
PFG 2014 / 5, 0351–0367 Article
Stuttgart, October 2014

© 2014 E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany www.schweizerbart.de
DOI: 10.1127/1432-8364/2014/0229 1432-8364/14/0229 $ 4.25

Early Detection of Bark Beetle Infestation in Norway
Spruce (Picea abies, L.) using WorldView-2 Data

MARKUS IMMITZER & CLEMENT ATZBERGER, Vienna, Austria

Keywords:WorldView-2, bark beetle infestation, tree vitality, green-attack, pre-visual detection,
Norway spruce

Summary: In Central Europe and North America,
bark beetle infestations cause considerable eco-
nomic losses. If infested trees are not rapidly re-
moved, large areas can be damaged. Removal of
infested trees has to be done during the so-called
“green-attack” stage, which is before the bark bee-
tles move to other trees. Field surveys even if they
are feasible are cost intensive and impractical if
large areas have to be monitored. The aim of the
study was to analyse the suitability of 8-band
WorldView-2 satellite imagery for detecting bark
beetle infestations of two intensity stages (e.g.
“dead” and “green-attack”) against “healthy” (non-
attacked) trees. For classifying individual trees two
classifiers, random forest and logistic regression,
were evaluated. Despite the relative large class
overlap in the spectral signatures, the sample trees
(n = 600) could be assigned to the classes “dead”,
“green-attack”, and “healthy” with an overall ac-
curacy of about 75%. Producer’s and user’s accura-
cies of all classes were around 70%. The best result
was obtained with random forests using the eight
spectral bands of a WorldView-2 image acquired in
July. With this dataset, an overall accuracy of 76%
and a kappa coefficient of 0.61 were achieved. For
the separation of the classes “healthy” and “green-
attack”, vegetation indices based on 2-band nor-
malized differences as well as ratios yielded nearly
as good results as the classification with all eight
spectral bands. The best results were obtained by
combining either the Green or Yellow band with the
Near Infrared 1. With regard to individual bands,
the Yellow and the Red band are defined as most
important ones. We can conclude that 8-band
WorldView-2 imagery has the potential for creating
hotspot maps of infested trees or of trees with an
increased risk of infestation. This could have posi-
tive implications for the forest practice.

Zusammenfassung: Frühzeitige Erkennung von
Borkenkäferbefall an Fichten mittels WorldView-2
Satellitendaten. Borkenkäferepidemien führen in
Europa und Nordamerika immer wieder zu großen
ökonomischen Verlusten in der Forstwirtschaft.
Um großflächige Ausbreitungen zu verhindern,
müssen befallene Bäume rasch erkannt und ent-
fernt werden. Die gezielte Entnahme der Bäume,
bevor die Käfer ausgeflogen sind, ist schwierig, da
die Bäume meist noch keine Verfärbung der Na-
deln zeigen. Daher sind derzeit aufwändige und
kostenintensive Feldbegehungen notwendig, um
eine Ausbreitung des Schädlings zu vermeiden. In
dieser Arbeit wurden sehr hochauflösende World-
View-2 Satellitendaten mit acht Spektralkanälen
von zwei Aufnahmetagen untersucht, um Borken-
käferbefall frühzeitig zu erkennen. Dazu wurde
versucht nicht befallene Bäume von befallenen je-
doch noch nicht verfärbten („green-attack“) und
von bereits stark verfärbten bzw. abgestorbenen
Bäumen auf Grund der spektralen Reflexion zu
trennen. Hierbei wurden die Einzelbaumobjekte
mittels Random Forest und Logistischer Regressi-
on klassifiziert. Trotz der großen Überschneidun-
gen der spektralen Signaturen zwischen den Klas-
sen „gesund“, „befallen – ohne sichtbare Verfär-
bung“ und „abgestorben“ konnten diese mit Ge-
samtgenauigkeiten von rund 75% getrennt werden.
Auch die Nutzer- und Produzentengenauigkeiten
aller Klassen lagen dabei über 70%. Am besten
konnten die Beispielbäume in der Aufnahme vom
Juli klassifiziert werden, mit einer Gesamtgenauig-
keit von 76% und einem kappa-Wert von 0.61. Zu-
sätzlich wurden verschiedene Vegetationsindizes
getestet. Dabei erzielten einzelne normalisierte
Differenz- bzw. Verhältnis-Indizes nahezu gleich
gute Ergebnisse wie Modelle mit allen acht Spek-
tralkanälen. Die besten Ergebnisse wurden dabei
mit Kombinationen des Grün- bzw. Gelb-Kanals
mit dem Nahen Infrarot 1 Kanal erreicht. Bei den
Modellen basierend auf einzelnen Kanälen brach-
ten der Gelb- bzw. der Rot-Kanal die höchsten Ge-
nauigkeiten. Die erzielten Ergebnisse zeigen, dass
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practical. Remote sensing techniques are con-
sidered useful for an early detection of poten-
tially infested hotspots.
Numerous studies, mainly in North Amer-

ica, pointed out the potential of remote sens-
ing data for detection of (declining) health
status of trees. Most of them analysed detec-
tion of Mountain Pine Beetles (Dendroctonus
ponderosae, Hopkins) infestations on Lodge-
pole Pine (Pinus contorta, Dougl.) in Canada.
While advanced stages of damage (so called
“red-attack” and “grey-attack”) can be detect-
ed easily, the early detection of an infestation
(henceforth referred to as “green-attack”) is
problematic (ROBERTS et al. 2003, SKAKUN et
al. 2003, WULDER et al. 2004, 2006a, 2006b,
COOPS et al. 2006). Due to the problems of ear-
ly detection North American researchers fo-
cus their work on the analysis of areas around
old “red attack” areas to locate new infestation
hot spots (WULDER et al. 2009, COGGINS et al.
2010, 2011).
An early detection of infested trees (“green-

attack”) would be a major breakthrough re-
garding the control, prevention and mitiga-
tion of large-scale outbreaks. For this reason
investigations in the use of remote sensing for
detection of infestation before visible discol-
oration (“green-attack”, early detection) con-
tinues. HEATH (2001) compared the spectral
signatures (compact airborne spectrograph-
ic imager – CASI) of healthy, freshly infect-
ed (“green-attack”) and previously infected
(“red-attack”) trees and found some trends
in the spectra, partially confirming previous
studies (e.g., HELLER 1968, HALL 1981). The
main problem was the large intra-class vari-
ability of the reflectance values hampering the
separability of the different infestation class-
es. Similar results were achieved by SHARMA
(2007). For the identification of infestation
he characterized the spectral bands between
900 nm and 1100 nm as the most essentially.
He concluded that early detection could be
possible under certain conditions. CHENG et
al. (2010) were able to demonstrate effects of
water deficit and changes in chlorophyll con-
tent of artificially stressed needles through
wavelet analysis of reflection spectra meas-
ured in the laboratory. They found good sta-
tistical separability in the wavelength ranges
between 950 nm and 1390 nm. These results

im Frühsommer aufgenommene WorldView-2 Sze-
nen Potential für die frühzeitige Erkennung von
Borkenkäferbefall aufweisen. Diese Tatsache
könnte für die Visualisierung von befallenen Bäu-
men beziehungsweise von Bäumen mit hohem Be-
fallsrisiko genutzt werden. Solche hotspot-Karten
könnten eine große Unterstützung für die forstliche
Praxis bei der Bekämpfung von Borkenkäferepide-
mien darstellen.

1 Introduction

Natural disturbances play an important and
often positive role in forest ecosystems. At the
same time, however, such disturbances cause
great economic damage for forest owners. In
Central-European forests windthrow and bark
beetles are considered the most important abi-
otic and biotic disturbance agents in the last
century (SCHELHAAS et al. 2003). After the big
windthrows in Central Europe in the first ten
years of this millennium (“Kyrill” in January
2007, “Paula” in January 2008, and “Emma”
in March 2008), beetle infestations in Norway
spruce (Picea abies, L.) forests increased dra-
matically (TOMICZEK et al. 2011). Most likely,
these problems will increase in the near fu-
ture. For example, models based on climate
change scenarios predict an increasing risk
for bark beetle outbreaks (NETHERER & SCHOPF
2010, SEIDL et al. 2011, OVERBECK & SCHMIDT
2012). As Norway spruce is the most valuable
tree for European forestry, suitable monitor-
ing methods have to be developed.
In Austria and other European countries,

the ecological and economical most relevant
bark beetle species are Ips typographus, L.,
and Pityogenes chalcographus, L.. Both are
on Norway spruce and attack mainly weak-
ened trees. To protect other trees, infested in-
dividuals have to be removed before the new
larvae are fully developed and start to leave
the trees for infesting neighbouring trees. An
early detection of infested trees is therefore
important to avoid mass outbreaks; best be-
fore (visually) discolorations are visible. Usu-
ally foresters have to look for early signs of
infestation like boring dust around the base
of trees (KREHAN 2008). However, a regular
large-scale control is too expensive and not
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However, the results were not verified with
field data.
In addition to satellite data, hyperspectral

data from airborne platforms were evaluated
for early detection of bark beetle infestations
on spruce in several studies. Thereby early
stages of infestation (“green-attack”) could be
detected (FASSNACHT et al. 2012, 2014). LAUSCH
et al. (2013) tried to detect very early stages of
bark beetle infestation and even forecast infes-
tation with one- or two-year old hyperspectral
data. They found a tendency towards detecta-
bility of health status; however, they conclude
that the achievable accuracies are too low for
an application in forestry.
The aim of our study was to analyse the

suitability of WorldView-2 imagery for de-
tecting three bark beetle infestation classes on
spruce: “dead” (red/grey-attack), “green-at-
tack”, and “healthy” (non-attacked) in Central
Europe. WorldView-2 is the first commercial
satellite providing data with very high spatial
(2 m) and spectral (8 bands) resolution. Both
factors are important for mapping tree species
or health status of individual trees. Since for-
esters need an early recognition of infested ar-
eas remote sensing data were acquired early
in summer. For evaluation of the image’s ac-
quisistion date, data from June and July were
tested. Focus was set on identifying relevant
spectral bands and vegetation indices for sep-
arating the classes “healthy” and “green-at-
tack”. The identification of relevant spectral
bands has direct implications for practicers
as the 4-band version of WorldView-2 data
is much cheaper compared to the 8-band ver-
sion. Ground truth data for the three classes
were provided by local foresters through field
inspection.

2 Data and Methods

2.1 Study Site

The study site covers approximately 1100 ha
and is located in central Austria (47°28’N,
14°30’E) in the province of Styria (Fig. 1).
The terrain is mountainous and extends from
the montane to the subalpin life zone with an
elevation ranging from 680 m and 2400 m
above sea level. The annual rainfall is between

imply high potential for a cost effective and
large-scale method for detection of health sta-
tus classes of trees.
For the detection of large-scale bark bee-

tle infestation, like in North America, satel-
lite data with low (EKLUNDH et al. 2009) to me-
dium resolution (MEIGS et al. 2011, MEDDENS

et al. 2013) can deliver adequate information.
For early detection of mostly small-scale in-
festations in Central Europe the spatial reso-
lution is very important (LAUSCH et al. 2013).
With the new generation of very high resolu-
tion (VHR) satellite data, multispectral data
with spatial resolutions in the metre range
are available. MARX (2010) used bi-temporal
RapidEye satellite images (mid-April to mid-
June) for the detection of bark beetle infested
spruce. The first image was used for the sep-
aration between spruce stands and decidu-
ous trees. The second image was used for the
separation of different attack classes within
the spruce stands. In addition to the Rapid-
Eye spectral bands, different vegetation in-
dices were included in the analysis. The ref-
erence data came from foresters who deline-
ated infested (and healthy) areas in the field.
Following experimental set-ups used in North
America three infestations classes were clas-
sified: “healthy” (= “non-attacked”), “infest -
ed” (“green-attack”) and “red” (“red-attack”).
Classification was done by creating decision
tree models. The classification results showed
a good separation of the already discoloured
trees (“red-attack”). The two classes “healthy”
and “infestation” were frequently misclassi-
fied. ORTIZ et al. (2013) used RapidEye and
TerraSAR-X data, both acquired in May 2009,
to detect bark beetle green-attack in south-
west Germany. The RapidEye data achieved
higher classification accuracies than the SAR
data. The highest accuracy was achieved by
combining the two datasets.
WorldView-2 data with higher spatial and

spectral resolution have also been used for
the detection of tree health status. FINNIGAN
(2011), for example, used WorldView-2 data
for the “red-attack” detection on Lodgepole
pine. FILCHEV (2012) tried to map bark beetle
stressed spruce in a Bulgarian Biosphere re-
serve. He used vegetation indices calculated
from the eight WorldView-2 spectral bands.
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2.2 WorldView-2 Data

The WorldView-2 satellite provides very high
spatial resolution data with eight spectral
bands. At nadir the ground resolution (GSD)
is 50 cm for the panchromatic band (0.46 μm
– 0.80 μm) and 200 cm for the multispectral
bands. In addition to the four standard bands
Blue (0.45 μm – 0.51 μm), Green (0.51 μm –
0.58 μm), Red (0.63 μm – 0.69 μm), and Near
Infrared 1 (NIR 1, 0.77 μm – 0.90 μm), an-
other four bands are available. The four addi-
tional bands are Coastal (0.40 – 0.45 μm), Yel-
low (0.59 μm – 0.63 μm), Red Edge (0.71 μm
– 0.75 μm), and Near Infrared 2 (NIR 2,
0.86 μm – 1.04 μm). Further details about the
sensor can be found on the website of the pro-
vider (DIGITAL GLOBE 2014) and in UPDIKE &
COMP (2010). WorldView-2 data can be or-
dered either with the four conventional bands
or (at higher costs) with all eight bands. The
good suitability of WorldView-2 for tree spe-
cies classification has already been shown
(IMMITZER et al. 2012a,WASER et al. 2014).

1250 mm and 1500 mm, with a maximum in
July. The bedrocks are mainly base-poor sili-
cates, quartz phyllites and gneisses. The po-
tential natural forest community in the study
site is a spruce-fir forest with admixture of
beech, larch and sycamore maple (KILIAN et al.
1994). The privately owned forests are com-
mercially used focusing on timber production.
The study site is located next to Enns val-

ley. In this region Ips typographus, L. and Pit-
yogenes chalcographus, L. are the two most
common bark beetle species on spruce. The
logging statistics from the year 2010 of Sty-
ria reveals a substantial quantity of damaged
timber (roughly 1 million cubic metre) caused
by bark beetle attacks. This corresponds to
approximately one-fifth of the total logging
amount of that year. The huge impact of the
bark beetle attacks was primarily a late conse-
quence of heavy storm events in the preceed-
ing years (“Kyrill”, “Paula” and “Emma”)
(FACHABTEILUNG 10C DES LANDES STEIERMARK
– FORSTWESEN 2011).

Fig. 1: WorldView-2 image (true-colour composite with the bands Red, Green, Blue) of the study
site from June 2010. The locations of the reference data are shown in green (“healthy”), orange
(“green-attack”) and red (“dead”). The inlet indicates the position (blue) of the study site in the
province of Styria in Austria.
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control points per scene. The coordinates of
the control points were taken from a colour-
infrared orthophoto with 0.5 m pixel size. The
achieved average accuracy (RMSE) was about
1.8 pixels on images with 2 m pixel size.

2.3 Reference Data

As reference information we used groups of
infested and healthy trees identified by expe-
rienced local forest staff through field inspec-
tions in the summer months. The tree groups
were surveyed with GPS and marked on or-
thophotos. In most cases, the two classes were
located near each other. So systematic differ-
ences in slope and azimuth (and consequently
in illumination conditions) between the two
classes can be excluded. Some of the infest-
ed trees were discoloured over the acquisition
period. Others showed no visual changes be-
tween summer and autumn images. Most of
the infested tree groups, however, were har-
vested by the foresters before the third image
was acquired to prevent large-scale outbreaks.
Within the study we assumed that infes-

tation by bark beetle (Ips typographus, L.)
caused the discoloration of the trees. The trees
were typically attacked early in spring or in
the previous year. Healthy and infected trees
display no visible differences in the true col-
our composites of the summer images (Fig. 2).
Trees that are clearly discoloured in the sum-
mer images (June, July) were assigned to the
class “dead” (red/grey-attack). We assume that
these trees were attacked by bark beetle in one
of the previous years and were already dead or
almost dead in 2010. Fig. 2 shows sample im-
ages of the three data acquisition dates for the
three infestation classes.

For the purpose of the study, three World-
View-2 images with eight bands and process-
ing level “Ortho Ready Standard” were ob-
tained. The first image was acquired in June
2010. At that time the first generation of bark
beetle was fully developed. The second image
was taken in July and third in October, at the
end of the growing season. All scenes were
recorded under cloudless conditions over the
study site. Detailed recording parameters can
be found in Tab. 1. The third image was only
used for confirming the location of reference
data identified during field work. An image
acquisition in October would be too late for
early detection of “green-attack”. Hence, only
the two summer images (June and July 2010)
were used for the classification exercise.
Before data analysis, the two summer

scenes were atmospherically corrected, pan-
sharpened and orthorectified. To derive top-
of-canopy reflectance, the pixel gray values
(digital numbers) were first converted into
spectral ‘at-sensor’ radiance (UPDIKE & COMP
2010) using the ENVI module (ENVI 4.8)
FLAASH. The settings were chosen iterative-
ly by checking the resulting reflectance values
for plausibility. Optimal results were obtained
with the following FLAASH settings: Atmos-
pheric Model: Mid-Latitude Summer, Aerosol
Model: Rural, Initial Visibility: 60 km (June)
and 70 km (July). The atmospheric correction
resulted in meaningful spectral reflectance
signatures of the tree crowns. For visualisa-
tion purposes a pansharpening was performed
to enhance the spatial resolution of the eight
multispectral bands. Therefore, the HCS (Hy-
perspherical Color Space) algorithm (PADWICK
et al. 2010) implemented in ERDAS Imagine
was used. Finally, both images, with 2 m and
0.5 m were orthorectified using a digital ter-
rain model (5 m grid) and about 20 ground

Tab. 1: Recording parameters of the three WorldView-2 images.

June July October

Acquisition date 12 June 2010 10 July 2010 11 October 2010

Scan direction reverse forward forward

Mean satellite elevation 76.8° 65.6° 66.7°

Mean satellite azimuth 159.1° 135.5° 7.6°

Mean off nadir view angle 11.8° 21.4° 20.9°
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crown delineation because of strongly varying
acquisition geometries.
To locate the sample trees, the pansharpened

image with 0.5 m pixel size was displayed to-
gether with the multispectral image with 2 m
pixel size both as colour-infrared composite
(RGB: NIR 1, Red and Green). Then we se-
lected the sun-lit pixels per tree crown in the
multispectral image with 2 m pixel size and
converted them to a polygon vector file. Final-
ly, this file was used for extracting the spectral
information from the corresponding World-
View-2 image. This workflow allowed a rapid

Based on the reference polygons from field
inspections and the two summer scenes, we
selected in total about 600 reference trees
within each image. In the June scene we man-
ually delineated 257 “healthy”, 272 “green-at-
tacked”, and 81 “dead” trees. In the July im-
age 256 “healthy”, 245 “green-attack”, and 79
“dead” trees were identified. For each refer-
ence tree, we manually delineated the well-il-
luminated part of the tree crown to minimize
shadow effects (CLARK et al. 2005, LECKIE et
al. 2005,GREENBERG et al. 2006, IMMITZER et al.
2012a). It was not possible to automate the tree

Fig. 2: Examples (marked with yellow arrows) of the three infestation classes (“healthy”, “green-
attack” and “dead”) on pansharpened and atmospherically corrected summer and autumn World-
View-2 images.
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with the four conventional ones. Next, every
single band was used individually.
In addition to the eight spectral bands, we

tested three categories of vegetation indices
(Tab. 2), similar to other studies (BUSCHMANN
& NAGEL 1993, GITELSON & MERZLYAK 1994,
SIMS & GAMON 2002, MARX 2010). Within
each category, all possible band combinations
were tested. The first group of indices was ob-
tained by calculating the difference and the
second by calculating the ratio of two World-
View-2 bands, respectively. Analogously to
the formula of the widely used NDVI (normal-
ized difference vegetation index) (ROUSE et al.
1973), normalized differences were calculated
as a third group, again using all possible per-
mutations.
To build LR models, we used bootstrap

samples (random sampling with replacement)
drawn from the original dataset (EFRON 1979).
With the generated model all undrawn sam-
ples were classified and the classification ac-
curacy was then calculated. We repeated this
procedure 500 times and used the majority
votes of the iterations.
To evaluate the results of RF and LR we

produced confusion matrices with the majori-
ty vote from all bootstrap iterations and calcu-
lated the producer’s and user’s accuracies for
each class, the overall accuracy (correct clas-
sification rate), and Cohen’s kappa coefficient
(COHEN 1960).
For modelling R 3.0.2 (R CORE TEAM

2013) was applied with the additional pack-
ages MASS (VENABLES & RIPLEY 2002), ran-
domForest (LIAW & WIENER 2002), and caret
(KUHN et al. 2013).

selection and pixel-sharp demarcation of tree
crowns (IMMITZER et al. 2012b).

2.4 Spectral Separation and
Classification of Infestation
Classes

Based on the manually delineated tree crowns
(section 2.3), the spectral values in the eight
WorldView-2 bands were extracted and ana-
lysed. The mean values for each crown poly-
gon were calculated and used for further anal-
ysis.
For separating the three infestation classes,

we used the non-parametric, ensemble learn-
ing random forest (RF) classifier (BREIMAN
2001). The RF classifier is increasingly used
for the classification of remote sensing data
(PAL 2005, IMMITZER et al. 2012a, RODRÍGUEZ-
GALIANO et al. 2012). Some of the advantag-
es of this method are (I) it does not make any
assumptions about data distribution and the
collinearity in the data, (II) it does not re-
quire common covariance in the classes, (III)
thanks to the integrated bootstrapping the ac-
curacy estimates are obtained from independ-
ent samples, and (IV) it provides variable
importance measures which can be helpful
for feature selection (BREIMAN 2001, LIAW &
WIENER 2002, HASTIE et al. 2009, IMMITZER et
al. 2012a, TOSCANI et al. 2013). In our study,
the following parameterization of the RF was
used: 500 trees and two variables at each node
(= the square-root of the total number of in-
put variables) at each node. We created models
using all eight, respectively, the four conven-
tional WorldView-2 bands (Blue, Green, Red
and NIR 1). We analysed the 2- and 3-class
separability.
Although RF provides variable importance

measures, logistic regression (LR) was used
as an additional method to identify the most
important spectral bands for separating the
two most similar classes “green-attack” and
“healthy”. One advantage of LR is that mod-
els can also be built with only one explanatory
variable, which is not meaningful with a deci-
sion tree-based method like RF. The drawback
of LR is that it can only handle two-class prob-
lems. Using LR, we first created models with
all eight spectral bands (baseline) and then

Tab. 2: Formulas for indices calculation: Rx and
Ry denote reflectance values of two different
WorldView-2 bands. All possible permutations
were tested. The indices were evaluated by lo-
gistic regression.

Index type Index formula

Difference indices Ry − Rx

Ratio indices x

y

R
R

Normalised difference indices
y x

y x

R R
R + R

−
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the bands Yellow and Red. However, we found
high within-class variances in all classes lead-
ing to significant class overlaps.

3.2 Results of the Random Forest
Classifier for the three Infestation
Classes

The RF classification of the three infesta-
tion classes based on the spectral data (all
eight bands) produced very similar results for
the two summer images: the overall accura-
cy with the June image was 74.4%, and with
the July image 76.2%. Kappa coefficient was
around 0.60 for both classifications. The con-

3 Results

3.1 Spectral Signatures

Fig. 3 shows the spectral signatures of the
three infestation classes based on the July
scene. The class “dead” shows higher reflec-
tance values in the visible wavelength range
and lower values in the near infrared com-
pared to the two other classes. The differ-
ences between the classes “green-attack” and
“healthy” are much smaller. The mean value
of the class “green-attack” often lies between
the average signatures of the two other class-
es. The largest distinctions between the class-
es “healthy” and “green-attack” appeared in

Fig. 3: Reflectance values of the three infestation classes “healthy”, “green-attack” and “dead”
based on the WorldView-2 image acquired on 10th July 2010: (a) boxplots and (b) spectral signa-
tures (median values).

Tab. 3: Confusion matrix for the three classes “healthy”, “green-attack”, and “dead” using all eight
bands of the WorldView-2 images from June and July, respectively, and the random forest classi-
fier (independent bootstrapping results).

Field data

healthy green-attack dead Σ User’s acc.

Classified as June July June July June July June July June July

Healthy 167 185 65 67 0 0 232 79 0.720 0.734

Green-attack 90 71 207 178 1 0 298 249 0.695 0.715

Dead 0 0 0 0 80 79 80 252 1.000 1.000

Σ 257 256 272 245 81 79 610 580

Producer’s acc. 0.650 0.723 0.761 0.727 0.988 1.000 Overall acc. 0.744 0.762
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kappa coefficients), increasing from white to
green. As expected, the models without the
easily separable class “dead”, showed low-
er classification accuracies compared to the
3-class problem. Using all eight bands, both
classes “healthy” and “green-attack” could be
correctly assigned with an accuracy of around
70% with both approaches (RF and LR) and
both images. The models based on the four
conventional bands showed generally lower
classification precision, except the LR model
using the June data (Tab. 4).
The models with single spectral bands

achieved significantly lower results, partic-
ularly for the June image (Tab. 5). When as-
sessed individually, the Red and Green bands
were most significant in the June image. In the
July image, the drop in accuracy was less pro-
nounced. Here, the Yellow band showed the
highest accuracy, closely followed by the Red
band. The two bands almost reached an accu-
racy of 70%, which is comparable with those
of the LR models with the four conventional
bands. For both summer images, the worst re-
sults were obtained using solely the bands in
the near infrared. The Red Edge band had lit-
tle discriminative power when used alone.
The results obtained from LR models using

single bands could be confirmed with the two
importance measures derived from RF model

fusion matrices in Tab. 3 show that the class
“dead” can be nearly perfectly separated from
the two other classes. Producer’s (PA) and us-
er’s accuracy (UA) for the class “healthy” was
for the two images in the order of ≥ 72% (ex-
cept PA for June image: 65.0%). Similar val-
ues were obtained for the class “green-attack”,
with however somewhat higher PA (73% –
76%) and lower UA (70% – 72%). Between
the two summer images, only small differenc-
es could be detected. The PA of the July image
was higher for the class “healthy” (72.3% vs.
65.0%) and for the class “green-attack” lower
(76.1% vs. 72.7%) compared to the June im-
age.
The use of the four conventional bands in-

stead of all eight bands resulted in a decrease
of classification accuracy for both images. The
obtained overall accuracy for June was 71.6%
(kappa 0.53) and those for July 70.2% (kappa
0.51).

3.3 Separation of the Classes
“Healthy” and “Green-attack”

The bootstrapped results using RF and LR for
separating the classes “healthy” and “green-
attack” are shown in Tab. 4 to Tab. 8. The col-
ours indicate the level of accuracy (based on

Tab. 4: Overall accuracies and corresponding kappa coefficients (in brackets) from random forest
(RF) and logistic regression (LR) models to separate “healthy” and “green-attack” samples using
all eight and the four conventional spectral bands of WorldView-2 images acquired in June and
July (independent bootstrapping results).

RF – eight bands RF – four bands LR – eight bands LR – four bands

June 0.703 (0.405) 0.682 (0.364) 0.713 (0.424) 0.726 (0.451)

July 0.737 (0.473) 0.659 (0.318) 0.711 (0.424) 0.693 (0.384)

Tab. 5: Overall accuracies and corresponding kappa coefficients (in brackets) from logistic regres-
sion models to separate “healthy” and “green-attack” samples using single bands of the World-
View-2 images acquired in June and July (independent bootstrapping results).

Coastal Blue Green Yellow Red Red
Edge NIR 1 NIR 2

June 0.493
(-0.036)

0.631
(0.260)

0.656
(0.311)

0.626
(0.250)

0.658
(0.315)

0.531
(0.056)

0.518
(0.031)

0.484
(-0.048)

July 0.583
(0.164)

0.565
(0.127)

0.635
(0.269)

0.693
(0.384)

0.669
(0.337)

0.575
(0.149)

0.543
(0.082)

0.523
(0.043)
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Tab. 6: Overall accuracies and corresponding kappa coefficients (in brackets) from logistic regres-
sion models to separate “healthy” and “green-attack” samples using difference indices from the
WorldView-2 images acquired in July (below the diagonal) and in June (above the diagonal), (in-
dependent bootstrapping results).

Band Coastal Blue Green Yellow Red Red
Edge NIR 1 NIR 2

Coastal - 0.643
(0.284)

0.648
(0.295)

0.628
(0.254)

0.643
(0.284)

0.520
(0.034)

0.533
(0.062)

0.497
(-0.021)

Blue 0.511
(0.018) - 0.624

(0.246)
0.567
(0.131)

0.624
(0.246)

0.503
(-0.004)

0.505
(0.000)

0.486
(-0.057)

Green 0.551
(0.099)

0.593
(0.185) - 0.539

(0.075)
0.539
(0.073)

0.482
(-0.064)

0.473
(-0.082)

0.469
(-0.077)

Yellow 0.699
(0.396)

0.667
(0.332)

0.653
(0.304) - 0.471

(-0.086)
0.467
(-0.091)

0.473
(-0.071)

0.457
(-0.111)

Red 0.603
(0.203)

0.661
(0.320)

0.499
(-0.011)

0.637
(0.272) - 0.474

(-0.078)
0.474
(-0.069)

0.454
(-0.117)

Red
Edge

0.559
(0.117)

0.575
(0.148)

0.569
(0.136)

0.507
(0.007)

0.557
(0.112) - 0.478

(-0.066)
0.478
(-0.056)

NIR 1 0.551
(0.099)

0.561
(0.119)

0.585
(0.167)

0.615
(0.228)

0.581
(0.159)

0.681
(0.361) - 0.514

(0.020)

NIR 2 0.505
(0.005)

0.505
(0.006)

0.499
(-0.009)

0.471
(-0.074)

0.495
(-0.018)

0.517
(0.029)

0.597
(0.194) -

Tab. 7: Overall accuracies and corresponding kappa coefficients (in brackets) from logistic regres-
sion models to separate “healthy” and “green-attack” samples using ratio indices from the World-
View-2 images acquired in July (below the diagonal) and in June (above the diagonal) (independ-
ent bootstrapping results).

Band Coastal Blue Green Yellow Red Red
Edge NIR 1 NIR 2

Coastal - 0.616
(0.232)

0.597
(0.194)

0.618
(0.234)

0.631
(0.262)

0.509
(0.010)

0.507
(-0.001)

0.480
(-0.067)

Blue 0.547
(0.091) - 0.586

(0.169)
0.535
(0.066)

0.629
(0.257)

0.539
(0.074)

0.582
(0.162)

0.577
(0.151)

Green 0.507
(0.002)

0.533
(0.063) - 0.501

(-0.026)
0.599
(0.198)

0.597
(0.195)

0.707
(0.412)

0.637
(0.274)

Yellow 0.627
(0.253)

0.671
(0.340)

0.647
(0.293) - 0.550

(0.098)
0.654
(0.307)

0.62
(0.236)

0.648
(0.295)

Red 0.547
(0.090)

0.649
(0.296)

0.639
(0.277)

0.543
(0.083) - 0.641

(0.28)
0.694
(0.385)

0.671
(0.341)

Red
Edge

0.523
(0.037)

0.497
(-0.014)

0.521
(0.030)

0.663
(0.323)

0.581
(0.158) - 0.488

(-0.044)
0.535
(0.063)

NIR 1 0.621
(0.238)

0.607
(0.211)

0.683
(0.364)

0.711
(0.419)

0.689
(0.376)

0.687
(0.372) - 0.480

(-0.054)

NIR 2 0.553
(0.101)

0.501
(-0.008)

0.567
(0.129)

0.667
(0.331)

0.603
(0.202)

0.583
(0.163)

0.577
(0.155) -
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model accuracy. Band ratios combining Near
Infrared 1 with Green (June), respectively Yel-
low (July) resulted in mean overall accuracies
nearly similar to models using all eight spec-
tral bands. These models proofed significant
(kappa values > 0.4). Comparable results were
also obtained using normalized differences
(Tab. 8). Again, combining bands in the near
infrared with the bands Green or Red yielded
best results. In the July image, Near Infrared
1 combined with Yellow performed also very
well.

4 Discussion

In our study the WorldView-2 data showed
the potential to detect spectral differences
between “healthy” and bark beetle infect-
ed “green-attack” trees. However, the spec-
tral differences between the two infestation
classes are small and blurred by high within-
class variances. As a result, classification ac-
curacies (RF and LR) do not exceed 70% for
these two classes. Studies using hyperspectral
data also found significant overlaps between

(8 bands, 2 classes). Both importance meas-
urements (“mean decrease in Gini” and “mean
decrease in accuracy”) ranked the Red and the
Green band as the most important variables
using the June image. For the July image the
two top ranked bands were Yellow and Red.
Classification accuracies obtained by us-

ing difference indices are reported in Tab. 6
to Tab. 8. Only results for one band order are
shown (wavelength band y > wavelength band
x), as differences were either inexistent (dif-
ference and normalized difference indices) or
very small (ratio indices).
Compared to the use of single spectral

bands, the classification accuracy from differ-
ence indices was either stable (June) or slightly
improved (July). Only few models show better
results than a purely random model (kappa co-
efficient > 0). For both images, difference in-
dices employing the Coastal band gave high-
est accuracies.
The use of ratios instead of differences be-

tween two spectral bands improved the sepa-
rability of the two infestation classes (Tab. 7).
Most of the models, however, showed very
low kappa-values which denote unsatisfied

Tab. 8: Overall accuracies and corresponding kappa coefficients (in brackets) from logistic regres-
sion models to separate “healthy” and “green-attack” samples using normalized difference indices
from the WorldView-2 images acquired in July (below the diagonal) and in June (above the diago-
nal) (independent bootstrapping results).

Band Coastal Blue Green Yellow Red Red
Edge NIR 1 NIR 2

Coastal - 0.611
(0.220)

0.605
(0.207)

0.62
(0.236)

0.635
(0.268)

0.514
(0.020)

0.507
(-0.002)

0.51
(-0.008)

Blue 0.551
(0.100) - 0.582

(0.160)
0.543
(0.079)

0.635
(0.268)

0.533
(0.066)

0.571
(0.141)

0.567
(0.135)

Green 0.505
(-0.002)

0.537
(0.071) - 0.509

(-0.011)
0.601
(0.202)

0.582
(0.166)

0.705
(0.409)

0.633
(0.268)

Yellow 0.627
(0.253)

0.675
(0.348)

0.641
(0.280) - 0.558

(0.112)
0.652
(0.304)

0.637
(0.273)

0.643
(0.285)

Red 0.547
(0.090)

0.649
(0.296)

0.637
(0.272)

0.543
(0.084) - 0.618

(0.237)
0.682
(0.364)

0.673
(0.347)

Red
Edge

0.521
(0.033)

0.497
(-0.013)

0.521
(0.030)

0.663
(0.323)

0.581
(0.158) - 0.469

(-0.081)
0.535
(0.065)

NIR 1 0.621
(0.238)

0.607
(0.211)

0.683
(0.364)

0.709
(0.415)

0.699
(0.396)

0.689
(0.377) - 0.509

(0.008)

NIR 2 0.553
(0.101)

0.503
(-0.004)

0.569
(0.133)

0.675
(0.347)

0.603
(0.202)

0.579
(0.155)

0.595
(0.190) -
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also outperform those of ORTIZ et al. (2013)
using RapidEye data for the green-attack de-
tection. The user’s and producer’s accuracies
in their study were 50.0% and 66.7%, respec-
tively. The higher accuracies in our study may
be due to the higher spatial resolution of the
WorldView-2 images (2 m) compared with the
RapidEye data (5 m). It has also to be noted
that we only classified the well illuminated
parts of the tree crowns. The high detectabil-
ity of already advanced stages of bark bee-
tle infestation based on WorldView-2 data is
also consistent with the results from FINNIGAN
(2011).
A question arising in bark beetle studies is

whether the remote sensing data detects di-
rectly the infested trees or solely a certain pre-
weakening. This pre-weakening of trees could
increase the predisposition to bark beetle in-
festation. The detection of pre-weakening of
spruces was also highlighted in the study by
LAUSCH et al. (2013). They used one- and two-
year old hyperspectral data to classify different
infestation classes. Their best model achieved
very similar results as our study. They clas-
sified the three classes “dry” (old bark beetle
infestations), “infestation 2010” and “healthy”
with an overall accurcy of 69.3% (kappa 0.54)
using hyperspectral HyMap data from 2009.
The user’s and producer’s accuracies of the
class “dry” were nearly 90%, those of the oth-
er classes were around 60%, therefore, the in-
festation of 2010 could be forcasted with data
from 2009.
With respect to the image acquisition date,

we found only small differences between the
June and July images. The accuracies obtained
from 8-band RF classification in the June im-
age were almost as good as the July image. Us-
ing LR and various 2-band vegetation indices,
the June image gave only slightly lower accu-
racies compared to the July image. An early
image acquisition as such in June would give
the forest practitioners extra time to remove
infested trees before the bark beetles spread
out. However, this requires good acquisition
conditions, e.g. cloud free conditions with
low haze levels and near-nadir view angles.
In practice, one recommendation could be to
task an early image acquisition, e.g. June, but
insisting on optimum conditions. If these can-
not be met the acquisition window should be

the two most problematic infestation classes
(HEATH 2001, LAUSCH et al. 2013). On the con-
trary, in our study, the class of “dead” trees
could be classified almost perfectly.
Despite the relatively large class overlap in

the spectral signatures, the manually delin-
eated trees could be assigned to the classes
“dead”, “green-attack”, and “healthy” by su-
pervised classification (random forests, RF)
with an overall accuracy of about 75%. The
producer’s and user’s accuracies of all class-
es were around 70%. The best result was ob-
tained with RF using all eight spectral bands
of the July image. With this dataset, an overall
accuracy of 76.2% and a kappa coefficient of
0.609 were achieved. Using only the four con-
ventional WorldView-2 bands (Blue, Green,
Red and Near Infrared 1) generally result-
ed in a loss of discriminative power. For the
separation of the classes “green-attack” and
“healthy” using RF or logistic regression (LR)
the best results were achieved with all eight
bands. Only the LR model using the June data
was an exception. This might be due to the
fact that unsuitable variables can worsen a LR
model, whereas RF can handle this.
The similar accuracies of the classes “green-

attack” and “healthy” is maybe caused by the
equal data distribution between these two
classes in the reference data. In a real-world
setting, the occurrence of the class “healthy”
is usually considerably higher than those of
the infested trees. As we had no a priori infor-
mation regarding the class distribution within
our study area, we opted for an equal sampling
of the three classes. Possible errors in the ref-
erence data have also to be taken into account
when interpreting our results.
Using RapidEye data, MARX (2010) was

able to separate the three classes with an over-
all accuracy of 98.6%. However, in this study,
97% of the samples were healthy trees, thus
euphemising the overall accuracy. Looking
at the results for the classes “green-attack”
and “dead” the accuracies of our study are in
line with or even higher than those found by
MARX (2010). The “green-attack” trees were
classified by MARX (2010) with a user’s ac-
curacy of 76.5% and with a producer’s ac-
curacy of 40.9%, the values for “red-attack”
(nearly equivalent to our class “dead”) were
87.4% and 80.2%, respectively. Our results
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are not present in the rather coarse bands of
the WorldView-2 sensor (SCHLERF et al. 2010).
Aerial images usually have a very high spatial
resolution and are clearly cheaper than World-
View-2 data. But the number of spectral bands
is smaller and radiometric inhomogeneity in
the data makes large-scale applications diffi-
cult. However, it still has to be checked if the
four additional WorldView-2 bands are more
beneficial for the early detection of bark bee-
tle infestation or the higher spatial resolution
of aerial images. Aside from data with high
spectral and high spatial resolution, multi-
temporal data (MEIGS et al. 2011, MEDDENS et
al. 2013) as well as multi-sensor data (ORTIZ et
al. 2013) can increase classification accuracy.

5 Conclusion and Outlook

The study showed that WorldView-2 satellite
data may be useful for large-scale applications
aiming at the detection of advanced as well as
early bark beetle infestation with remote sens-
ing data. However, the data does not permit
to reliably identify each tree at the “green-
attack” stage of infestation. Nonetheless, the
data might be suitable to create hotspot maps
of infested trees and of trees with an increased
risk of infestation. Such maps would be an im-
portant information gain for the forest practice
and would probably lead to an increase in effi-
ciency of bark beetle infestation control.
Remotely sensed maps of bark beetle in-

festation could also positively contribute to
the bark beetle modelling community. Both,
the information from advanced bark beetle
infestation (dead trees) with high confidence
level, as well as the less reliable information
from green-attack trees could constitute es-
sential input data in bark beetle models. For
example, it can be expected that the combina-
tion of maps showing green-attack and dead
trees with predisposition models (NETHERER
& NOPP-MAYR 2005) could increase the pre-
diction accuracy of such models. Remotely
sensed maps can also be used as an alternative
to cost intensive inventory data for detailed
GIS modelling approaches of bark beetle in-
festation similar to the work described in ROS-
SI et al. (2009).

extended, e.g. into July, until suitable weather
conditions are encountered.
Remarkably, for the separation of the class-

es “healthy” and “green-attack”, some vegeta-
tion indices based on 2-band normalized dif-
ferences and ratios yielded nearly as good re-
sults as the classification with all eight spec-
tral bands. The best results were obtained with
the bands Green and Near Infrared 1 from the
June image and Yellow and Near Infrared 1
from the July image, respectively. The new
bands Red Edge and Near Infrared 2 achieved
significantly worse results. The use of spectral
indices does not only permit an easy visuali-
zation of data compared to eight band data but
also results in a simplified modelling, signifi-
cantly reducing the necessary computer power
and storage requirements. Possibly, the usage
of 2-band vegetation indices reduces negative
impacts related to illumination differences
and topographic effects. However, these as-
pects were not studied in the present work.
Numerous studies identified bands from the

green peak up to the Red Edge region as rel-
evant for an early detection of plant stress in-
duced by bark beetle infestation or air pollution
(STONE et al. 2001, LAWRENCE & LABUS 2003,
ENTCHEVA CAMPBELL et al. 2004, FASSNACHT et
al. 2012, 2014, LAUSCH et al. 2013). This was
also confirmed by our investigation, where the
bands Red / Green (June) and Yellow / Red
(July) showed the highest prediction power
in the models with single bands. The same
bands were identified by RF as the most im-
portant ones. In our study however, the Red
Edge band was amongst the worst performing
bands within the visible spectral range.
Regarding alternative data sources, World-

View-2 images have a few advantages com-
pared to classical aerial images as well as hy-
perspectral datasets. One advantage of World-
View-2 data compared to hyperspectral im-
agery is its higher spatial resolution and large-
scale mapping capacity. LAUSCH et al. (2013),
for example, identified a problem of mixed
information using hyperspectral data with a
spatial resolution of 4 m. In their study it was
pointed out that a spatial resolution of about
1 m would be interesting for mapping pur-
poses at tree level. On the other hand, imag-
ing spectroscopy certainly permits the detec-
tion of more subtle absorption features, which
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ries both of WorldView-2 and airborne hyper-
spectral data (HySpex) with very high spatial
resolution for observing vitality loss of artifi-
cially stressed trees.
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