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Summary: The article presents studies on the pos-
sibility of using a modified NIR digital camera to 
carry out an initial classification of sedimentary 
rock formations. The study has been conducted in 
the limestone mine “Czatkowice” in Poland. For 
this purpose, samples of the formations typical for 
that deposit have been photographed in four chan-
nels: blue (B: 380 nm – 520 nm), green (G: 440 nm 
– 620 nm), red (R: 560 nm – 720 nm), and near in-
frared (NIR: 820 nm – 1,100 nm). The recorded im-
ages of each of the samples have been compared 
against the spectral curves prepared on the basis of 
the studies carried out with a field spectrometer. 
This comparison has been carried out using earlier 
prepared sensitivity characteristics for the modified 
camera. However, in contrast to other NIR devices, 
the wide sensitivity range in the NIR channel re-
sulted in a lack of a clear spectral peak. The hy-
pothesis about the usefulness of a modified camera 
in recognition of sedimentary rocks has been veri-
fied by analysing the results of the classification of 
rock samples and a fragment of the quarry wall. 
This classification has been made using channels in 
the visible range and in the near infrared. The ac-
curacy of the classification measured by the kappa 
index of agreement (KIA) has been increased when 
using the NIR channel. The study indicated that in 
some cases a modified camera can be a cheaper al-
ternative to professional equipment recording near 
infrared channel.

Zusammenfassung: Die Nutzung einer modifizier-
ten Kamera zur Klassifikation von Sedimentgestei-
nen. Dieser Beitrag präsentiert eine Potenzialstudie 
zur Nutzung einer modifizierten digitalen Nahin-
frarotkamera zu einer ersten Klassifikation von 
Felsformationen am Beispiel des Kalksteinbruchs 
“Czatkowice” in Polen. Typische die Lagerstätte 
charakterisierende Gesteinsproben wurden in vier 
Kanälen aufgezeichnet: blau (B: 380 nm – 520 nm), 
grün (G: 440 nm – 620 nm), rot (R: 560 nm – 720 nm), 
und nahes Infrarot (NIR: 820 nm – 1.100 nm). Die 
aufgezeichneten Bilddaten der einzelnen Proben 
wurden mit spektralen Profilen aus Aufnahmen mit 
einem Feldspektrometer verglichen. Dieser Ver-
gleich wurde durchgeführt unter Verwendung der 
vorgefertigten Empfindlichkeitseigenschaften für 
die modifizierte Kamera. Durch einen relativ brei-
ten Empfindlichkeitsbereich konnte kein Peak im 
NIR-Kanal erfasst werden, wie das für andere NIR-
Kameras möglich ist. Die Hypothese, dass die mo-
difizierte Kamera sich zur Erkennung von Sedi-
mentgesteinen eignet, wurde durch die Analyse der 
Klassifikationsergebnisse der Gesteinsproben und 
einem Ausschnitt der Steinbruchwand verifiziert. 
Bei dieser Klassifikation wurden verschiedene Ka-
nalkombinationen getestet. Die Genauigkeit der 
Klassifikation gemessen mit dem Kappa Index of 
Agreement (KIA) konnte durch die Hinzunahme 
des NIR channels verbessert werden. Die Ergebnis-
se zeigen, dass diese einfache Modifikation der Ka-
mera als kostengünstige Alternative zur professio-
nellen NIR-Kamera angesehen werden kann.
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2 Digital Camera – Application in 
Rock Classification and 
Possibilities of Camera 
Modification

Physico-chemical properties of rock materials 
related to the capacity of the minerals to absorb 
or reflect electromagnetic radiation are the ba-
sis of remote sensing methods used in geolo-
gy. The spectral ranges primarily used in these 
studies include the visible (VIS), near infrared 
(NIR) and short-wave infrared (SWIR) ranges. 
But also mid infrared (MIR) and thermal in-
frared (TIR) spectral ranges have been utilized 
(Van der Meer et al. 2012). Remote sensing in 
geology is based on the fact that minerals are 
characterized by specific absorption of the radi-
ation due to electronic processes in the mineral 
lattice in the VIS and NIR and by vibrational 
processes in the SWIR spectral ranges. These 
processes include, among others, the follow-
ing: crystal field effects, charge-transfer, col-
our centres, transitions to the conduction band, 
and overtone as well as combination tone vi-
brational transitions (Hunt 1980). The process-
es in the MIR and TIR spectral ranges include, 
for instance, volume scattering effects, as well 
as emissivity and temperature interference. 
Therefore, a characteristic set of spectral peaks 
can be defined for the individual minerals in or-
der to enable the identification of the minerals 
during laboratory tests using spectroscopy.

There are numerous studies in this field, e.g. 
Hunt (1977) and edwards et al. (2005) on the 
spectral characteristics of carbonate miner-
als, on REE fluorocarbonates (Rare Earth El-
ements) (turner et al. 2014), or on mudstone 
(Liu et al. 2016). Rock formations consist of 
various minerals with characteristic spectral 
peaks that may superimpose (Brown 2006). 
Also, the shape of the spectral curve is af-
fected by grain size (BaLdridge et al. 2009). A 
larger grain has a greater internal path where 
photons may be absorbed. Thus, reflectance 
decreases with increasing grain size. Howev-
er, using hyperspectral data analysis methods, 
e.g. band calculation, feature mapping, expert 
systems or spectral deconvolution, it is possi-
ble to determine not only the type of miner-
als but also their quantity in the rocks (asa-
dzadeH & de souza FiLHo 2016, KuosManen & 
Laitinen 2008, Haest et al. 2012).

1 Introduction

The technique of classifying rocks using mul-
tispectral and hyperspectral imaging has been 
popular for quite some time now. It is conduct-
ed to carry out geological research, primar-
ily on the basis of satellite or aerial images. 
Ground-based equipment is used much more 
seldom for that purpose. Recently, ground-
based hyperspectral cameras have been ap-
plied much more frequently and studies are 
carried out on the possibility of using laser 
scanners for such classifications. This type of 
equipment is relatively expensive and difficult 
in operation.

Commonly used digital cameras register 
light in the visible range and in three chan-
nels, namely red (R: 560 nm – 720 nm), green 
(G: 440 nm – 620 nm), and blue (B: 380 nm – 
520 nm). Introducing a minor modification to 
a digital camera and using inexpensive filters 
make it possible to register light in the near in-
frared range (NIR: 820 nm – 1,100 nm). Using 
such a modified camera as a research tool for 
geological applications is a very rare case. For 
instance, suListiyanti et al. (2009), or suListi-
yanti et al. (2010) investigated the possibilities 
of a modified camera to register thermal im-
ages. suListiyanti et al. (2014) also used it for 
the detection of air pollution. Moreover, it was 
proposed that NIR data could actually prove 
to be remarkably useful in colour consistency 
assessment, to estimate the incident illumina-
tion, as well as to detect the location of dif-
ferent illuminants (FredeMBacH & susstrunK 
2009). VerHoeVen (2008) quotes the possibil-
ity of using a modified camera in archaeologi-
cal research.

This article analyses the suitability of a 
modified camera to carry out a classification 
of formations in the wall of the “Czatkowice” 
Limestone Mine. Today, the assessment of a 
quarry wall composition and, consequently, of 
the quality of excavated material, is based on 
laboratory-based testing of samples and on in 
situ analysis performed by a geologist.  The 
use of a remote observation technique would 
significantly facilitate their work, if a geolo-
gist had access to a preliminary classification 
of formations. Employing a simple method of 
photographing with a modified camera could 
become such a technique.
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Outside the laboratory, multispectral and 
hyperspectral imaging at satellite or air-
craft levels are used for geological cartogra-
phy (ciaMpaLini et al. 2012, cHen et al. 2007, 
Kruse 2015, goetz 2009). Multispectral imag-
ing often has a reduced capability to identi-
fy individual rock formations due to the lim-
ited number of recorded spectral channels and 
a usually lower spectral resolution (goetz 
2009). However, the use of a small number of 
channels in combination with the methods of 
supervised classification makes it possible to 
distinguish between rock formations without 
specifying their exact mineral composition, 
as shown by KoVaceVic et al. (2009). This can 
be done if the studied rocks have unique spec-
tral characteristics in the recorded channels. 
For instance, for the cartography of dolomitic 
rocks, it is recommended to use three chan-
nels (Nos. 6, 8 and 7) in the SWIR range from 
the ASTER (Advanced Spaceborne Thermal 
Emission and Reflectance Radiometer) satel-
lite. For carbonates, in turn, it is recommend-
ed to use channels of the TIR range (Nos. 13 
and 14) or again three channels (Nos. 7, 8 and 
9) recorded in the SWIR. Rocks containing 
iron compounds are easy to identify in images 
using a combination of channels Nos. 1 and 2 
(VIS), 3 (NIR) and 4 (SWIR) (Van der Meer 
et al. 2012).

Digital cameras are devices that enable re-
cording of three spectral channels in the VIS 
range and, despite their simplicity, they are 

also used in geological studies. MengKo et al. 
(2000) and pirard (2004) use digital camer-
as with narrow bandwidth interference filters 
to identify minerals in rocks, nurdan & ni-
Hat (2010) apply neural networks based image 
analysis for the same purpose, and tarquini & 
FaVaLLi (2010) determine rock texture on the 
basis of collimated RGB images. Lepisto et al. 
(2005) investigated bedrock properties by an-
alysing the digital images. cHatterjee et al. 
(2010) and pateL & cHateriee (2016) analysed 
data from a digital camera with supervised 
classification methods to determine the quali-
ty of the limestone used at a cement plant. The 
use of a digital camera is not limited to labora-
tory testing. For instance, penasa et al. (2014), 
FrancescHi et al. (2009) and toś (2014) study 
the suitability of scanning data including RGB 
channels and, additionally, intensity of laser 
beam reflection to classify sedimentary rocks 
in the working face of a quarry. Those works 
inspired the author to carry out investigations 
on the use of a modified camera recording 
NIR. The NIR channel could complement the 
scanning data obtained from the laser scanner.

The detector of a digital camera is a matrix 
of sensors. CMOS (Complementary Metal-
Oxide-Semiconductor) or CCD (Charge Cou-
pled Device) sensors are used most common-
ly. The light-sensitive area, called photodiode, 
collects photons during the exposure time 
(naKaMura 2006, tHeuwissen 1995). All de-
tectors applied in both types of sensors register 

Fig. 1: Spectral sensitivities of: a) Nikon D200 adapted from Image Engineering (NikoND200 
2015), and b) Nikon D5000 adapted from BoNgiorNo et al. (2013).
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light in the same spectrum. Each sensor con-
tains a system of filters arranged in the form of 
a checkboard. The checkboard is composed of 
individual filters each of which transmits light 
in selected wavelengths. Each of the charge-
coupled devices is covered with a single filter, 
which means that it only registers light of a de-
sired wavelength (naKaMura 2006) (Fig. 1). 
The Bayer filter is an example of such an ar-
rangement (Fig. 2a).

Cameras are equipped with an additional 
NIR filter installed on the sensor (Fig. 2a), 
since the Bayer filter does not cut off radia-
tion in the NIR region. The NIR filter facto-
ry-installed on the sensor has to be replaced 
with a different filter that transmits radiation 
in the full range of sensitivity of charge-cou-
pled devices, in order to increase the cam-
era’s sensitivity to infrared radiation. A fil-
ter replacement is not complicated. The pro-

cess is depicted in Fig. 2b. When this is done, 
charge-coupled devices will register radiation 
in the range from 280 nm to approximately 
1,100 nm. The diagram (Fig. 3) demonstrates 
the adjusted spectral response curves for a 
Nikon D200 camera in the range 380 nm – 
1,000 nm. The diagram has been prepared by 
LDP LLC (MaxMax 2015) and presents RGB 
values of the light coming from a monochro-
mator, registered by the camera. The values 
have been normalised with the data generated 
by a spectrometer that measures the frequency 
and intensity of the light that falls on the sen-
sor (MaxMax 2015).

When analysing the diagram, one will see 
that the curves for the R and B values are sim-
ilar in the range above 850 nm. The G values 
are much smaller, on the other hand. It is re-
quired to use an additional filter on the sensor 
or on the lens in order for the camera to reg-

Fig. 2: a) A sensor with Bayer and infrared filters adopted from VerhoeVeN (2008), b) removal of the 
NIR filter (NikoND70 2015).

Fig. 3: Nikon D200-adjusted spectral response curves adapted from LDP LLC (MaxMax 2015).
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ister NIR radiation only. The experiment was 
based on the use of the IR 850H lens filter. Fig. 
4 demonstrates the effect of this filter.

The combination of the characteristics dem-
onstrated in Figs. 3 and 4, and a silicon sensi-
tivity curve for the 1,000 nm – 1,100 nm curve 
from darMont (2009) has made it possible to 
determine the approximate relative spectral 
sensitivity of the camera (1) (Fig. 5):

  
Qrλ = Tλ · SRλ  ___ Qrmax

   (1)

where: Qrλ – The relative spectral sensitiv-
ity of the camera for a given wavelength, Tλ – 
Filter transmission (Fig. 4), and SRλ – Spectral 
response (Fig. 3) for λ < 1,000 nm and for λ > 
1,000 nm (darMont 2009, Fig. 5).

The analysis of Fig. 5 makes it possible to 
conclude that the characteristics of the cam-
era's sensitivity in the NIR region is not at op-
timum, because it has a wide range and lacks 
a strong peak.

3 Assumptions and Course of 
the Study

The studies conducted here had two objec-
tives: (i) to verify the usefulness of a modi-
fied camera as an inexpensive research tool in 
geology and (ii) to determine the possibilities 
of using such a camera for a specific purpose, 
i.e., rock classification in the “Czatkowice” 
Limestone Mine.

The studies were conducted in several stag-
es. The first stage involved the collection of 
typical samples of the rocks present in the 

Fig. 4: Spectral characteristics of the IR 850H filter (roCoes 2015).

Fig. 5: The approximate relative spectral sensitivity of the modified camera.
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Czatkowice deposit, and their geological clas-
sification. This was followed by spectrometric 
observations of the samples under laboratory 
conditions in order to determine the spectral 
characteristics of the individual rock forma-
tions. The obtained spectral curves also ena-
bled a preliminary assessment of rock sepa-
rability in the channels used by the modified 
camera. The next stage included taking photo-
graphs of the samples under laboratory condi-
tions and the following processing steps:

• Preparation of NIR pixel values for each 
sample and comparison of those values to 
the spectral curves.

• Determination of the pair-wise separa-
bility of the rock classes in the RGB and 
RGB+NIR channels, which is a key re-
quisite for a correct classification.

• Supervised classification using the set of 
NIR, RGB and RGB+NIR data, and ac-
curacy assessment.

The comparison of the brightness of NIR 
image pixels for the individual samples to the 
spectral curves will determine, if the camera 
is useful as a research tool. A strong depend-
ence between those data will indicate that 
the sensitivity of the camera has been cor-
rectly determined (Fig. 5). The calculation of 
the pair-wise separability of classes for sam-
ples recorded on VIS+NIR photographs will, 
in turn, enable to assess the suitability of the 
method in the conditions of the Czatkowice 
limestone deposit. A significant increase of 
the pair-wise separability of classes for the set 
of RGB+NIR channels in relation to the RGB 
set will indicate the potential of the method 
for classifying the rocks in Czatkowice. The 
next stage of the study was the classification 
of the supervised samples of rocks using dif-
ferent VIS+NIR channels and assessment of 
its accuracy. The final stage was the verifica-
tion of the method under field conditions for a 
fragment of the quarry wall. All of the stages 
listed above are described in detail in the fol-
lowing chapters.

4 Laboratory Tests of Rock 
Samples

The starting point was the results of the spec-
trometric studies of rock samples from the 
Czatkowice Limestone Mine, carried out by 
the author. The mine is located on the west-
ern slope of Krzeszowka Valley, in Czatko-
wice, approximately 20 km west of Cracow, 
in the south-western part of the Cracow-Cze-
stochowa Upland. The geological character-
istics of the study area are determined by its 
setting in the Krzeszowka Fault and Debnik 
Anticline, in the southern part of the Cracow-
Silesia Monocline. The outcrops of the Czat-
kowice Quarry are marine sediments formed 
in the lower carboniferous era (Tournasian 
and Visean) and are represented by limestones 
and dolomites. In the sub-surface, particular-
ly in the south section of the quarry deposits, 
sandy-clay sediments of the lower and middle 
Jurassic eras are prevalent, with Quaternary 
clay sediment cover (grudziński 1972). The 
samples have been classified by a geologist as 
follows (toś 2014) (Fig. 6):

• Sample 1 – limestone, dolomitic, mi-
crocrystalline, dark beige, slightly stro-
matolitic texture. This sample repre-
sents rock formations of Tournaisian age 
which are the oldest within Czatkowice 
Quarry.

• Sample 2 – limestone, microcrystalline 
with heavily weathered surface, pink-
dark-beige, stromatolitic texture, rock 
formations of Tournaisian age.

• Sample 3 – limestone, microcrystalline, 
beige. Contains some fragments of sili-
ca and calcite crystals and veinlets part-
ings, approximately 2 mm – 4 mm wide. 
Forms the main deposits extracted at the 
Czatkowice Quarry. Rock formations of 
Visean age.

• Samples 4 and 6 – limestone, microcrys-
talline, dark grey to black (bituminous 
limestone), stromatolitic texture. Rock 
formations of Tournaisian age.

• Sample 5 – dolomitic limestone, micro-
crystalline, light to dark beige. Contains 
calcite crystals 1 mm in diameter and 
some calcite veinlets 2 mm – 3 mm wide. 
Latest rock formations of Tournaisian age.
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The fibre-optic cable and lamps were set not 
to cast a shadow on the measured samples. 
ASD lamps can focus or disperse the stream 
of the emitted light. During the experiment, 
they were set to an intermediate value. The in-
strument was calibrated using a white stand-
ard (spectralon). During the study, the same 
standard was also used for verification. The 
instrument was set to record reflectance. No 
additional spectral smoothing was done. 15 
measurements were made for each sample at 
randomly selected points on the surfaces vis-
ible in Fig. 6. The measurement results (in the 
form of average values calculated based on 
observations) were presented in the form of 
spectral curves (Fig. 7).

The results of the spectrometric studies 
based on the analysis of the spectral curves 
registered for the samples indicate:

• There are no significant differences 
among the light reflection coefficients 
registered for limestones, dolomitic lime-
stones, and silicated limestones (samples 
1, 3, and 5).

• Bituminous limestones (samples 4 and 6) 
demonstrate a low light reflection coeffi-
cient in the entire VIS-NIR region, which 
facilitates their distinguishing. 

• Weathered limestone (samples 2 and 7), 
coarse crystalline calcite (9), and sand-
stone (8) can be distinguished among all 
other limestone types in the R or NIR re-
gions. Distinguishing these formations 

• Sample 7 – limestone, microcrystalline, 
rock formations of Visean age (repre-
sents the same rocks as sample 3). How-
ever, the study was carried out on a 
heavily weathered surface, dusky-red, 
creamy-brown.

• Sample 8 – quartz-sandstone, do not 
react with hydrochloric acid, heavily 
weathered, reddish-creamy-brown. Part 
of the late and middle Jurassic sandstone 
deposits.

• Sample 9 – calcite, cream-yellowish-
brown. The calcite crystals are up to 
10 cm high and 2 cm – 3 cm in diameter. 
Calcite is a mineral formed within Vise-
an limestone as a result of intense karsti-
fication, creating approximately 10 cm 
wide, coarse-grained calcite veins.

The examination was carried out using the 
FIELD SPEC 3 in-field spectrometer. The 
spectral resolution of that device is 3 nm (in 
the 350 nm – 1,400 nm range) and 10 nm (in 
the 1,400 nm – 2,500 nm range), and it has a 
sampling interval of 1.4 nm to 2 nm. The field 
of view is 25 degrees. This enables reflectance 
recording in 2,151 channels in the 350 nm – 
2,500 nm range. The study was conducted us-
ing two ASD lamps lighting the sample from 
both sides in relation to the position of the fi-
bre-optic cable used for the measurement. The 
distance between the lamps and the samples 
was approximately 40 cm, and the distance 
from the detector was approximately 10 cm. 

Fig. 6: Samples from the Czatkowice Limestone Mine: microcrystalline limestone (1); weathered 
limestone (2), (7); silicated limestone (3); bituminous limestone (4), (6); dolomitic limestone (5); 
sandstone (8); coarse crystalline calcite (9).
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rosity. The impact of moisture content on re-
flectance becomes particularly massive, in 
the area of water absorption spectra (around 
1,950 nm, 1,450 nm, and 970 nm). Under good 
weather conditions the surface of the quarry 
wall in the Czatkowice Limestone Mine is dry. 
Therefore, photographs of nine dry samples 
were made in natural light, using a standard 
Nikon D5000 camera and a modified Nikon 
D200 camera with the IR 850H filter. All im-
ages were superimposed on each other, using 
the PI-3000 photogrammetry software. The 
RMS alignment error for images on twelve 
ground control points was 0.75 pixel. The pho-
tographs were subject to further studies.

5 Comparing the Brightness of 
Pixels Registered with the NIR 
Camera against the Spectral 
Curves of Samples

The suitability of the modified camera as a re-
search tool can be verified, when we compare 
the images registered with the modified cam-
era against the spectral characteristics of the 
analysed objects. In this case, it is necessary 
to obtain a strong correlation between those 
quantities.

from limestones is quite important, be-
cause they combined with soil overbur-
den form the so-called ground-rock mass 
that is disposed to landfills.

Comparing the obtained spectral curves to 
the data of similar rock formations collected 
in USGS or ASTER spectral libraries (cLarK 
et al. 2007, BaLdridge et al. 2009) demon-
strates that they are fairly atypical. This is 
caused by, among other factors, weathering 
of the minerals in samples 2 and 7, as well as 
surface oxidation of samples 1, 3, and 5. The 
shape of the spectral curves for the sandstone 
(8) and crystalline calcite (9) is, to a large ex-
tent, caused by the admixture of iron com-
pounds (producing the characteristic coppery 
colour). The research has also proven that the 
moisture of rocks has a major impact on the 
reflection coefficient. This may influence the 
obtained classification results. The samples 
were soaked in water for 1 minute, pulled 
out and left for 3 minutes in order to remove 
excess water. Then, they were subject to ob-
servations. The examination method was the 
same as for the dry samples. The average val-
ues of the observations are indicated in Fig. 8.

Wet rocks have lower reflectance. A large 
change of the spectral curves is particularly 
noticeable for the weathered rocks and sand-
stone. Those formations have fairly high po-

Fig. 7: Spectral curves of the studied dry samples (Toś 2014) and the R, G, B and NIR channel 
sensitivity ranges of the applied cameras.
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where λmin and λmax constitute the minimum 
and maximum wavelength of light registered 
by the detector, while Sλi is the light reflection 
coefficient of the each sample registered by 
the spectrometer for a given wavelength. Qrλ,j 
is the relative spectral sensitivity of the cam-
era in the j-band for a given wavelength (Figs. 
1 and 5).

The ρi,j coefficient was calculated for all 
samples. Fig. 9 demonstrates the relationship 
between the mean pixel value of each sample 
and the ρi,j coefficient for the NIR and R chan-
nels. The study suggests that there is a strong 
correlation between those quantities. The de-
termination coefficients for the NIR and R 
channels are 0.92 and 0.85, respectively.

6 Suitability of the Modified 
Camera for Classifying Rocks 
at the Czatkowice Limestone 
Mine

The verification of the thesis that a modified 
camera can be used to classify rock forma-
tions at the Czatkowice Limestone Mine con-
sisted in the comparison of the separability fac-
tor for pairs of classes against different sets of 
spectral bands. The obtained images made it 
possible to define nine classes corresponding 

It is difficult to find a relationship between 
the pixel value in an image and light reflection 
coefficients determined during spectrometric 
studies, because the charge-coupled device 
registers a wide range of radiation as demon-
strated in Figs. 1 and 5. The spectral resolu-
tion of the spectrometer is 1 nm. According to 
the Lambertian image formation model, the 
camera’s sensor response ρ to the light reflect-
ed by an object may be calculated on the basis 
of the following (2):

( ) ( ) ( )sp E S Q dλ λ λ λ= ⋅ ⋅∫  (2)

where E(λ) is spectral power distribution 
(SPD) of light, which is incident upon the sur-
face; S(λ) denotes surface reflectance, and 
Qs(λ) sensor sensitivities. If only one image is 
analysed, it can be assumed that the E(λ) func-
tion is constant for all samples. If spectro-
meter measurements of objects and the spec-
tral sensitivity of the camera are known the 
ρi,j coefficient calculated according to (3) is 
in proportion to the quantity of light reflected 
from the i-sample and registered by the detec-
tor in the j-band.

, ,
max

,
max minmin

i j

i j
S Qrp λ λ

λ

λ λ λ
•

−

 =   ∑  (3)

Fig. 8: Spectral characteristics of the wet samples (Toś 2014) with the channel ranges of the ap-
plied cameras.
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rability factor for samples was achieved when 
the analysis was carried out for the full set of 
4 channels. A slightly better separability in re-
lation to the RGB channel set could also be 
obtained by replacing the red channel (R) or 
green channel (G) with the infrared channel 
(NIR). Furthermore, when analysing TD val-
ues for each pair of classes, one can notice that 
none of the analysed sets of channels could 
statistically separate the following pairs of 
samples (Tab. 1):

to each of the samples. The separability fac-
tor was determined for all pairs of classes, in 
the form of transformed divergence (TD), in 
the RGB, GB+NIR, RB+NIR, RG+NIR, and 
RGB+NIR band sets (Tab. 1). This coefficient 
gives results in the range from 0 to 2,000. Any 
value above 1,600 indicates good separability 
(ricHards 1993).

The overall TD values exceeding 1,600 for 
each set of channels show good separability 
for all combinations (Tab. 1). The best sepa-

Fig. 9: Comparison between mean value of sample pixels against the ρi coefficient for the NIR and 
R bands.

Tab. 1: Transformed divergence coefficient (TD) for selected pairs of samples.

Pair of samples Bands
RGB GB+NIR RB+NIR RG+NIR RGB+NIR

1 – 3 862 940 1,002 839 1,108
4 – 6 644 716 661 727 867
7 – 9 845 814 897 845 923
2 – 9 1,909 1,794 1,540 1,233 1,921
3 – 5 1,950 1,821 1,964 1,738 1,967
1 – 4 1,142 1,990 1,989 1,992 1,993
1 – 6 1,368 1,982 1,981 1,980 1,985
3 – 4 1,613 1,979 1,994 1,988 1,995
3 – 6 1,528 1,917 1,967 1,938 1,969

Overall TD 1,823 1,878 1,874 1,819 1,905
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 1 – 3 (microcrystalline limestone – lime- 
 stone );

 4 – 6 (bituminous limestone – bituminous  
 limestone);

 7 – 9 (weathered limestone – calcite).
The low TD values for the first two pairs 

can be attributed to the similar composition of 
the samples; for the third pair, the similarity 
is due to the presence of iron compounds re-
sulting in the similar spectral characteristics 
of both rocks in the considered bands. When 
the R channel is replaced with the NIR chan-
nel, the separability factor is reduced for the 
following pairs: 2 – 9 (weathered limestone – 
calcite) and 3 – 5 (dolomitic limestone – lime-
stone), while the TD coefficient is increased 
significantly for the following pairs (Tab. 1):

1 – 4 (microcrystalline limestone – bitu- 
 minous limestone);

1 – 6 (microcrystalline limestone – bitu- 
 minous limestone);

3 – 4 (limestone – bituminous limestone) 
  and

3 – 6 (limestone – bituminous limestone).
If all four channels are included in the anal-

ysis, the TD coefficient is increased for all 
pairs of classes, when compared with the RGB 
channel set.

7 Classification of Rock Samples

The analysis of TD values, spectral curves and 
the mineral composition of limestone samples 
lead to the conclusion that it is extremely dif-
ficult to distinguish between limestones and 
dolomitic or silicated limestones. This is due 
to the small admixtures of dolomite and silica 
and the limited diagnostic capabilities in the 
channels which were used for the analysis of 
those formations. In these circumstances, lim-
iting the number of classes to the 5 basic types, 
i.e., limestones (samples 1, 3, and 5), bitumi-
nous limestones (samples 4 and 6), sandstone 

(sample 8), coarse crystalline calcite (sample 
9), and weathered limestone (samples 2 and 7) 
should increase the reliability of the classifica-
tion. The classification of basic rock types was 
carried out for three sets of channels (RGB, 
GB+NIR, and RGB+NIR), using the MLC 
technique (Maximum-Likelihood Classifica-
tion, ricHards 1993). However, this method 
is sensitive to various light conditions. Conse-
quently, a similar classification was done us-
ing the spectral angle mapper (SAM) method. 
This method is not affected by solar illumina-
tion factors (Kruse et al. 1993). The SAM clas-
sification uses the same training polygons as in 
the MLC method, and the angle threshold of 
classification was specified as 20 deg. The re-
sults of the analyses were compared with pre-
prepared true images. Tab. 2 presents the kap-
pa index of agreement (KIA) that determines 
the accuracy of the classification (rosenFieLd 
& Fitzpatric-Lins 1986). Fig. 10 demonstrates 
a comparison between truth images and the re-
sults of the classification carried out for differ-
ent methods and sets of channels.

The results of the classification greatly im-
proved, when the NIR channel was applied. 
The best KIA was achieved for the set of four 
channels. In the MLC (Fig. 10 b, c) there is a 
noticeable adverse impact of sample illumina-
tion. But the SAM method produced less fa-
vourable results (Fig. 10 d, e). The impact of 
illumination was reduced (which is particular-
ly noticeable in the case of the sandstone), but 
classification errors occurred particularly for 
samples with a non-uniform surface (weath-
ered limestone and coarse crystalline calcite).

8 Verification of the Method in 
Field Conditions

Besides testing under laboratory conditions, 
some preliminary actions were taken to veri-
fy the method in field conditions. The subject 

Tab. 2: KIA (kappa index of agreement) for the MLC and SAM classifications of the basic rock 
types based on various sets of bands.

Bands RGB GB+NIR RGB+NIR
MLC overall kappa 0.7550 0.8095 0.8375
SAM overall kappa 0.4980 0.5816 0.6299
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commonly implemented in satellite remote 
sensing. For example, giLes (2001) suggest-
ed an automatic shadow detection algorithm, 
based on the geometric properties of the ter-
rain. In the case of a quarry wall, it is required 
to carry out an additional measurement, using 
photogrammetry or laser scanning, in order to 
acquire information about its geometry. An-
other method to detect and remove shadows 
from images consists in a radiometric analy-
sis of the properties of image fragments (dare 
2005). However, because no shadow correc-
tion could be implemented at this phase of re-
search due to the absence of the required ad-
ditional information shadows or irregularly 
illuminated parts of wall were excluded by 
permitting the presence of unclassified pixels 
in the classification. Properly defined training 
polygons made it possible to count all the pix-
els located in the shaded areas as unclassified 
(Fig. 14). 

Unshaded areas on an irregular quarry wall 
are also characterized by a certain variabili-
ty of illumination. That impact can be limited 

of examination is a fragment of a quarry wall 
(Figs. 11 and 12) with the following rock for-
mations identified around its area: limestones, 
bituminous limestone, coarse crystalline cal-
cite, which is the main component of karst for-
mations, and additionally some shales.

The photographs were recorded on the 15th 
of September at 11:00 am under cloudless 
skies. Dry weather conditions before image 
acquisition ensured minimal moisture content 
of the rocks. The photographs were taken 15 m 
away from the quarry wall. A geological clas-
sification of wall fragments was performed. 
The places subject to classification were 
marked with paint so that they could later be 
used for the definition of the training polygons 
in the classification (Fig. 13).

One of the significant differences between 
field and laboratory conditions is lighting. The 
surface of the quarry wall was highly irregu-
lar, which resulted in overshadowing a great 
portion of the surface, if exposed to the sun. 
The removal of the shadow from the images 
becomes possible with the use of methods 

Fig. 10: Classification of the main rock types: True image (a) and classification results: b) MLC 
based on the RGB channels, c) MLC based on the RGB+NIR channels, d) SAM classification 
based on the RGB channels, e) SAM classification based on the RGB+NIR channels.
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Fig. 11: Location of the examined object.

Fig. 12: Fragment of the quarry wall – image in the NIR channel.

Fig. 13: Geological classification of the quarry wall, sampling points and training fields for the clas-
sification. 1: microcrystalline limestone with wavy texture, grey-brown (creamy); 2: microcrystalline 
limestone, uniform, cream-coloured, with black cherts with a height of 3 cm – 5 cm; 3: shale, brown 
with weathered light-olive layers (presence of brown clay); 4: microcrystalline limestone, pink, 
stromatolitic texture; 5: microcrystalline bituminous limestone, uniform texture, dark grey to black; 
6: creamy microcrystalline limestone, uniform, hard, with dark grey cherts with a height of 5 cm – 
7 cm and a length of over a dozen cm, parallel to stratification; 7: microcrystalline limestone, grey, 
with a slight tint of brown, uniform texture; 8: coarse crystalline calcite, colourless, and with a 
weathered coppery-yellow surface.
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Unlike in the laboratory conditions, both 
classification methods exhibited similar accu-
racy. One of the causes are the illumination 
conditions (to which the MLC is very sus-
ceptible), which were less favourable than in 
the laboratory. In both cases, the accuracy of 
classification was slightly better, when an ad-
ditional NIR channel was used. However, a 
more in-depth analysis of results leads to the 
conclusion that the increased accuracy of clas-
sification was to a large extent caused by the 
fact that some of the incorrectly classified pix-
els are not classified at all after the inclusion of 
the NIR channel into classification. 

Upon consideration of the individual rocks, 
it can be observed that:

• For Karst formations containing coarse 
crystalline calcite, the introduction of the 
NIR channel does not result in a relevant 
change of classification accuracy (Fig. 15 
a).

• NIR improved the identification of bi-
tuminous limestone in the two methods 
(Fig. 15 b).

• The numerical data in Tabs. 4 and 5 indi-
cate a large error of shale classification, 
as confirmed by the reference images 
(Fig. 16 a and b), although a certain im-
provement is noticeable in the MLC after 
the introduction of the NIR channel.

using a method that is less susceptible to that 
variability, e.g. SAM. For assuring the com-
parability to the laboratory tests, two methods 
were used to classify the formations in the de-
posit: MLC and SAM.

The same training polygons were used for 
both methods. Eight classes defined by the 
geologist were reduced to four basic types of 
rocks (Fig. 12): Limestone (classes: 1, 2, 4, 
6, 7); Shale (class 3); Bituminous limestone 
(class 5); Karst with coarse crystalline calcite 
(class 8). For MLC, in order to eliminate the 
highly shaded areas, 10% of unclassified pix-
els were allowed, and in the SAM method the 
maximum classification angle was specified to 
be 3 degrees. The classification results are pre-
sented in Fig. 14.

The classification was verified based on 500 
control points. Stratified random sampling 
was used. The strata were defined on the ba-
sis of initial classification of the quarry wall 
(Fig. 13). After this, control points, were veri-
fied geologically during a site inspection. The 
number of control points in the strata amount-
ed to: Limestone -337, Bituminous limestone 
-80, Karst with coarse crystalline calcite -31, 
Shale -19, Background -36. Unfortunately 
some of points were located in unclassified 
areas (Fig. 14). The classification accuracy 
and KIA were determined for the remaining 
(Tabs. 3 and 4).

Fig. 14: Classifications results for rock formations a) MLC method based on RGB channels; b) 
MLC method based on RGB+NIR channels; c) SAM method based on RGB channels; d) SAM 
method based on RGB+NIR channels.
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in R and NIR channels than limestone, which 
enables their discrimination during laboratory 
tests. However, the examined surfaces of the 
samples depicted in Fig. 6 have a fairly uni-
form structure. Under natural conditions, the 
degree of weathering or oxidation of the lime-
stone surface is highly variale. Classification 
based on differences in the general albedo of 
the individual formations would then produce 
much worse results. An additional factor pre-
sent under natural conditions is the fineness of 
the material. The pixel value recorded by the 
camera depends on the reflection of light from 
multiple small grains. This problem is referred 
to as spectral mixture (girouard et al. 2004). 
It is particularly noticeable in the classifica-
tion of shale using the SAM method (Fig. 16b). 
SAM is susceptible to this phenomenon. In 
places, where considerable fragmentation of 
rocks is present, there are high local variations 
in the spectral property of a surface resulting 
from, for instance, shading effects, humidity 

9 Discussion

The results obtained in the field investigations 
are of reduced accuracy in comparison to those 
received under laboratory conditions. In order 
to determine the reasons, it is necessary to be-
gin with an in-depth analysis of the laboratory 
results. None of the examined rock formations 
exhibits diagnostic spectral features at least 
for the wide channels recorded by the camera. 
Under such conditions, rock classification is 
based on differences in the general albedo of 
the individual formations. The spectral curves 
in Fig. 7 indicate that the limestones present 
in the deposit have very similar characteris-
tics, which prevents them from being distin-
guished within the sensitivity ranges of the 
cameras. Exceptions from this are bitumi-
nous limestones, which have low reflectance 
in RGB and NIR channels. Other formations 
in the deposit and weathered limestone dem-
onstrate much higher reflection coefficients 

Tab. 3: Accuracy of the MLC classifications.

RGB channels
classification

Limestone Shale Bituminous 
limestone Calcite Total

True
Limestone 215 41 10 6 272
Shale 7 4 0 0 11
Bituminous 
limestone

11 3 28 0 42

Calcite 2 2 0 16 20
Total 235 50 38 22 345
Classification accuracy 0.76, KIA 0.46
Classification accuracy 0.80, KIA 0.54 – for all (305) control points which remained classified for each method.

RGB+NIR channels
classification

Limestone Shale Bituminous 
limestone Calcite Total

True
Limestone 214 30 11 3 258
Shale 5 5 0 0 10
Bituminous 
limestone

7 2 32 0 41

Calcite 2 1 0 13 16
Total 228 38 43 16 325
Classification accuracy 0.81, KIA 0.56
Classification accuracy 0.84, KIA 0.59 – for all (305) control points which remained classified for each method.
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study concerned the use of scanning data from 
terrestrial laser scanner (TLS) for the classifi-
cation of the same rock samples. In that paper, 
photographs in the RGB channels were also 
used, but the intensity of laser beam reflec-
tion (I ) was recorded instead of the NIR chan-
nel in modified camera. The correlation be-
tween the spectral curves and I value is lower 
(coefficient of determination R2 = 0.65) than 
that obtained in this study for the NIR chan-
nel (R2 = 0.92). The accuracy of classification 
using the RGB+I data from TLS operating 
with a wavelength of 785 nm was also infe-
rior (KIA = 0.77) to the accuracy achieved in 
the presented paper (KIA = 0.83). Better val-
ues were reported by FrancescHi et al. (2009) 
investigating the dependence between the in-
tensity of laser beam reflection (1,535 nm) and 
clay abundance in the quarry wall of the lime-
stone mine. The coefficient of determination 
was 0.85. Those values indicate that the use of 

fluctuations and rock material displacements. 
These variations caused that these areas have 
been wrongly classified as shales.

In the investigated area Karst formations 
occur which develop along faults. They have 
the form of coarse crystalline calcite veins and 
dripstones. They are accompanied by a con-
centration of iron compounds that give them 
a specific colour. Dripstones are composed of 
cryptocrystalline or fine crystalline calcite, 
with colour ranging from white to yellow-
brown. The dripstones are present in the vi-
cinity of calcite veins, and they may also cover 
limestone. Classification using surface imag-
ing does not enable distinguishing between 
the rocks present under those dripstones. This 
can be done only by directly examining the 
rocks. 

The comparison of the obtained results to 
other similar studies should begin with the 
study that is most similar (toś 2014). That 

Tab. 4: Accuracy of the SAM classifications.

RGB channels
classification

Limestone Shale Bituminous 
limestone Calcite Total

True 
Limestone 237 43 24 13 317
Shale 13 3 0 1 17
Bituminous 
limestone

19 3 41 0 63

Calcite 5 3 1 18 27
Total 274 52 66 32 424
Classification accuracy 0.71, KIA 0.39
Classification accuracy 0.76, KIA 0.45 – for all (305) control points which remained classified for each method.

RGB+NIR channels
classification

Limestone Shale Bituminous 
limestone Calcite Total

True 
Limestone 207 23 14 9 253
Shale 9 7 0 0 16
Bituminous 
limestone

6 1 35 0 42

Calcite 3 1 0 14 18
Total 225 32 49 23 329
Classification accuracy 0.80, KIA 0.55
Classification accuracy 0.81, KIA 0.56 – for all (305) control points which remained classified for each method.
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10 Conclusions

Charge-coupled devices in digital camera are 
sensitive for near infrared. It is considered a 
flaw in the majority of cases and manufactur-
ers install appropriate filters, in order to coun-
teract that. When such filters are eliminated, 
it is possible to register light in the entire vis-
ible spectrum, and additionally in the 780 nm 
– 1,100 nm range. The sensitivity characteris-
tics of the modified camera in the NIR region 
are not as good as of the equipment designed 
for that purpose alone. The primary flaw is 
the wide range of the RGB and NIR channels. 
However, the images registered with such a 
device can provide some valuable data. Alter-
natively, it is possible to apply special tools, 

a modified camera may produce results com-
parable to scanning data. On the other hand, 
pateL & cHateriee (2016) presented a method 
of limestone classification with an impressive 
accuracy (classification accuracy = 0.94). That 
method only uses photographs in the RGB 
channels. The authors achieved such a high 
accuracy owing to the use of a probabilistic 
neural network and, which is equally impor-
tant, performance of the tests under controlled 
laboratory conditions using samples that were 
collected already after blasting works. This 
eliminated other interfering factors that had 
such a large impact on the results obtained in 
this study.

Fig. 15: Comparison of MLC classifications using RGB and RGB+NIR channels: a) for Karst for-
mations containing coarse crystalline calcite; b) for bituminous limestone.

Fig. 16. Comparison of shale classifications using RGB and RGB+NIR channels: a) MAXLIKE; b) 
SAM.
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