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digital elevation model (DEM) (abDul-raH-
MaN & PilouK 2008). In other words, DEM
continuously displays elevation changes of the
Earth surface, which is directly proportional
to the plane position (x,y) (abDul-raHMaN &
PilouK 2008, cHaPlot et al. 2006, MillEr &
laflaMME 1958). Initially, 3D models were
created physically from plastic, sand, clay, etc.
(li et al. 2004). Today, however, computers
are used to display the Earth’s continuous sur-
faces in a digital form (HEESoM & MaHDJobi

2001).
One of the most important issues in the

field of digital modelling is the generation of
a DEM with high quality and precision under
minimum costs. To estimate a continuous sur-
face, due to the limited number of samples and
the necessity of reproducing altitude points,

1 Introduction

Three-dimensional modelling of the Earth
is one of the most important tools in various
fields of geology, meteorology, civil engineer-
ing, environmental engineering, and numer-
ous engineering projects, and it has many ap-
plications in geographic information systems
(GIS) (PEtriE & KENNiE 1990, floriNSKY 2011,
DE MESNarD 2013). In GIS, the terrain model-
ling is generally called digital terrain model-
ling (DTM) and is used to display topography
and synthetic changes of many environmental
parameters such as temperature, air pollution,
etc. (KaSSEr & EgElS 2002, li et al. 2004).
One of the most significant parameters in GIS
is the topography of the Earth, which can be
visualised in a 3D digital form to represent the

Summary: Several methods exist for the interpola-
tion of digital terrain models (DTM), which have
different characteristics depending on environmen-
tal conditions and input data. In this paper, the arti-
ficial intelligent (AI) techniques such as genetic al-
gorithms (GA) and artificial neural networks
(ANN) are used on the samples to optimise the in-
terpolation methods and production of digital ele-
vation models (DEM). The results obtained from
applying GA and ANN are compared with typical
methods of interpolation for the creation of eleva-
tions such as Kriging. The results show that AI
methods have a high potential in the interpolation
of elevations. The use of artificial networks algo-
rithms for the interpolation and optimisation based
on the quartic polynomial and inverse distance
weighting (IDW) led to high precision elevations.

Zusammenfassung: Ver wendung von Methoden
der künstlichen Intelligenz zur Ableitung von Hö-
henmodellen. Für die Interpolation von Höhenmo-
dellen gibt es viele Methoden. In diesem Artikel
werden Methoden der künstlichen Intelligenz (arti-
ficial intelligence, AI) zur Optimierung von digita-
len Höhenmodellen vorgestellt. Dazu gehören Ge-
netische Algorithmen (GA) und künstliche neuro-
nale Netze (ANN). Die mit diesen Methoden erziel-
ten Ergebnisse werden bisherigen Verfahren ge-
genübergestellt, unter anderem dem Kriging. Im
Ergebnis zeigt sich, dass die künstliche Intelligenz
große Möglichkeiten bietet. Besonders die Quartic
Polygone und die “inverse distance weighting”-
Methode könnten für die Ableitung von genauen
Höhenmodellen verwendet werden.
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of learning, reminding, forgetting, concluding,
pattern-recognition, classification of informa-
tion and many other brain functions (HErtZ et
al. 1991). ANN is essentially made up of sim-
ple processing units called neurons (fooDY et
al. 1995). ANN structures are in the form of
layers, which consists of an input layer, an out-
put layer and one or more intermediate layers.
Each layer contains several neurons that are
connected by a network, which has different
weights. Based on how the nodes are connect-
ed, the ANN is divided into two groups, feed
forward ANN and feedback ANN. In the feed
forward input applied to produce the output,
neurons must be used as the pathway. A feed
forward ANN is known as a “perceptron”.
Perceptron ANN is one of the most important
and widely used aspects in diagnosis classi-
fication model (PictoN 2000). Perceptron can
be single-layered or multi-layered. The dif-
ference between single-layer and multi-layer
perceptrons is the number of hidden layers be-
tween the input and the output layer. The task
of these hidden layers is the extraction of the
non-linear relationships of the input layer.

The two main steps that exist in the appli-
cation of ANN are learning and recall. The
aim of ANN learning is finding the opti-
mal weights of neuron connections, which is
achieved by the recursive method (HollaND et
al. 1989). Generally, the error back propaga-
tion learning rules are used to train the mul-
ti-layer perceptron ANN. The law of error
propagation is composed of two main routes;
the first route is called way-in path, where the
input vector affects the multi-layer percep-
tion (MLP) network and impacts on the out-
put layers through the intermediate layer. The
output vector of the output layer is the actual
response of the MLP network. In this way, the
network parameters are fixed and unchanged.
The second route is called the come-back path.
In the come-back path, unlike the way-in path,
the MLP network parameters can be changed
and adjusted. This adjustment is consistent
with the error correcting rule. The error signal
at the output layer of the network is formed.
The error vector is equal to the difference be-
tween the desired response and the actual re-
sponse of the network. In the come-back path,
the calculated error values are distributed in
the entire network through the network lay-

mathematical interpolation functions are used
to estimate the elevation of midpoints (abDul-
raHMaN & PilouK 2008). Interpolation meth-
ods are used to determine unknown altitudes
of midpoints from the samples and as a result,
the coordinated points are reproduced and the
digitally formed Earths’ continuous surfaces
can be visualised. An interpolation is never
exact. The inherent errors may propagate to
a level that becomes inacceptable. Such errors
transfer inaccurate assessments into the pro-
jects and cause the financial losses, and even
produce life threatening results (EYvaZi et al.
2007, MitaS & MitaSova 1999). Therefore,
one of the challenges in this field is finding an
appropriate method for the height interpola-
tion because in addition to the accuracy and
distribution of sample points and the geomor-
phological characteristics of the Earth’s sur-
face, the method for the interpolation and the
estimation of the average point height will af-
fect the quality and the accuracy of the DEM
(li 1990, li 1992a).

Numerous methods for the interpola-
tion have been proposed (HarDY 1971, Har-
DY 1990, larSSoN & forNbErg 2005), which
show different results influenced by the en-
vironment’s conditions and data input. Usu-
ally, the optimal method of interpolation de-
pends on the root-mean-square error (RMSE)
of the output. In most studies the comparison
of interpolation methods and the selection of
the optimal methods are used to achieve high-
er accuracy (YaNalaK 2003, aMiDror 2002,
rEES 2000, YaNg et al. 2004, li & HEaP 2011,
WagNEra et al. 2012).

In this paper, AI techniques such as ANN
and GA are examined to optimise the inter-
polation methods and the creation of DEM on
the samples. At the end, the results of the esti-
mated heights from the intelligent techniques
and the usual methods of interpolation are
compared.

2 Artificial Neural Networks

Artificial neural networks (ANN) are based
either on the performance of the human brain
and its functionality or actions can be inter-
preted according to the human conduct. Inves-
tigations show that this network has the ability
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parents when they are combined. Sometimes
genes are changed randomly. A mutation oc-
curs and enables the algorithm to search for
a wider area. In other words, a new genera-
tion can be created by reproductive process-
es of combining gene and mutation. This pro-
cess must be repeated many times to achieve
convergence and create an optimal solution
(HauPt & HauPt 2004).

4 Height Interpolation Methods

The main purpose of using the known point
height interpolation is the determination of
the heights of the unknown’s middle points.
In 2004, YaNg examined different methods
for the interpolation according to the accuracy
and applicability by using Surfer 8.0 software
(YaNg et al. 2004). These methods can be di-
vided according to different criteria (abDul-
raHMaN & PilouK 2008). For example, in-
terpolation methods based on surface cover-
age divided into local and global criteria. In
the global methods, the height of all control
points are used to estimate the heights for the
unknown points, but in the local methods, cal-
culation of unknown point heights are derived
from the height of the neighbours’ points. In
this research, the different methods of inter-
polation are used to estimate the heights at
the unknown points within the local methods,
which are explained in the following sections.

4.1 Inverse Distance Weighting
Method

In the inverse distance weighting (IDW)
method, the height information of neighbour-
ing points is used as a weight according to the
distance to unknown points. Weight is a func-
tion of the distance from the unknown point
and hence closer points have higher weights.
For height calculation, the following equation
is used
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ers. In this repetitive process, the corrected
parameter weights are calculated and will be
added to the previous weights and hence mod-
ified to prepare for implementation in the net-
work (WiSZNiEWSKi 1983). In this algorithm,
the network weights are based on the gradi-
ent method and the error signals are corrected
and adjusted. Back propagation is used for ex-
plaining the correction of network behaviour,
which is opposite to the weight communica-
tion between synapses (WiSZNiEWSKi 1983).

3 Genetic Algorithms

In 1960, rEcHENbErg presented the basic idea
of evolutionary algorithms, where GA can be
derived from. This is, in fact, a computerised
search method, which is based on optimisa-
tion algorithms, named genes and chromo-
somes, developed at the Michigan University
by HollaND (HollaND et al. 1989) and later by
frEiSlEbEN & MErZ (1996).

In this algorithm, due to being derived from
nature, stochastic search processes are used
for optimisation and learning problems (SHE-
ta & turabiEH 2006). In nature, chromosome
combinations will produce a better genera-
tion. Mutations occurring among the chromo-
somes may improve the next generation. GA
solves these problems by using this concept
(SivaNaNDaM & DEEPa 2010).
Overall operations of this algorithm are: fit-

ting, selecting, combining and mutating (ra-
vagNaNi et al. 2005). In the algorithm process,
an initial population of chromosomes is select-
ed for the creation of a new and possibly better
generation. Each chromosome has various ar-
rays that should be optimised. After creating
the initial population of merit (cost consump-
tion) for each chromosome in the population
the calculation is based on the objective func-
tion. The major parts of the costly (expensive)
chromosomes are left behind and the cheaper
chromosomes are kept to produce the next
generation, the children. Among them, there
are a number of elite chromosomes, which are
considered to be cheap, and therefore remain
untouched until the next generation. To deter-
mine the number of chromosomes needed for
the evolution, parents are selected to produce
offspring. Two chromosomes are selected as
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For the estimation of the weight, various
varygrams are used such as linear, expo-
nential, Gaussian and spherical. The general
Kriging method is also the combination of or-
dinary Kriging with local process. The local
process can be defined in two ways, i.e. linear
trend and quadratic.

4.4 Nearest Neighbour Method

In the nearest neighbour method, the nearest
point to the unknown neighbour is selected
and its height assumed based on the height of
the unknown point. This method is an appro-
priate way if the data is taken based on a regu-
lar network and matching with the grid lines.

4.5 Natural Neighbour Method

The natural neighbour method was devel-
oped in 1980 by SibSoN (1980). This method
is based on a Voronoi Pattern for a set of sepa-
rated points. A Voronoi Pattern is a diagram,
which is dividing space into a number of re-
gions. This method has more advantage com-
pared with the nearest neighbour’s method
such as its ability to create a surface that is
relatively smooth. This method is based on (4)
(SibSoN 1981):
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Where z (x, y) is the estimated height at an
unknown point, z (xi, yi) is height of sample
point i and λi is the weight of a sample i fol-
lowed by the area enclosed by any parts of the
unknown sample point.

4.6 Triangulation Method

This method deals with the linear interpola-
tion elevations based on a Delaunay triangula-
tion (ZHoNg et al. 2008).

After the surface reconstruction with De-
launay triangles, the unknown height can be
determined.

In (1), p is the speed reducer weight control
rate according to distance, where it is equal
to 2, di is the distance from unknown point
to a well-known point and zi represents the
height of point i (lu & WoNg 2008, DE MES-
NarD 2013).

4.2 Polynomial Method

This method approximates the surface using
polynomial terms plain elements x, y in the
form of z = f (x, y). The n power of this polyno-
mial equation is

0 0

n n jiz a x yiji j
= ∑ ∑

= =
. (2)

Where x, y are turned parts and plain com-
ponents of known points and aij are polyno-
mial coefficients, which are determined using
the know elevation values in the sample points
and are obtained by least-squares portion.

4.3 Kriging Method

The Kriging method was introduced by
MatHEroN (1963), based on the Krige varia-
bles theory zone (KrigE 1951). This method is
estimated based on a weighted moving aver-
age due to which the Kriging method of in-
terpolation considers two criterions, the dis-
tance and the change of point elevation. It is
the best unbiased linear varygram of weights
with the minimal estimation of variance. This
means that the difference between actual and
estimated values is minimal. In the Kriging
method, there are numerous techniques for
computing the height values, which normally
is divided into two different ways, ordinary
Kriging and general Kriging. The ordinary
Kriging is calculated based on (3):
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Where z (x, y) is the height estimated at an
unknown point, z (xi, yi) is the height of a sam-
ple point i and λi is the weight of point i.
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6 Using Neural Networks in
Heights Interpolation

The interpolation of elevations based on ANN
uses the perceptron network, which consists
of three layers, an input layer, an intermediate
layer and an output layer. Structure and net-
work topology is shown in Fig. 1. Two neurons
in the input layer are components of x and y
and the output layer of neuron is component of
z. Training is based on the gradient method. In
the network learning processes in both areas,
control points are used for training and a set of
check points. The check points type 1 are are-
as of validation and check points type 2 are the
independent check points. These are used for
testing and evaluating the precision interpola-
tion networks. The error signal based on the
RMSE is created and the correction of weight
is used to achieve the minimum RMSE.

5 Data Assessment and
Evaluation Criteria

In order to compare smart and ordinary inter-
polation methods, two areas are selected. Area
1 has been mapped by the existing software
AutoCAD Civil 2D Land Desktop 2009 and
area 2 presents new mapping data, 1:2000 in
Port Khamir, which is located in Hormozgan
State in the southern part of Iran. In both ar-
eas, a number of points are used as the con-
trol points. Other points are considered as the
check points that are grouped in two series of
check points and they are called check points
type 1 and type 2. The characterizations and
number of control points and two series of
check points in both areas are shown in the
Tabs. 1 and 2. Using control points and inter-
polation methods, the heights of the two se-
ries of check points (1 & 2) are obtained and
it is compared with the actual height. Finally,
the extent of errors that exist in the calculated
elevations through interpolation methods can
be determined by using the RMSE rate. The
measurement of the RMSE can be expressed
as follows:
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Where, zcomp is the calculated height values
and zactual is the actual check point height.

Tab. 1: Area Profile 1.

Elevation
changes

No. of
control
points

No. of
check points

Regional
dimensions

Type 1 Type 2

16 m 100 45 40 250 × 275 m2

Tab. 2: Area Profile 2.

Elevation
changes

No. of
control
points

No. of
check points

Regional
dimensions

Type 1 Type 2

6 m 50 28 28 450 × 300 m2

Fig. 1: Network perceptron with a hidden layer
for the interpolation heights.
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chromosome in the form of a series of zeros
and ones is used. The digit zero indicates non-
interference and the digit one indicates inter-
ference. In the process of GA, optimal chro-
mosomes that show the best polynomial terms
are obtained. Coefficients of the terms are de-
termined by the least-squares method during
this process. In this study, quartic polynomials
are examined. For the GA optimisation, firstly
the chromosomes must be formed and an ini-
tial population created. Each chromosome is
made up of variables that are essentially the
polynomial coefficients, which is interpreted
as gene. Gene 1 represents in the desired term
of polynomial and gene 0 represents the inter-
ference term in the polynomial. The first algo-
rithm optimisation process consists of an ini-
tial population of chromosomes and the coeffi-
cients that can be calculated by control points
through the least-squares method and using
check points to determine the remaining re-
sidual. So by employing control points, check
points and the dependent variable (RMSE),
optimal chromosomes are formed. After fin-
ishing the optimisation processes, the check
points, which had no interference in the op-
timisation process, are used to evaluate the
obtained chromosomes. In other words, the
process of determining proper polynomial co-
efficients with genetic algorithm and control
points uses two types of check points. One is
for the optimisation of the process under con-
sideration of the control points to find the opti-
mal chromosomes. They are referred to as GA
check points (GACPs). The other are the inde-
pendent check points used to evaluate the final
chromosome, known as independent check
points (ICPs). In this paper the check points
type 1 and type 2 are referred to as GACPs
and ICPs respectively.

7 Using Genetic Algorithms in
Heights Interpolation

Unlike ANN that is able to create a network
for elevation interpolation, GA can only be
used for the optimisation of usual methods of
interpolation. The usual methods of interpo-
lation used in this study along with GA have
been optimised and are consisting of poly-
nomials and the inverse distance weighting
method, which will be described below.

7.1 Using Genetic Algorithms in
Polynomial Optimisation

Heights of polynomials can be useful for the
interpolation. The most common function to
achieve this integration is the general polyno-
mial function shown in Tab. 3 (PEtriE & KEN-
NiE 1990).

It is clear that the single polynomial of a
polynomial function has a special characteris-
tic shape. Using specific terms, unique surface
features can be created.

For the actual surface production in a par-
ticular model, it is not necessary to use the en-
tire function. The operating system has the re-
sponsibility to determine what is used. Only
in a few cases it is possible for the user to steer
the function for modelling of the particular
piece of land that is more relevant.
The first step of using of the polynomial

functions is the determination of the optimal
terms of these functions. The shape optimisa-
tion of the polynomials is related to the geom-
etry and the topography of the region. GA is
used to evaluate the effect of the presence or
absence of various terms where the polynomi-
al functions are used to find the most effective
functions. For this purpose, a singular binary

Tab. 3: Polynomial function for surface reconstruction.

No. of variables Description Row Equations

1 flat zero z = a0

2 linear first ″flat″ + a1x + a2y

3 quadratic second ″linear″ + a3x2 + a4y2 +a5xy

4 cubic third ″quadratic″ + a6x3 + a7y3 + a8x2y + a9xy2

5 quartic fourth ″cubic″ + a10x4 + a11y4 + a12 x3y + a13x2y2 + a14xy3
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tation (ErEMEEv 2000). The fusion function
is a single-point combination for generations
while 500 generations are considered in a GA
process.

8 Assessment of Results

The IDW interpolation method was applied to
the datasets using three different settings of
the power values of the inverse distance meth-
od (Tab. 4).
Tab. 4 shows the RMSE for both datasets in

the unit metre. The minimal errors can be ob-
served with a power value of one and three in
the first dataset, and three in the second data-
set. Area 2 is comparably flat which explains
that the best fit is found at the highest power

7.2 Using Genetic Algorithms in the
Optimisation of Inverse Distance
Weighting Method

GA, control and check points can be used to
optimise the magnitude of strength and con-
sequently a proper weight is achieved. In this
article, from the control points and the series
of check point type 1 the GACPs can be used
to determine the optimised strength. Final-
ly, the strength obtained from GA is substi-
tuted in the IDW equation and as a result, the
accuracy of the algorithm with the series of
check point type 2 as the independent check
points through the optimisation process with
GA (ICPs) are examined and evaluated. The
tournament function can be used for the se-
lection and the Gaussian function for the mu-

Tab. 4: Results obtained from IDW method.

Inverse distance
power

RMSE for area 1 (m) RMSE for area 2 (m)

Check points
type 1

Check points
type 2

Check points
type 1

Check points
type 2

1 1.601 1.895 0.849 1.115

2 2.130 2.375 0.744 1.005

2 1.661 1.865 0.684 0.931

Tab. 5: Results of the Kriging method.

Type of
varygram

Type of Drift RMSE for area 1 (m) RMSE for area 2 (m)

Check points
type 1

Check points
type 2

Check points
type 1

Check points
type 2

Spherical No drift 4.409 4.656 0.938 1.201

Linear drift 2.061 2.392 0.638 0.850

Quadratic drift 1.264 1.391 0.888 1.148

Exponential No drift 4.409 4.656 0.939 1.203

Linear drift 2.061 2.392 0.638 0.849

Quadratic drift 2.060 2.391 0.890 1.151

Linear No drift 1.219 1.374 0.648 0.900

Linear drift 1.261 1.383 0.652 0.886

Quadratic drift 1.260 1.383 0.647 0.898

Gaussian No drift 4.409 4.656 0.939 1.203

Linear drift 2.061 2.392 0.638 0.849

Quadratic drift 2.060 2.391 0.890 1.151
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Tab. 5 shows that the accuracy of the Gauss-
ian and exponential varygrams are nearly the
same while the highest accuracy is achieved
using a linear varygram with no drift for area
1 and exponential or Gaussian linear drift for
area 2.

In spherical, exponential and Gaussian
varygrams, linear and quadratic drifts are
more accurate compared to no drift, but in a
linear varygram no drift is more accurate. Re-
sults of other methods are shown in Tab. 6.
One of the predominant properties of the

Kriging method is smoothing. Therefore, the
Kriging method has a lower accuracy in re-
gions with high elevation changes that have

value. On the other hand area 1 has a strongly
undulated terrain. High power values cause a
smoothing effect to the data and are therefore
not appropriate to model this type of terrain.
Thus, the lower power value fosters the best
fit. This shows that the selection of an optimal
power value is very important for a better in-
terpolation and GA can be useful for height in-
terpolation by the IDW method in rough sur-
faces. In comparison, Kriging uses several in-
terpolation methods for the varygrams such as
spherical, linear, exponential, and Gaussian.
In each case, the drift types “no drift”, “linear
drift” and “quadratic drift” are used. The re-
sults are compared in Tab. 5.

Tab. 6: Results obtained from other conventional interpolation methods.

Method RMSE for area 1 (m) RMSE for area 2 (m)

Check points
type 1

Check points
type 2

Check points
type 1

Check points
type 2

Natural neighbour 1.261 1.383 0.888 1.148

Nearest neighbour 1.224 1.400 0.633 0.874

Triangulation 1.224 1.400 0.633 0.874

Quartic polynomial 2.444 2.277 0.675 0.917

Tab. 7: Results from IDW optimisation method with GA (GACP = GA check point, ICP = independ-
ent check point).

RMSE for area 1 (m) RMSE for area 2 (m)

Indices optimisation 2.531 2.07

RMSE (m) GACP ICP GACP ICP

0.762 0.920 0.648 0.881

Tab. 8: Results of quartic polynomial optimisation with GA.

Power of
polynomials

No. of
variables

RMSE for area 1 (m) RMSE for area 2 (m)

GACP ICP GACP ICP

4 15 0.662 1.115 0.466 0.684

Tab. 9: Results of interpolation using ANN.

No. of neurons in
hidden Layer

RMSE for area 1 (m) RMSE for area 2 (m)

Check points type 2 Check points type 2

5 0.607 0.524

10 0.566 0.488
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In order to compare and evaluate the inter-
polation methods, the results of the current
methods and AI techniques are collected from
the RMSE through a series of check points
type 2. The reason for this is that the AI tech-
niques at the series of check points type 1 for
the optimisation process of interpolation pa-
rameters in GA and for the network validation
in ANN can be used. Therefore, to ensure that
the results of the optimisation process are val-
id, a series of check points type 2 is used as the
independent check points. Consequently, the
RMSE rates obtained from the conventional
interpolation methods and AI techniques are
compared with a series of check points type 2,
which is represented in Fig. 2 as a line graph.

Fig. 2 shows with regards to area 1 (16 m
altitude) that the quartic polynomial method
produces the worst results. In the second re-
gion (area 2) that is wider compared to area
1 and only has 6 m altitude, the triangulation
method produces better results. Thus, due
to better triangles obtained in flat regions in
regards to the other region, where there are
greater changes in altitude, better results are
achieved.

In both regions, the Kriging method for in-
terpolation produces better results. The results

a rough surface and sharp edges. There are
many factors that affect the accuracy of the
Kriging method such as the number of sam-
ples and their distance in between. In the
small domain of changes, the accuracy of the
Kriging method and other methods are com-
parable. Area 2 has a small domain of eleva-
tion changes and the accuracy of the Kriging
interpolation and other methods are nearly
equivalent.

In contrast to Kriging, the GA in combina-
tion with control points and check points can
be adapted to the terrain type by selecting an
appropriate power value for the IDW meth-
od. An independent evaluation took place by
using the check points type 2. Tabs. 7 and 8
compare the results that are achieved by using
GA/IDW method with the quartic polynomial
optimisation.

In ANN interpolation, the control points
are used for training and a series of check
points type 1 for validation and for testing/
evaluating. Check points type 2 are used for
the perceptron network with a hidden layer of
5 neurons and 10 neurons (Saati et al. 2008,
KaraborK et al. 2008), considering the first
period size and with momentum 0.7 Ns, the
following results have been obtained.

Fig. 2: Comparison of results of different interpolation methods.
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in the entire surrounding regions and as a re-
sult can be suggested for larger regions, which
can be divided into smaller regions with re-
spect to altitude changes. Within each of the
smaller regions a universal interpolation can
be applied. Consequently, the most impor-
tant problem of distance for both conventional
and intelligent interpolation methods can be
solved. Also, by using universal interpolation,
the time for the optimisation in GA and the
training time in ANN can be reduced and thus
the difficulty of applying intelligent methods
in large regions with numerous sample points
decreased.

References
abDul-raHMaN, a. & PilouK, M., 2008: Spatial

Data Modelling for 3D GIS. – Springer, USA.
aMiDror, i., 2002: Scattered data interpolation

methods for electronic imaging systems: A sur-
vey. – Journal of Electronic Imaging 11 (2): 157–
176.

cHaPlot, v., DarbouX, f., bourEaNNaNE, H., lEg-
uEDoiS, S., SilvEra, N. & PHacHoMPHoN, K.,
2006: Accuracy of Interpolation Techniques for
the Derivation of Digital Elevation Models in
Relation to Landform Types and Data Density.
– Geomorphology 91: 161–172.

ErEMEEv, a.v., 2000: Modeling and Analysis of
Genetic Algorithm with Tournament Selection.
– Artificial Evolution: Lecture Notes in Com-
puter Science 1829: 84–95, Springer.

EYvaZi, H., MoraDi, a. & KHoSHgoftar, M., 2007:
Optimum Determination of Interpolation Model
for Using in Geographic Information Systems.
– Geomatic 86, Tehran, Iran.

floriNSKY, i., 2011: Digital Terrain Analysis in Soil
Science and Geology. – 1st edition, Academic
Press.

fooDY, g.M., MccullocH, M.b. & YatES, W.b.,
1995: Classification of remotely sensed data by
an artificial neural network: issues related to
training data characteristics. – Photogrammetric
Engineering & Remote Sensing 61 (4): 391–401.

frEiSlEbEN, b. & MErZ, P., 1996: New local search
operators for traveling salesman problem. – 4th
International Conference on Parallel Problem
Solving from Nature IV, LNCS 1141: 22–26,
Springer.

HarDY, r.l., 1971: Multiquadric equations of to-
pography and other irregular surfaces. – Journal
of Geophysical Research 76: 1905–1915.

HarDY, r.l., 1990: Theory and applications of the
multiquadric-biharmonic method. 20 years of

of the Kriging method are very sensitive to the
selection of the interpolation method of the
varygram. Area 2 has a small domain of el-
evation changes and the accuracy of the Krig-
ing interpolation and other methods are nearly
equivalent. The Kriging method has the high-
est accuracy compared to other conventional
methods.

In both regions, AI techniques results in
a better accuracy rather than convention-
al methods. However, in the first region, AI
techniques produce better accuracy, while the
second region shows little accuracy difference
with respect to conventional methods. Among
the AI techniques within both regions, the best
accuracy exists within ANN because it has a
high ability for pattern recognition and func-
tion approximation. The quartic polynomial
and the IDW that are optimised by GA have
lower accuracy than ANN and better accura-
cy than other methods respectively for area 1
and area 2. These results show that the GA is
very useful for IDW optimisation. In both are-
as, the IDW has a low accuracy in comparison
to other conventional methods. However, with
the estimation and the extraction of optimal
power values and proper weight by GA, the
accuracy of the optimised IDW is higher than
conventional IDW. Also in area 1, the quartic
polynomial has the lowest accuracy. Howev-
er, by using GA and the extraction of optimal
terms, the accuracy of interpolation and mod-
elling is increasing significantly.

9 Summary and Conclusion

In the evaluation of the results, it is concluded
that the use of AI techniques for height inter-
polation is effective and has a higher level of
accuracy compared to conventional methods,
especially in areas with high elevation. In or-
der to achieve the best method for polynomial
interpolation GA is used and optimal weight-
ing parameters are achieved by the IDW meth-
od. ANN is able to determine an appropriate
weight to indicate the best estimated elevation
in unknown altitude regions.

Among the entire interpolation methods
mentioned (conventional and intelligent), the
aim is to evaluate the accuracy of interpola-
tion methods. Universal interpolation occurs



Hossein Bagheri et al., Interpolation of Elevation in the DTM Generation 207

MitaS, l. & MitaSova, H., 1999: Spatial Interpola-
tion, Geographic Information Systems. – Prin-
ciples, techniques, management and applica-
tions: 481–492, New York, NY, USA.

MoKHtarZaDE, M. & valaDaN ZoEJ, M.J., 2007:
Road detection from high-resolution satellite
images using artificial neural networks. – Inter-
national Journal of Applied Earth Observation
and Geoinformation 9: 32–40.

PEtriE, g. & KENNiE, t.J.M. (eds.), 1990: Terrain
Modelling in Surveying and Civil Engineering.
– Whittles Publishing, Caithness, England.

PictoN, P., 2000: Neural Networks. – Palgrave,
Macmillan.

ravagNaNi, M.a.S.S., Silva, a.P. & coNStaNtiNo

arroYo, P.a., 2005: Heat exchanger network
synthesis and optimisation using genetic algo-
rithm. – Applied Thermal Engineering 25 (7):
1223–1217.

rEES, W.g., 2000: The Accuracy of Digital Eleva-
tion Models Interpolated to Higher Resolutions.
– International Journal of Remote Sensing 21
(1): 7–20.

Saati, M., aMiNi, J. & SaDEgHiaN, S., 2008: Genera-
tion of orthoimage from high resolution DEM
and high resolution image. – Scientia Iranica 4
(4).

SHEta, a. & turabiEH, H., 2006: A comparison be-
tween genetic algorithms and sequential qua-
dratic programming in solving constrained opti-
mization problems. – ICGST International Jour-
nal on Artificial Intelligence and Machine
Learning (AIML) 6 (1): 67–74.

SibSoN, r., 1980: A Vector Identity for the Dirichlet
Tesselation. – Mathematical Proceedings, Cam-
bridge Philosophical Society 87: 151–155.

SibSoN, r., 1981: A Brief Description of Natural
Neighbor Interpolation, Interpreting Multivari-
ate Data. – barNEtt, v. (ed.): John Wiley and
Sons, 21–36, New York, NY, USA.

SivaNaNDaM, S.N. & DEEPa, S.N., 2010: Introduc-
tion to Genetic Algorithms. – Springer, Berlin
Heidelberg.

WagNEra, P.D., fiENEra, P., WilKENa, f., KuMarc.,
S. & ScHNEiDEra, K., 2012, Comparison and
evaluation of spatial interpolation schemes for
daily rainfall in data scarce regions. – Journal of
Hydrology 464–465: 388–400.

WiSZNiEWSKi, a., 1983: Accurate Fault Impedance
Locating Algorithm. – IEEE Proceedings C,
Generation, Transmission, Distribution 6: 311–
314.

YaNalaK, M., 2003: Effect of Gridding Method on
Digital Terrain Model Profile Data Based on
Scattered Data. – Journal of Computing in Civil
Engineering 1 (58): 58–67.

discovery 1968–1988. – Computers & Mathe-
matics with Applications 19 (8–9): 163–208.

HauPt, r.l. & HauPt, S.E., 2004: Practical Genetic
Algorithm. – 2nd Edition with CD, John Wiley
& Sons.

HEESoM, D. & MaHDJobi, l., 2001: Effect of grid
resolution and terrain characteristics on data
from DTM. – Journal of Computing in Civil En-
gineering 15 (2): 137–143.

HErtZ, J., KrogH, a. & PalMEr, r.g., 1991: Intro-
duction to the Theory of Neural Computation. –
Addison-Wesley, Redwood City, CA, USA.

HollaND, J.H., HolYoaK, K.J., NiSbEtt, r.E. &
tHagarD, P., 1989: Induction: Processes of Infer-
ence, Learning, and Discovery. –MIT Press.

KaraborK, H., baYKaN, o.K., altuNtaS, c. &
YilDZ, f., 2008: Estimation of Unknown Height
with Artificial Neural Network on Digital Ter-
rain Model. – The International Archives of the
Photogrammetry, Remote Sensing and Spatial
Information Science XXXVII: 115–118.

KaSSEr, M. & EgElS, Y., 2002: Digital Photogram-
metry. – CRC Press, Boca Raton, FL, USA.

KrigE, D.g., 1951: A Statistical Approach to Some
Mine Valuations and Allied Problems at the Wit-
watersrand. – Master’s thesis of the University
of Witwatersrand.

larSSoN, E. & forNbErg, b., 2005: Theoretical and
Computational Aspects of Multivariate Interpo-
lation with Increasingly Flat Radial Basis Func-
tions. – Computers and Mathematics with Ap-
plications 49: 103–130.

li, J. & HEaP, a.D., 2011: A review of comparative
studies of spatial interpolation methods in envi-
ronmental sciences: Performance and impact
factors. – Ecological Informatics 6 (3–4): 228–
241.

li, Z., ZHu, Q. & golD, c., 2004: Digital Terrain
Modeling: Principles and Methodology. – CRC
Press, Boca Raton, FL, USA.

li, Z.l., 1990: Sampling Strategy and Accuracy
Assessment for Digital Terrain Modelling. –
Ph.D. thesis, University of Glasgow, UK.

li, Z.l., 1992a: Variation of the accuracy of digital
terrain models with sampling interval. – Photo-
grammetric Record 14 (79):113–128.

lu, g.Y. & WoNg, D.W., 2008: An adaptive inverse-
distance weighting spatial interpolation tech-
nique. – Computers & Geosciences 34 (9): 1044–
1055.

MESNarD, l. DE, 2013: Pollution models and inverse
distance weighting: Some critical remarks. –
Computers & Geosciences 52: 459–469.

MillEr, c. & laflaMME, r., 1958: The digital ter-
rain model – theory and applications. – Photo-
grammetric Engineering 24: 433–442.



208 Photogrammetrie • Fernerkundung • Geoinformation 3/2014

Addresses of the Authors

HoSSEiN bagHEri & SEYYED YouSEf SaDJaDi, De-
partment of Geomatics Engineering, School of
Civil Engineering, University of Tafresh, Tafresh,
Iran, e-mail: hosseinbagheri1366@yahoo.com,
y_sadjadi@yahoo.com

SaEED SaDEgHiaN, Geomatics College of National
Cartographic Centre, Tehran, Iran , sadeghian@
ncc.org.ir

Manuskript eingereicht: Dezember 2013
Angenommen: März 2014

YaNg, c.S., Kao, S.P., lEE, f.b. & HuNg, P.S., 2004:
Twelve Different Interpolation Methods: A Case
Study. – ISPRS International Symposium, Istan-
bul, Turkey.

ZHoNg, D., liu, J., li, M. & Hao, c., 2008: NURBS
reconstruction of digital terrain for hydropower
engineering based on TIN model. – Progress in
Natural Science 18 (11, 10): 1409–1415.


