetation with high-resolution data. Ma-
chine learning algorithms such as the Ran-
dom Forest algorithm (Breiman 2001) are 
typically able to cope with a strong non-lin-
earity of the functional dependence between 
some biophysical parameters and the reflected 
spectra (Beckschaefer et al. 2014). Differen-
tiation among different phenological stages 
could also improve empirical estimations of 
biophysical parameters of vegetation, at least 
for some growing stages of vegetation, as e.g. 
shown by Tillack et al. (2014) or Lex et al. 
(2015). Nevertheless, little attention has been 
put on the derivation of biophysical parame-
ters using high resolution remote sensing data 
in combination with machine learning algo-
rithms for crop monitoring at different stages 
of the vegetation period.

One challenge to increase the practical use 
of remote sensing based information products 
for precision agriculture is the enormous ex-
penditure (e.g. data amount, storage space, 
processing time), which is necessary for the 
derivation of the relevant biophysical param-
eters. To minimize this aspect the reduction 
of the spectral resolution, e.g. by composing 
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spectral indices or band selection can be use-
ful and information is required, which indi-
ces and spectral bands have the most effect 
on modelling biophysical parameters at which 
growing stage. Machine learning methods 
provide an assessment of the so-called vari-
able importance, which returns the relevance 
and suitability of certain spectral bands and 
indices for accurate modelling of biophysical 
parameters. Beckschaefer et al. (2014) dem-
onstrated the usability of the variable impor-
tance when linking remote sensing observa-
tions with biophysical parameters for subtrop-
ical upland ecosystems.

Different remote sensing applications deal 
with the extraction of variable importance 
from Random Forests (Mutanga et al. 2012, 
Beckschaefer et al. 2014). However, Strobl et 
al. (2007) pointed out that an analysis of caus-
al effects using the classical Random Forest 
approach can be biased in case of having cor-
related regressors. Against this background, 
Strobl et al. (2008) introduced the condition-
al variable importance method to determine 
the variable importance for correlated regres-
sors. In cause-effect analyses based on Ran-
dom Forest, in which remote sensing data is 
utilized, this conditional variable importance 
method is critical, because spectral bands or 
e.g. vegetation indices are commonly highly 
correlated.

The aims of this study are (i) to predict bi-
ophysical parameters, namely FPAR, LAI, 
chlorophyll content of winter wheat during 
the different growing stages using RapidEye 
time series and in-situ data, (ii) to identify the 
most important spectral bands or indices for 
modelling these biophysical parameters and 
(iii) to investigate how the indicator impor-
tance of these variables changes in the pheno-
logical cycle.

2	 Study Area

The study area was located near the town 
Demmin in Mecklenburg-West Pomerania 
(Mecklenburg-Vorpommern) in Northeast-
Germany (Fig. 1). The landscape was formed 
by glaciers and melting waters during the 
Weichsel glacial period, approximately 10,000 
years ago. The northern part of the study area 

is characterized by low topographical varia-
tions between 5 m – 20 m a.s.l. whereas the 
south can be described as hilly to undulating. 
Due to significant differences in parent sub-
strate material and topography, soils are pri-
marily loamy sands and sandy loams alter-
nating with pure sand patches or clayey are-
as (Gerighausen et al. 2009). The climate is 
moderate, with an average annual temperature 
of 8–8.5 °C and an average annual rainfall of 
550 mm – 600 mm (Borg et al. 2009). The in-
vestigated fields were located within the test 
site DEMMIN (Durable Environmental Mul-
tidisciplinary Monitoring Information Net-
work), one of four test areas of the TERENO 
lowland observatory (Borg et al. 2009, HGF 
2015). The test site is an intensively used agri-
cultural ecosystem.

3	 Data and Methods

3.1	 RapidEye

The RapidEye satellite system is a constella-
tion of five identical earth observation satel-
lites in one orbit with the capability to provide 
multi-spectral images over large areas with 
frequent revisits at high resolution (6.5  m at 
nadir). A detailed description of the RapidEye 
system can be found in Borg et al. (2013). In 
addition to the Blue (B) (440 nm – 510 nm), 
Green (G) (520  nm – 590  nm), Red (R) 
(630 nm – 685 nm) and Near-Infrared (NIR) 
(760 nm – 850  nm) bands, the sensor has a 
RedEdge (RE) (690 nm – 730 nm) band, espe-
cially suitable for vegetation analysis (Kross 
et al. 2015). The RapidEye level 3A standard 
product covers an area of 25 km × 25 km, is 
radiometrically calibrated to spectral radi-
ance, as well as orthorectified and resampled 
to 5 m spatial resolution (Chander et al. 2013). 
In this study a time series of nine RapidEye 
images was available. It was recorded within 
the growing period of winter wheat in 2015. 
The acquisition dates are given in Fig. 3.
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3.2	 In-situ Observations

In diverse studies different biophysical key 
parameter of interest for precision farming ap-
plications were identified (Moran et al. 1997, 
Baret et al. 2007). Incoming Photosynthetic 
Active Radiation (PAR) is the primary driv-
ing force of photosynthesis and biological pro-
duction. The Fraction of Photosynthetic Ac-
tive Radiation (FPAR) resembles the fraction 
of absorbed incoming Photosynthetic Active 
Radiation (APAR) in relation to the available 
PAR and is a key input for light used efficien-
cy modelling (LUE) (Seaquist et al. 2003). 
The LAI characterizes the leaf surface avail-
able for energy and mass exchange between 
surface and atmosphere (Carlson & Ripley 
1997). Chlorophyll content can be considered 
as one of the main inputs in the vegetation 
models development. Thus, it is considered 
to be an indicator of the photosynthetic effi-
ciency of the plant (Darvishzadeh et al. 2008). 
These three key biophysical variables were in-
vestigated in the presented study.

The field survey concept was to gather 
FPAR, LAI and chlorophyll information in a 
weekly to bi-weekly recurrence. FPAR and 
LAI were measured using a SunScan instru-
ment (Delta-T Devices Ltd., Cambridge, Eng-
land) and SPAD (Soil & Plant Analyzer Devel-
opment) values were measured using a hand-

held chlorophyll meter (SPAD-502, Minolta 
Osaka Company, Ltd., Osaka, Japan). The 
data used in this study was collected on 18 En-
vironmental Sampling Units (ESUs) (Baret 
et al. 2002) on seven winter wheat fields. The 
EUSs have an extent of 20 m × 20 m. Within 
each ESU, twelve measurement points were 
set within a rectangular cross. The twelve 
measurements over one ESU were averaged. 
FPAR and LAI were measured once on each 
point inside the ESU. The SPAD measure-
ments were taken on each point ten times and 
averaged. A scheme of an ESU can be found 
in Fig. 2. The majority of the measurements 
were taken by the team of the calibration and 
validation site DEMMIN (Borg et al. 2009).

3.3	 Pre-processing

An essential aspect, which substantially af-
fects the accuracy of satellite-based remote 
sensing information, represents the pre-pro-
cessing like e.g. geo- or atmospheric correc-
tion (Mannschatz et al. 2014). However, com-
parisons of the geographical coordinates of 
the ESUs recorded with a GPS during the field 
campaigns and the RapidEye data showed 
high accuracy in geolocation which in turn 
made further geo-corrections unnecessary. 
The RapidEye scenes were atmospherically 

Fig. 1: Study area and location of the Environmental Sampling Units (ESU) in the winter wheat 
fields.
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corrected and cloud masked using ATCOR2 
(Richter 2010).

The reflectance spectrum of each RapidEye 
scene within all 18 ESUs was extracted by av-
eraging RapidEye reflectance in a 20-meter 
radius around the centre of single ESU. This 
represents the spatial resolution of the new and 
upcoming Sentinel-2 Multi Spectral Instru-
ment (MSI) data. Numerous vegetation indi-
ces comprising SR, NDVI, SAVI, RE_NDVI, 
RDVI and EVI were calculated (Tab. 1). In ad-
dition, the products of the tasselled cap trans-
formation were included as they represent an-
other important group of spectral indices in 
agriculture (Schoenert et al. 2014). With the 
additional RedEdge, the RapidEye system 
has been designed to derive information on 
the vegetation status (Jung-Rothenhäusler et 
al. 2007). Thus, different vegetation indices, 
which consider the RedEdge (RE_NDVI, rel-

Length, curve, Length; Conrad et al. 2012) 
were also integrated in the feature set.

3.4	 Phenological Groups

The second aim of this study was to investi-
gate the variable importance of vegetation in-
dices and single bands for the prediction of 
FPAR, LAI, and SPAD with respect to dif-
ferent phenological stages. Therefore, each 
dataset was grouped according to the phenol-
ogy using the BBCH-characterization (Biolo-
gische Bundesanstalt, Bundessortenamt und 
CHemische Industrie) of the observation field 
data. The BBCH scale gives numeric informa-
tion about the morphologic development stage 
of a plant (Lancashire et al. 1991). The groups 
were named after the BBCH range they cover. 
The grouping of the data is illustrated in Fig. 
4. This step ensured that the spectral behav-
iour was associated with the physical appear-
ance of the plant and no longer with the data 
acquisition date. In other words, data pairs 
(field measurement and satellite observation 
at that point) were not analysed per data ac-
quisition period, but within each phenological 
group.

3.5	 Conditional Inference Forest

Random forests (Breiman 2001) are ensem-
bles of classification and regression trees that 
operate on binary partitions of the feature 
space (drawn by the training samples). Each 
tree is built from nodes and leaves. Nodes 
consist of a predictor variable and a split val-

Fig. 2: ESU sampling scheme after GARRI-
GUES et al. (2002).

Fig. 3: Overview about the data acquisition times in the field and the available RapidEye observa-
tions.
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ue (applied to that variable). Leaves comprise 
in case of using the regression variant sam-
ples of the predicted variable with at best very 
similar values to minimize the distribution of 
predicted values within one leaf is the major 
aim of the algorithm. Within random forest, 
bootstrapping is applied, i.e. each tree utiliz-
es a subset of samples, and random selection 
of a limited number of features for generating 
the nodes that split the data into two groups 
each. Random forest has shown to be suitable 
to analyse enormous input datasets like multi-
temporal satellite data (Rodriguez-Galiano et 

al. 2012). In this study, a further development 
of random forest, the so called conditional in-
ference trees (cforest) were utilized. In cfor-
est, the regression tree ensemble is built from 
conditional inference trees which are able to 
consider cause-effect relations during variable 
selection and to reduce bias in case of highly 
correlated variables (Strobl et al. 2008).

Classification and regression trees (and 
subsequently the random forest/cforest algo-
rithms) select features which are optimal suit-
ed for modelling. The permutation of feature 
values allows for assessing the so called im-

Tab. 1: Overview of calculated vegetation indices. The bands are named according to the part of 
the spectra they represent. Note that λ refers to the central wavelength of the respective band, e.g. 
λ Red = 657.5 nm, λ RedEdge = 710 nm, λ NIR = 805 nm.

Index Equation Reference

TCT_B 0.2435 * Blue + 0.3448 * Green + 0.4881 * Red + 0.4930 
 * RedEdge + 0.5835 * NIR

Schoenert et al.  
2014

TCT_G (-0.2216) * Blue + (-0.2319 * Green + (-0.4622) * Red 
+(-0.2154)*RedEdge + 0.7981*NIR

TCT_Y (-0.7564) * Blue + (-0.3916) * Green + 0.5049 * Red 
+ 0.1400 * RedEdge + 0.0064 * NIR

SR ​ NIR _ Red ​ Jordan 1969

NDVI ​ 
(NIR - Red)

 __ (NIR + Red) ​ Rouse et al. 1974

SAVI (1 + 0.5) * ​ 
(NIR-Red)

  ___  (NIR + Red + 0.5) ​ Huete 1988

RE_NDVI ​ 
(NIR - RedEdge)

  ___  (NIR + RedEdge) ​
Gitelson &  

Merzlyak 1996

RDVI ​ 
   (NIR - Red)

  ___  
​  

 √
__________

 (NIR + Red) ​
 ​ Roujean &  

Breon 1995

EVI 2.5 *   ​ 
(NIR - Red)

  _____   (1 + NIR + 6 * Red - 7.5 * blue) ​ Huete et al. 2002

curv ​ 
(​ 

(NIR - RedEdge)
  ____  (λNIR - λRedRdge) ​) - (​ 

 (RedEdge - Red) 
  ____  (λRedRdge - λRed)  ​)
    ________   (λNIR - λRed) ​  Conrad et al.  

2012

Length ​  
 √
________________________________

    (NIR - RedEdge)2 + (λNIR-λRededge)2 + ​  
​  

 √
________________________________

   (RedEdge - Red)² + (λRedEdge - λRed)² ​

relLength ​ 
Length

  _____   
​  

 √
_______________________

   (NIR-Red)² + (λNIR - λRed)² ​
 ​
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cross validation method using the OOB data, 
which is executed by the random forest algo-
rithm internally, such an external cross vali-
dation is regarded to result in a more objective 
quality assessment of the model performance 
(Reunanen 2003).

The number of variables considered for each 
split within a single regression tree (mtry) can 
have great influence on the performance of 
cforest and the calculation of the variable im-
portance (Díaz-Uriarte & De Andres 2006). 
Thus, each model was optimized. The CAR-
ET (Classification And REgression Training) 
package (Kuhn 2008) in the software R was 
used to tune the cforest models using 10 differ-
ent mtry values (mtry = 2;3;5;7;8;10;12;13;15;17; 
note that 17 variables were totally available). 
Here, only the coefficient of determination (R2) 
served as metric to compare the model quali-
ties and hence to identify the optimal mtry val-
ue for modeling. The variable importance was 
calculated for the best performing model only. 
This procedure, i.e., tuning of cforest followed 
by the determination of variable importance 
for the optimal model, was repeated 100 times 
to assess the stability of the method in terms of 
absolute error and variable selection.

portance of the feature. The variable impor-
tance is expressed using the difference be-
tween an internal prediction error of the ran-
dom forest routine (based on the so called out-
of-bag/OOB error; Breiman 2001) before and 
after the permutation of variable values in a 
predictor variable. If the permutation of var-
iable values is reduced to those samples oc-
curring in the branch of a tree (sub-tree) for 
which the variable is selected a more unbiased 
extraction of the variable importance becomes 
possible (Strobl et al. 2007).

Both, the cforest routine and the conditional 
variable importance algorithm as implement-
ed in the ‘party’ package (Hothorn et al. 2010) 
of the statistic software R (R Core Team 2016) 
were utilized in this study. There is no effect 
of the number of trees on the average impor-
tance as long as the number of trees is suffi-
ciently large to guarantee a stable estimate of 
the mean importance (Strobl & Zeileis 2008). 
Thus, and after explorative tests, the number 
of trees was set to 500.

The accuracy assessment for one cforest 
model run was conducted by calculating two 
statistical parameters. The root-mean-square 
error (RMSE) indicates the mean offset be-
tween the observed and the predicted data. 
The coefficient of determination (R2) describes 
the percentage of variance that is explained by 
the model. In this study, a fivefold 10 times re-
peated cross validation was applied to calcu-
late those two parameters. In contrast to the 

Fig. 4: Grouping of the dataset (field sampling and satellite observation at that point) into different 
classes of phenological appearance according to the BBCH-code.
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4.2	 Variable Importance

The cforest based variable importance for 
modelling the biophysical parameters (FPAR, 
LAI and SPAD) in every BBCH-based pheno-
logical group can be seen in Figs. 5 to 7. The 
boxplots show the unscaled variable impor-
tance for each of the 17 indices or bands re-
ceived during all 100 model runs for one pa-
rameter and phenological group. The boxplots 
allow for comparing the variable importance 
of indices or bands used for modelling. High 
variable importance indicates an increase of 
the prediction error in cforest when the re-
spective band or index is excluded. On the 
contrary, small or negative variable impor-
tance shows that omitting the tested band or 
index from cforest has none or negative im-
pact on the model accuracy. The distribution 
of variable importance scores of the 100 mod-
el runs determines the size of the boxes, which 
in turn puts a light on the stability of the im-
portance level of each index or band during 
modelling. For instance, a slim box indicates 
a more stable importance estimation of the re-
spective index or band, a broad box suggest 
varying importance levels (relevance) of that 
variable over numerous runs.

4	 Results

4.1	 Prediction Accuracy

Tab. 2 shows the cforest prediction accuracy 
of FPAR, LAI and SPAD in different pheno-
logical phases. The table depicts the average 
of the 100 best models, except for the mtry 
value, which represents the most often cho-
sen value over the 100 runs. The highest R2 
value for FPAR (R2 = 0.83) was achieved be-
tween 0 and 40 BBCH, while the lowest R2 
refers to the model between 41 and 70 BBCH 
(R2 = 0.19). The best performance (R2 = 0.66) 
for modelling LAI was also reached between 
0 and 40 BBCH. The lowest accuracies (R2 
= 0.33) of the LAI models can be associated 
with the phenological groups of senescence 
(41 – 70 and 41 – 100 BBCH). Reduced accu-
racies were found for the SPAD models. They 
never outreached an R2 value of 0.45 (21 – 40 
BBCH). Due to limited in-Situ observations 
(N = 10) during the last BBCH stage (71 – 100 
BBCH), the SPAD model for that period was 
not calculated.

Tab. 2: Cforest performance and final settings for FPAR LAI and SPAD according to the pheno-
logical groups (expressed by the BBCH-code).

BBCH 0 – 100 0 – 40 41 – 100 0 – 20 21 – 40 41 – 70 71 – 100 

FPAR

RMSE 0.16 0.12 0.04 0.16 0.12 0.04 0.16
R2 0.59 0.83 0.21 0.59 0.65 0.19 0.59
mtry 12 5 17 12 5 17 12
samples 124 68 56 25 43 36 20

LAI

RMSE 1.56 1.23 1.87 1.56 1.46 1.36 1.28
R2 0.41 0.66 0.33 0.41 0.57 0.33 0.41
mtry 12 10 2 12 8 2 12
samples 111 62 49 24 38 34 15

SPAD

RMSE 4.98 3.17 6.94 4.1 2.88 5.82 –*
R2 0.29 0.42 0.28 0.41 0.45 0.21 –*
mtry 12 17 2 5 3 5 –*
samples 161 103 58 34 69 48 –*

* Amount of in-situ data insufficient for modelling
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ble importance below 0). The variable impor-
tance distribution of the shorter BBCH groups 
(0 – 20; 21 – 40; 41 – 70; 71 – 100 BBCH, Fig. 
5D–G) resembles that of the longer phenologi-
cal groups (0 – 40; 41 – 100 BBCH). Only, the 
boxplot referring to the 41 – 70 BBCH group 
exhibits an unusual distribution, compared to 
the other boxplots. This group is also the one 
with the lowest R2 value.

4.2.2	 LAI

The variable importance plots (Fig. 6) model-
ling the LAI showed that small groups of one 
to four indices are most important. For the en-
tire growing season, the EVI showed the high-
est importance (Fig. 6A). The two most im-
portant variables for modelling the LAI in the 
first phenological group 0 – 40 BBCH (Fig. 

4.2.1	 FPAR

Fig. 5 depicts the variable importance of the 
single vegetation indices and spectral bands 
used for modelling FPAR. The distribution of 
the variable importance for the entire growing 
season (0 – 100 BBCH) in Fig. 5A shows that 
the most important indicators were the Red-
Edge band and the RE_NDVI. The variable 
importance plots for the phenological group 0 
– 40 BBCH (Fig. 5B) indicate the RE_NDVI 
to be the most important variable followed by 
SAVI and NDVI. An atypical variable impor-
tance distribution occurred for the phenolog-
ical group 41 – 100 BBCH (Fig. 5C). There, 
the SR and the EVI are listed as the most im-
portant variables. In this distribution nearly 
all indices associated with the RedEdge band 
have a negative impact on the model (varia-

Fig. 5: FPAR variable importance distribution boxplots for different phenological groups (BBCH). 
A: 0 – 100; B: 0 – 40; C: 41 – 100; D: 0 – 20; E: 21 – 40; F: 41 – 70; G: 71 – 100.
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tent in the phenological phases between 0 – 40 
BBCH. Here, EVI and curv ranked on the sec-
ond and third places, respectively. For model-
ling the SPAD value in the phenological group 
41 – 70 BBCH (Fig. 6F), the SR index was 
identified to be the most important variable. 
The last phenological group (0 – 100 BBCH) 
could not be investigated, it was impossible 
to obtain enough field measurements in this 
group.

5	 Discussion

Highest accuracies for modelling FPAR oc-
curred during the vegetative phase (R2= 0.83), 
whereas during the stages of the senescence 
reduced statistical relations were found. The 
phenological phase of fruit development was 

6B) were RE_NDVI and EVI. The distribu-
tion of the variable importance for the pheno-
logical group 41 – 100 BBCH (Fig. 6C) high-
lights the TCT_Y index and the blue band as 
the most important variables. The plots of 
the shorter groups (Fig. 6D–G) show one to 
three vegetation indices (mainly EVI and RE_
NDVI) to be the most important indices. An 
unusual variable importance distribution was 
received for the BBCH group 41 – 70 (similar 
to the group 41 – 100 BBCH).

4.2.3	 SPAD

The RE_NDVI index is the most important 
variable to explain the SPAD in the 0 – 100 
BBCH group (Fig. 7A) followed by the rel-
Length. The RE_NDVI was the most impor-
tant variable modelling the chlorophyll con-

Fig. 6: LAI Variable importance boxplots for the different phenological groups (BBCH). A: 0 – 100; 
B: 0 – 40; C: 41 – 100; D: 0 – 20; E: 21 – 40; F: 41 – 70; G: 71 – 100.
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nearby impossible to model with high accu-
racy (R2 = 0.19), most likely due to canopy clo-
sure in combination with accompanied satu-
ration effects in the RapidEye observations. 
The challenges modelling FPAR during the 
saturation or senescence phase is also high-
lighted by the by the variable importance dis-
tribution: While the variable importance of 
the initial growing stages shows three indices 
RE_NDVI, NDVI and SAVI to be the most 
important ones, the only vague patterns of 
variable importance were observed during the 
fruit development and the senescence phases. 
For the latter, the importance values were gen-
erally smaller and no group of important indi-
ces with distinct spectral properties emerged 
during analysis.

In comparison to FPAR only slightly re-
duced modelling accuracies were found when 
modelling the LAI. The accuracy levels were 
comparable with the accuracies Zhao et al. 
(2015), who modelled the LAI of wheat us-
ing univariate regressions and the HJ-1 sensor 
system and achieved a R2 of 0.58 and RMSE 
values ranging from 0.7 to 0.89. However, in 

contrast to the FPAR results the variable im-
portance plots for LAI indicate a more distinct 
distribution among the detailed phenological 
groups. There, a group of one to four indices 
were found to be most important for the cfor-
est model. The observation that EVI is the 
highest ranked index among the phenological 
stages of growth, fruit development and se-
nescence can be explained by a higher robust-
ness of that index against saturation effects 
that occur in these phenological phases due to 
the closed canopy (Huete et al. 2002).

The SPAD cforest models reached lowest ac-
curacy levels in this study (R2 ≤ 0.45). Again, 
the models of the phenological groups linked 
to early growth phases were the statistically 
best performing. In comparison, Schoenert et 
al. 2014 modelled the chlorophyll content us-
ing RapidEye with a R2 of 0.77 on wheat us-
ing tasselled cap transformations. Eitel et al. 
(2007) used different vegetation indices cal-
culated from spectrometer measurements to 
model SPAD values and reported R² values 
between 0.01 and 0.77. The comparatively low 
performance in this study may be explained by 

Fig. 7: SPAD variable importance distribution boxplots for the different phenological groups 
(BBCH). A: 0 – 100; B: 0 – 40; C: 41 – 100; D: 0 – 20; E: 21 – 40; F: 41 – 70.



296 Photogrammetrie • Fernerkundung • Geoinformation 5 – 6/2016

The variable importance varied among the 
biophysical parameters and the phenological 
stages, which in turn indicates a link with the 
physical appearance of wheat during the crop-
ping season. Nevertheless, altogether, the RE_
NDVI or the RDVI were found to be the most 
important variables which in turns underlines 
the importance of RedEdge bands for model-
ling biophysical parameters of crops, at least 
those of winter wheat.

Cforest was applied to one ensemble of veg-
etation indices and single bands of the Rapid-
Eye system. Even though some features re-
peatedly showed high variable importance, 
the results may have varied in case other sen-
sor systems, e.g. Sentinel-2, acquisition dates, 
or spectral features have been included. Such 
considerations have to be taken into account 
in further research and discussions about the 
transferability of the approach. Nevertheless, 
indication for the selection of the important 
features is given, because wheat represents a 
single plant type with a closed canopy. This 
information can in turn contribute to reduce 
the computation efforts, which is of para-
mount importance with a look on the continu-
ously increasing data amount at the high reso-
lution remote sensing sector.
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the temporal offset between the in situ obser-
vation and the satellite data acquisition of four 
days which may be too long for modelling a bi-
ophysical parameter like chlorophyll content. 
The RedEdge band and related indices always 
ranked under the most important variables for 
the prediction of SPAD values. This confirms 
the usefulness of analysing chlorophyll con-
tent in the RedEdge spectra as demonstrated 
previously (Eitel et al. 2007). The observation 
that spectral curvature indices can contribute 
to successful modelling of chlorophyll content 
is in line with the results presented by Eitel 
et al. (2007) based on simulated RapidEye and 
hyperspectral data for wheat.

6	 Conclusion

Remote sensing applications for farmers like 
precision farming demand up to date informa-
tion on the crop in specific phenological phas-
es. Several field management methods like the 
application of fertilizers depend on the phe-
nological phase of the plant. This study ad-
dressed the utility of RapidEye data and the 
use of machine learning for obtaining growth 
information about winter wheat in different 
phenological stages and to show how the vari-
able importance changes along with the phe-
nology. Thereby, the cforest was found suit-
able to model biophysical parameters for the 
entire growing season and to get an increased 
understanding about variables useful for pre-
dictions. Several vegetation indices were iden-
tified to be very important for the derivation 
of the biophysical parameters FPAR, LAI and 
chlorophyll content (approximated with the 
SPAD-value).

The model performance for the entire grow-
ing season outreached that for single pheno-
logical groups. There, the vegetative phase (0 
– 40 BBCH) showed the best performance and 
more stable variable importance distribution, 
particular in contrast to the senescence phase 
(70 – 100 BBCH). Models with a high accu-
racy relied on a small set of input parameters 
only. The latter may allow for questioning the 
use of more complex approaches to model bio-
physical parameters of winter wheat and crops 
with similar physical appearance (e.g. other 
cereal crops).
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