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fuse reflectance spectroscopy has proven to
be useful for many soil scientific topics. Re-
flectance spectroscopy has been used in many
studies for the determination of soil proper-
ties like mineral composition (ViScarra roS-

1 Introduction

Visible/near infrared (VNIR, 400 nm to
1000 nm wavelength) and shortwave infrared
(SWIR, 1000 nm to 2500 nm wavelength) dif-

Summary: Visible/near infrared (VNIR, 400 nm
to 1000 nm wavelength) and shortwave infrared
(SWIR, 1000 nm to 2500 nm wavelength) labora-
tory imaging spectroscopy with spatial resolutions
of 63 µm and 250 µm, respectively, was used for
mapping contents of C, N, Fe, Al, and Ca in soil
profiles. Four soil cores of 30 cm to 50 cm length
were collected at a Regosol and a Cambisol site and
scanned hyperspectrally after drying. Small sam-
ples (ROI; Regions of Interest) were taken from the
cores and analysed chemically as references for re-
gression analyses. Partial least-squares regression
(PLSR) and multivariate adaptive regression
splines (MARS) models between spectral informa-
tion and elemental contents of reference samples
were established for VNIR and SWIR data sepa-
rately and for the combined datasets. The regres-
sion models were applied to the hyperspectral im-
age data to create spatially explicit maps of elemen-
tal contents for the soil profiles. PLSR yielded
slightly better regression accuracies than MARS,
and PLSR maps were more plausible in visual in-
spection. The optimal spectral range for elemental
mapping was inconsistent, but in most cases the ad-
dition of SWIR data to VNIR data resulted in im-
provements of the elemental content estimations.

Zusammenfassung: Abbildende Laborspektrosko
pie im VNIR/SWIR-Bereich zur flächendeckenden
Kartierung von Elementkonzentrationen in Bo
denprofilen. Hyperspektrale Laboraufnahmen in
den Wellenlängenbereichen Sichtbar/Nahinfrarot
(VNIR, 400 nm bis 1000 nm Wellenlänge) und
Kurzwelleninfrarot (SWIR, 1000 nm bis 2500 nm)
mit räumlichen Auflösungen von 63 µm und
250 µm wurden verwendet, um die räumlichen
Verteilungen von C, N, Fe, Al und Ca in Bodenpro-
filen zu kartieren. Vier Bodenkerne mit 30 cm bis
50 cm Länge wurden an einem Cambisol- und ei-
nem Regosol-Standort entnommen und im Labor
hyperspektral abgetastet. Kleine Proben wurden
aus den Profilen entnommen und als Referenz für
die nachfolgenden Regressionsanalysen chemisch
analysiert. Regressionsmodelle wurden mittels
Partial Least-Squares Regression (PLSR) und Mul-
tivariate Adaptive Regression Splines (MARS)
zwischen Spektralinformationen und Element-
konzentrationen der Referenzproben aufgestellt,
separat für VNIR- und SWIR-Daten und für die
kombinierten Datensätze. Die Regressionsmodelle
wurden auf die Bilddatensätze angewendet, um
Karten der Elementkonzentrationen in den Boden-
profilen zu erzeugen. Die Regressionsgenauigkei-
ten von PLSR waren leicht höher als die von
MARS, und die PLSR-Karten gaben einen visuell
plausibleren Eindruck. Der optimale Spektralbe-
reich zur Kartierung der verschiedenen Elemente
war uneinheitlich. Aber meistens brachte die Be-
rücksichtigung der SWIR-Daten eine Verbesse-
rung gegenüber den VNIR-Daten alleine.
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close to Trier, Germany. Hyperspectral imag-
es of the cores were recorded using a VNIR
camera and a SWIR camera. The content of C,
N, Fe, Al, and Ca was analysed on reference
samples with standard laboratory techniques.
Spectra of the reference samples were used to
establish regression models (PLS regression
and MARS). These models were used to cre-
ate maps of the elemental concentrations in
the soil cores. Main research objectives were
(1) to compare the regression techniques for
elemental mapping of various elements, (2) to
compare the predictive capacity of the VNIR
and SWIR spectral range, and (3) to compare
the two sampling sites in terms of elemental
contents and distributions.

2 Material and Methods

2.1 Study Site and Soil Sampling

The sampling was carried out approximate-
ly 12 km northeast of Trier (Rhineland Pa-
latinate, 49.84°N, 6.71°E). Two differing soil
types were sampled. The first soil type was
classified as an albic Cambisol under a Nor-
way spruce monoculture, the second soil was
a colluvic gleyic Regosol (WRB 2014) close to
a creek under a European beech monoculture.
Both soils derived from Triassic Sandstone
(Buntsandstein). The study site is character-
ized by temperate, oceanic climate conditions
with a mean annual temperature of 9.1 °C and
a mean annual precipitation of 780 mm.
The soil profiles were sampled with cus-

tom-made stainless steel boxes. Two boxes
with 100 × 100 × 300 mm3 size and two box-
es with 100 × 100 × 500 mm3 were available.
They were designed to sample undisturbed
sections of soil profiles. After digging a hole
and removing the litter layer, the steel boxes
were gently hammered horizontally into the
soil and subsequently excavated. In the lab,
the soil cores were dried in the steel boxes at
35 °C for one week. Two profiles of different
depths were sampled for each soil type, one of
30 cm and the other of 50 cm depth. The two
profiles of albic Cambisol are subsequently in-
dicated as Cambisol30 and Cambisol50, and
the colluvic gleyic Regosol profiles as Rego-
sol30 and Regosol50.

Sel et al. 2009), texture (StenBerg 2010), bio-
logical properties (heinze et al. 2013), soil sa-
linity (farifteh et al. 2008), or chemical com-
position (Vohland et al. 2009). The papers by
ViScarra roSSel et al. (2006), Ben-dor et al.
(2009), StenBerg (2010) and harteminK &
minaSny (2014), among many others, give an
overview on techniques and results of reflec-
tance spectroscopy in soil science.
In most studies, reflectance spectrosco-

py was either used on samples from selected
points (field and laboratory spectroscopy), or
on the soil surface (airborne and spaceborne
imaging spectroscopy). Recently, Jung et al.
(2015) introduced a hyperspectral snapshot
camera for proximal soil sensing.

The horizontal variability of soil surfaces is
usually slow and gradual, but variability in the
third dimension, depth, is much higher (ViS-
carra roSSel et al. 2015). Information on ver-
tical variability is needed, among others, for
interpretations of soil formation processes,
characterizations of the soil horizons and the
detection of small scale soil processes like bio-
turbation. The technique of laboratory imag-
ing spectroscopy of soil cores using a hyper-
spectral line scanner was introduced by Bud-
denBaum & SteffenS (2011) for spectroscop-
ic analysis of undisturbed soil profiles with
a very high spatial resolution. Applying this
proximal sensing technique for the creation
of elemental maps by using support vector re-
gression and PLSR was presented by Budden-
Baum & SteffenS (2012b). Effects of spectral
pre-treatments on elemental regressions using
VNIR laboratory imaging spectroscopy were
studied by BuddenBaum & SteffenS (2012a).
The approach was extended to include horizon
classification and geostatistical characteriza-
tion of a soil profile (SteffenS & BuddenBaum

2013), and soil organic matter quality (Stef-
fenS et al. 2014). While these studies used only
VNIR spectroscopy, SWIR cameras are now
available with a comparable spatial resolution
for laboratory use. Since many mineralogic
absorption features are situated in the SWIR
spectral region, an improved elemental map-
ping could be expected from adding SWIR in-
formation.

For the present study, soil cores were sam-
pled from a Cambisol under Norway spruce
and a Regosol under European beech stand
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track; a single pixel is about 250 µm wide.
The 30 cm profiles consist of approximately
1200 lines, the 50 cm profiles of 2000 lines.
The SWIR images were also recorded with a
Spectralon white reference panel which cov-
ered about 50 lines.

2.3 Image Pre-Processing

Because the illumination was not perfectly
uniform, the object reflectance ρobj was calcu-
lated for each image line (along track) sepa-
rately following (1):

L
L

ρ ρ= ⋅
obj

obj ref
ref

(1)

where Lobj is the measured radiance from the
object in camera units, Lref is the measured ra-
diance from the white reference and ρref is the
known reflectance of the white reference panel
(peddle et al. 2001).

Different pre-processing steps have been
applied by several authors, e.g. Ben-dor et
al. (1997), BuddenBaum & SteffenS (2012a),
udelhoVen et al. (2003), and ViScarra roSSel

& WeBSter (2011), but in combination with
PLSR, these transformations were not able to
increase regression accuracy significantly. To
improve the signal-to-noise ratio, we applied
spectral resampling, a bisection of the spatial
resolution of the VNIR images, and continuum
removal (CR). Spectral resampling implies an
increase of the spectral sampling interval and
the full width at half maximum from 3.7 nm to
7.3 nm in the VNIR range and from 7 nm to
15 nm in the SWIR range. With this transfor-
mation, neighbouring spectral bands were av-
eraged, and the number of bands was reduced
from 160 to 78 bands (VNIR) and from 256 to
100 bands (SWIR). The spatial resolution of
the VNIR images was bisected by averaging
2 × 2 pixels to one resulting pixel. CR is a tool
to amplify reflective features and especially to
amplify absorption bands in a spectrum. This
is done by fitting a convex hull to the spectrum
and dividing the reflectance values for each
wavelength by the reflectance level of the con-
tinuum line (convex hull) at the correspond-
ing wavelength (KoKaly & clarK 1999). This
pre-processing returns a CR value of 1 to all

2.2 Imaging Setup

After smoothing the surface of the soil pro-
file with a long knife, the images were record-
ed using a HySpex VNIR-1600 and a HySpex
SWIR-320m-e hyperspectral camera (Norsk
Elektro Optikk, Skedsmokorset, Norway) at
the Department of Environmental Remote
Sensing and Geoinformatics at the University
of Trier (BuddenBaum & hill 2015, Budden-
Baum et al. 2015). The cameras were equipped
with a 30 cm focal lens and set up in a labora-
tory frame with a translation stage under the
camera. The translation stage moves the ob-
ject in along-track direction, while the cam-
era, a push-broom scanner, records image
lines across track. The speed of the translation
stage is adapted so that square pixels result.

For the VNIR images two tungsten halogen
light sources illuminate the currently scanned
line from about 35 cm distance and at an angle
of about 45° in front of and behind the camera
to minimize shadows on the soil surface. The
VNIR-1600 camera records 1600 pixels across
track with a field of view of 17°. The pixel in-
stantaneous field of view is 0.18 mrad across
track and 0.36 mrad along track. The area re-
corded from the 30 cm distance is 10 cm wide,
so that the size of a single pixel amounts to
about 63 µm. A 30 cm long soil profile con-
sists of approximately 4800 image lines, a
50 cm profile of 8000 image lines. About 200
additional image lines containing a certified
reflectance standard white reference panel
of known reflectivity (Spectralon, Labspere
Inc., North Sutton, NH, USA) were scanned
with each sample, so radiance could be trans-
formed to reflectance. 160 spectral bands were
recorded in the spectral range of 414 nm to
1000 nm with a spectral sampling interval of
3.7 nm. The data was recorded in 12 bit radio-
metric resolution.

The laboratory frame can only hold one
camera at a time, so the SWIR images were
recorded after the VNIR datasets. Because the
light source used for VNIR imaging only cov-
ers the spectral range up to 1700 nm, a stabi-
lized tungsten halogen lamp (50 W) was used
for illumination. The SWIR-320m-e camera
records 256 spectral bands in the spectral
range of 1000 nm to 2500 nm with a field of
view of 13.5°. 320 pixels are acquired across
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gen (TN) concentrations were determined in
duplicate by dry combustion at 1100 °C by a
EuroEA elemental analyzer (Hekatech GmbH,
Wegberg, Germany) in carbonate-free sam-
ples. Total amounts of aluminum (Al), iron
(Fe) and calcium (Ca) were extracted with
3 ml concentrated HNO3 and 1 ml H2O2 (su-
prapur) in 0.1 g – 0.2 g dry mass using high
pressure bombs (Berghof, Eningen, Germany)
(udelhoVen et al. 2003). Element concentra-
tions were measured with an atomic absorp-
tion spectrometer (Varian AA 240 FS and AA
240Z/GTA 120, Palo Alto, CA, U.S.A.).

2.5 Elemental Mapping

We compared two statistical methods for es-
tablishing regression models between ele-
mental concentrations and reflective proper-
ties: Partial least-square regression (PLSR),
and Multivariate adaptive regression splines
(MARS). The regression analyses were car-
ried out in MATLAB (Version R2012, Math-
works, Natick, MA, USA). All models were
established on reflectance and chemical data
from both soils and all horizons combined.

Partial least-square regression (PLSR) after
Wold et al. (2001) is a widely used approach
for quantitative analysis in chemometrics and
hyperspectral remote sensing (farifteh et
al. 2007, SteffenS & BuddenBaum 2013, ViS-
carra roSSel & BehrenS 2010, Vohland &
emmerling 2011). PLSR is closely related to

parts of the spectrum that lie on the convex
hull, i.e. wavelength regions that are not in an
absorption band, and values between 0 and 1
to regions inside absorption bands. So CR ac-
centuates the absorption bands in the spectra
while minimizing brightness differences. The
recorded images mostly have a high quality,
but despite efforts to reduce noise, some noise
is still present, especially in the SWIR range.
The noise is most obvious in vertical stripes
on the images.

To obtain spectra from 400 nm to 2500 nm
for each pixel, an image-to-image geometric
correction was applied. Ground control points
(GCP) were identified in the images and used
for warping the SWIR image to the VNIR im-
age’s geometry using a rubber sheeting (local
triangulation) approach.

Homogeneous regions of interest (ROIs)
of about 2 cm2 area were regularly distrib-
uted over the soil profiles (18 ROIs on each
of the 50 cm profiles and 12 ROIs on each of
the 30 cm profiles) and mean spectra of these
ROIs were extracted.

2.4 Chemical Analysis

The ROIs were visually identified in the soil
core and samples of about 2 cm2 and about 1 cm
depth were taken for chemical laboratory an-
alysis. After thoroughly sieving to < 2 mm and
grinding, samples were oven-dried at 105 °C.
Total organic carbon (TOC) and total nitro-

Fig. 1: PLS regression of C using the SWIR wavelength range: a) relative cross-validated RMSE
as a function of the number of latent variables, best model at 4 latent variables is marked; b) meas-
ured versus C contents estimated using the model with 4 latent variables (Regosol: circles, Cam-
bisol: triangles), and the 1:1 line.
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te Carlo repetitions to each model to avoid
overfitting (Schlerf et al. 2010) and calculated
the cross-validated relative root-mean-square
error (relRMSEcv) for each model.

Fig. 1a illustrates the relationship between
number of latent variables and relRMSEcv.
The model with lowest relRMSEcv was se-
lected. With this optimal number of latent
variables, a new PLSR is calculated and ap-
plied on the hyperspectral images to cre-
ate maps of the distribution of the element in
question. Resulting concentrations for C using
the SWIR wavelength range and four latent
variables compared to the laboratory meas-
ured concentrations are shown in Fig. 1b. No
further calibration/validation scheme was ap-
plied, because plausible maps resulted from
this strategy. Fig. 2 shows the regression co-
efficients (PLS weights) for each element and
each wavelength range. The regression coef-
ficients have been normalized for displaying
them in the figure by subtracting their mean
and dividing the result by their standard de-
viation (z-transformation). The plots show the
important wavelength regions for estimating
the elemental concentrations.

Multivariate adaptive regression splines
(MARS) after friedman (1991) is a non-para-
metric generalization of recursive partitioning

principal components regression (PCR) and
combines features from PCR and multiple re-
gression (maraBel & alVarez-taBoada 2013,
Wold et al. 2001a). PLS regression projects
the data (chemical concentrations and reflec-
tive properties with a high number of correlat-
ed variables) into a lower dimensional space,
formed by a set of orthogonal latent variables,
by a simultaneous decomposition of X (spec-
tral matrix) and Y (chemical matrix) that max-
imizes the covariance between X and Y (Voh-
land & emmerling 2011, Wold et al. 2001b).
A large number of measured collinear spectral
variables is reduced to a few non-correlated
latent variables (maraBel & alVarez-taBoa-
da 2013), which also implements a reduction
of the data volume and the calculation time.
The method is well suited for the calibration of
a small number of samples with experimental
noise in both chemical and spectral data (atz-
Berger et al. 2010), even if the number of ob-
servations is smaller than the number of wave-
lengths (Ben-dor et al. 2008).
To find the optimum number of latent vari-

ables, we calculated PLSR models with up to
20 latent variables on the ROI spectra for each
analyzed element, separately for all VNIR-,
SWIR-, and full range images. We applied a
five-fold cross validation and a 100-fold Mon-

Fig. 2: Normalized weights of the input bands in the three PLS regressions (VNIR, SWIR, and full
wavelength range).
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2. Typically, in both soils a vertical element
gradient was clearly developed with high or-
ganic matter content in the topsoil and de-
creasing amounts with increasing depth. The
thickness of the humus-rich A-horizon ranged
from 6 cm to 10 cm depending on the respec-
tive soil profile. Mean concentrations of TOC
in the topsoil reached more than 200 mg g-1,
whereas in the subsoil it was about 20 mg g-1

– 30 mg g-1. Nitrogen showed the same trend,
with amounts in a range from 0.2 mg g-1 –
16 mg g-1. Maximum C contents of 291 mg g-1

(Cambisol) or 339 mg g-1 (Regosol) might be
attributed to residues of the litter layers, which
have not been involved in the soil sampling
schedule. Both soils derived from siliceous
bedrocks (Sandstones) and thus, as expected,
soil pH in these soils varied between 4.5 and
5.0, which is equivalent to the silicate buffer
capacity of soil. As a consequence, soils were
carbonate-free and thus, amounts of total car-
bon in soil were equivalent to total organic
carbon.

Amounts of Fe, Al, and Ca in both soils
showed a different element distribution in the
soil profile compared to carbon and nitrogen.
Although there was a remarkable variability
in the amounts of Fe and Al, the differences
in both elements between the top soils and the
sub-soils of both investigated soil profiles re-
mained small. The differences in the element
distribution of Fe and Al between both soils
were also quite small and in a typical range
of those soils. Similarly, Ca was concentrated
in the top soil and amounts of Ca in the sub-
soil were in both soils roughly at the detection
limit. This result can also be attributed to the
parent material and forestal land-use of both
soils.

regression approaches such as classification
and regression trees (CART) (ViScarra roS-
Sel & BehrenS 2010). It makes no assumption
about the underlying functional relationship
between the dependent and independent vari-
ables. naWar et al. (2015) found that MARS
was better suited for the visible and near-in-
frared reflectance spectroscopy estimation of
soil salinity than PLSR.

The MARS models were evaluated using a
five-fold cross validation and 100 Monte Car-
lo repetitions. Elemental maps were then cal-
culated by applying the models on a pixel-by-
pixel basis on the hyperspectral images.
Even though the profiles were illuminated

from two directions, the formation of shadow
because of strong surface roughness was una-
voidable. Parts of the profiles with high carbon
and nitrogen or iron-concentrations are dark
coloured. The spectral signatures of these
parts are similar to the shadow signatures,
which results in false values. To correct this,
shadows had to be determined and the profiles
shadow masked. Shadows were detected using
a principal component analysis followed by an
unsupervised classification. One of the result-
ing classes corresponded well with shadowed
areas in a visual inspection. After building a
shadow mask for each profile, this mask was
applied on the respective image (SteffenS &
BuddenBaum 2013).

3 Results and Discussion

3.1 Elemental Concentrations

The high variance of carbon and nitrogen con-
tent in both soils are shown in Tabs. 1 and

Tab. 1: Descriptive statistics of the Regosol including minimum (Min), maximum (Max), mean of
concentrations of all five elements. Negative values result from detection limits in the analysis and
were treated as zero in further analyses.

Colluvic Gleyic Regosol

C (mg g-1) N (mg g-1) Fe (mg g-1) Al (mg g-1) Ca (mg g-1)

Min 5.7 0.2 0.44 3.26 -0.42

Max 338.8 16.1 4.66 17.06 1.77

Mean Topsoil 270.8 13.4 3.42 3.63 1.26

Mean Subsoil 36.5 1.7 1.36 9.35 -0.10

Mean full profile 71.2 3.5 1.66 8.50 0.10
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Tab. 2: Descriptive statistics of the albic Cambisol containing minimum (Min), maximum (Max),
mean of concentrations of all five elements in their specific units. Negative value results from de-
tection limits in the analysis and was treated as zero in further analyses.

Albic Cambisol

C (mg g-1) N (mg g-1) Fe (mg g-1) Al (mg g-1) Ca (mg g-1)

Min 5.9 0.2 1.70 4.11 -0.16

Max 290.7 10.4 5.54 15.60 2.83

Mean Topsoil 199.7 7.3 3.05 5.69 1.57

Mean Subsoil 24.5 0.8 3.05 8.09 -0.02

Mean full profile 50.5 1.8 3.05 7.73 0.22

Tab. 3: Intercorrelations of the elemental concentrations.

C N Fe Al Ca

C 1

N 0.979 1

Fe 0.286 0.259 1

Al -0.318 -0.324 -0.027 1

Ca 0.897 0.831 0.255 -0.329 1

Tab. 4: Statistical comparison of the PLSR models. For each element and wavelength range sta-
tistically best result (relRMSE and R2) and corresponding number of latent variables (LV) is listed.
Data for the two soils are combined.

VNIR SWIR Full

relRMSE /
% R² #LV

relRMSE /
% R² #LV

relRMSE /
% R² #LV

C 15.32 0.468 4 12.25 0.660 4 10.13 0.767 7

N 12.54 0.601 3 9.44 0.774 4 8.16 0.831 7

Fe 9.78 0.818 7 17.55 0.415 4 9.58 0.826 7

Al 21.71 0.340 5 21.02 0.381 4 19.42 0.472 5

Ca 9.68 0.767 3 7.82 0.848 4 6.34 0.900 6

Tab. 5: Statistical comparison of the MARS models. Best results are displayed in bold. Data for the
two soils are combined.

VNIR SWIR Full

relRMSE R² relRMSE R² relRMSE R²

C 25.27 0.250 30.86 0.215 24.62 0.300

N 22.08 0.209 24.42 0.285 19.77 0.353

Fe 18.84 0.451 30.91 0.130 22.45 0.339

Al 27.91 0.186 33.38 0.101 32.59 0.126

Ca 12.50 0.682 16.04 0.629 14.55 0.632
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RMSE values are achieved (Fig. 3c). The high
amount of image noise in the resulting maps
and the fact that in most cases the full wave-
length range does not lead to the highest ac-
curacies hint to some sensitivity to noise and
overfitting in MARS.

Selected elemental maps showing the
strengths and weaknesses of the statistical re-
sults are discussed. Fig. 4 displays PLSR-de-
rived maps of the five elements for the profile
Cambisol50. Each map covers a profile area of
10 cm width and 50 cm depth. All maps reflect
the spatial distribution well and have plausible
ranges of values. C mainly accumulates in the
top-horizon, but also in the subsoil, isolated
organic residues are recognizable, e.g. caused
by roots. Due to the very high correlation be-
tween C and N contents, the N map has simi-
lar distributions; organic residues in the sub-
soil region are even better recognizable in the
nitrogen map than in the C map. The Fe con-
tent is relatively homogenous throughout the
profile because of the iron-rich parent mate-
rial. Al shows a pattern similar to Fe, but the
maximum is in a lower region of the profile.
The Ca profile in Fig. 4 has to be discussed

carefully, because concentrations in the sub-
soils (of both soils) were sometimes under the
detection limit. There are some patches of Ca
concentrations which might have remained
from previous liming events.

Fig. 5 shows a comparison of C in the Cam-
bisol30 profiles created using the three wave-
length ranges and PLS regression. In the
VNIR profile, accumulations of C are visible
in the humus-rich top soil and in organic resi-
dues (roots) in the subsoil regions. The SWIR
profile accentuates regions of high C content
more strongly. The full range data leads to the
most contrast-rich map of C but also shows the
most image noise.

Some maps created with MARS can be
seen in Fig. 6. While C, N, and Al are mapped
in acceptable quality, the maps of Fe and Ca
are quite noisy. According to the reference
measurements, C and N concentrations are
highest in the topsoil, but MARS is unable to
capture that.

Intercorrelations between the elemental
concentrations are listed in Tab. 3. C and N
are very highly correlated with each other and
highly correlated with Ca. Fe and Al show no
correlation with each other and low correla-
tions with the other elements.

3.2 Regression Models of Elemental
Concentrations

For each element, multiple concentrations
maps (derived from different wavelengths
ranges: VNIR, SWIR, and full range) were
calculated combining data from the two soils.
relRMSE and R2 of the statistically best re-
sults are shown for each element and each
wavelength range in Tabs. 4 and 5 for PLSR
and MARS, respectively.

Using PLSR, most elements are estimated
best with the full wavelength range. Surpris-
ingly, C estimations using SWIR data are bet-
ter than VNIR-based estimations, although
it is well known that a high organic car-
bon amount colours the soil dark in the vis-
ible spectral region (Stoner & Baumgardner

1981).
Tab. 5 gives an overview of the statistical

results using MARS. In the visual compari-
son, almost all MARS maps were inferior to
the PLSR maps, and R2 and relRMSE values
of the MARS models are lower than the PLSR
values, which is in contrast to the results of
naWar et al. (2014). Best statistical values for
the organic matter (C and N) are in the full
wavelength range. Best models for Fe, Al, and
Ca are in the VNIR wavelength range, which
is plausible for iron because of the broad ab-
sorption bands between 0.6 µm and 1.5 µm
(mulderS 1987). Fig. 3 shows scatter plots of
MARS estimations of C for the three wave-
length regions. The scatter plot in the VNIR
wavelength range shows a narrow distribution
of most samples on the 1:1 line for the lower
values, but some strong outliers in the range
above 50 mg g-1 (Fig. 3a). The distribution in
the SWIR wavelength range is generally simi-
lar, with one outlier even far in the negative
range (Fig. 3b). R2 in the SWIR is lowest and
RMSE is highest. In the full wavelength range
the scatter is still high, but outliers are less
extreme and thus the highest R2 and lowest
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Fig. 3: Measured against MARS estimated C concentrations (with 1:1 lines) using different wave-
length ranges (Regosol: circles, Cambisol: triangles).

Fig. 4: Maps of the 5 elements in the 50 cm long Cambisol profile according to PLS regression
using the full wavelength range. The grey levels are stretched linearly from 0 (black) to the 98th
percentile of values present in each map (white).
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affected by image noise, while the MARS
maps emphasize the noise that is present in
the image data.

While previous studies used exclusively the
VNIR camera, the additional information re-
trieved using a SWIR camera was tested in
this study. The elemental maps using only
the HySpex SWIR-320m-e module were not
always reasonable, but regressions including
VNIR and SWIR wavelengths in combination
lead to improved statistical results.

The resulting maps show elemental distri-
bution in a very high spatial resolution and can
be used for further analyses of the soil cores
and their horizons. Consequently, laboratory
imaging spectroscopy of soil profiles in the

4 Conclusions

In this study, elemental concentrations in soil
profiles were mapped using laboratory imag-
ing spectroscopy. We compared three spectral
ranges, i.e. VNIR, SWIR, and full range im-
ages, and two regression methods, i.e. MARS
and PLSR.

PLSR was better suited for elemental map-
ping, both in terms of statistical measures and
in visual quality of the resulting maps. This
study confirms PLSR as a powerful regres-
sion tool that makes use of all input bands and
serves well in identifying important spectral
bands representing specific elemental concen-
trations in natural soil profiles. PLSR is less

Fig. 5: Comparison of PLSR C maps of the Cambisol30 profile created with three different wave-
length ranges. The grey levels are stretched linearly from 0 (black) to the 98th percentile of value
of the full range map (white).
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