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Summary: In the field of photogrammetry, com-
puter vision and robotics recursive estimation of time
dependent processes is an important task. Usually
Kalman filter based techniques are used which rely
on explicit model functions that directly and explic-
itly describe the effect of the parameters on the ob-
servations. However, some problems naturally result
in implicit constraints between the observations and
the parameters, for instance all those resulting in ho-
mogeneous equation systems. By implicit we mean
that the constraints are given by equations that are
not easily solvable for the observation vector. We
propose an iterative extended Kalman filter based on
implicit measurement equations. The derived filter
is useful for various applications, where the possibil-
ity to use implicit constraints simplifies the model-
ing. As an extension, we introduce a robustification
technique similar to TING et al. (2007) and HUBER
(1981) which down-weights the influence of potential
outliers. The feasibility of the proposed framework is
demonstrated at a number of typical computer vision
applications.

Zusammenfassung: ���
���	 ���	�����	 �������
�����	 ��� ��������	��� ��������
���������
����. In
der Photogrammtrie, der Computer Vision und der
Robotik finden rekursive Schätzungen ein weites An-
wendungsspektrum. Üblicherweise werden in die-
sem Zusammenhang Kalman-Filter-basierte Techni-
ken angewendet, welche auf expliziten Beobach-
tungsmodellen basieren, die den Effekt der Beobach-
tungen auf die Parameter direkt und explizit beschrei-
ben. Einige Probleme sind jedoch aufgrund ihrer Na-
tur als implizite Bedingungen zwischen den Para-
metern und den Beobachtungen formuliert, wie zum
Beispiel Bedingungen unter Verwendung homogener
Koordinaten. Unter impliziten Bedingungen verste-
hen wir Gleichungen, welche nicht trivial nach ei-
nem Beobachtungsvektor aufgelöst werden können.
Diese Arbeit präsentiert einen iterativen erweiterten
Kalman-Filter, welcher die Verwendung impliziter
Beobachtungsgleichungen ermöglicht. Als eine Er-
weiterung führen wir ein Schema zur Robustifizie-
rung nach TING et al. (2007) and HUBER (1981)
ein, welches den Einfluss potenzieller Ausreißer re-
duziert. Die Nützlichkeit dieses Werkzeuges wird an
einigen typischen Beispielen aus dem Bereich der
Bildverarbeitung demonstriert.

1 Introduction

Recursive estimation and Kalman filtering is a
classical technique (KALMAN 1960) and has
been widely used in robotics and computer vi-
sion (WELCH & BISHOP 1995) to tackle prob-
lems such as positioning, object reconstruction,
object tracking or calibration tasks. So far, the
applications of Kalman filter techniques was
limited to problems where the observations are
represented by an explicit function in the un-
known parameters.

However, many problems encountered in
computer vision naturally result in implicit
constraints between the observations and the
parameters (HARTLEY & ZISSERMAN 2000,
HEUEL 2004, PERWASS et al. 2005, HEUEL
2001). An example is the iterative estimation of
a 2d line from 2d point observations (section 3).

Although it is always possible to reduce the
solution of an implicit problem to the solution
of an explicit problem (KOCH 1999, p.231ff) by
introducing pseudo parameters, it is often much
easier and straightforward to specify the mea-
surement equations as implicit constraints relat-
ing the state vector to the observation vector.
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The linear Kalman filter using explicit func-
tions has been extended to the case of non-
linear functions known as the extended Kalman
filter (EKF) to deal with non-linear models and
an iterative scheme (IEKF) to take into ac-
count the change of the linearization point. The
only publication the author knows considering
implicit constraints within Kalman filtering is
SOATTO et al. (1994). However, the method
only allows for a single iteration, equivalent to
the classical EKF without taking into account
the advantage of the IEKF.

The focus of this paper is on providing the
foundations for integrating implicit constraints
into a Kalman filter using the iterative scheme
of the IEKF in order to enrich the applica-
tion domain of the popular Kalman filter ap-
proach. As an enhancement to STEFFEN &
BEDER (2007), we show that this novel frame-
work is a generalization of the classical iterative
Kalman filter and we demonstrate the benefit of
the introduced approach for a variety of appli-
cations.

The traditional Kalman filter consists of two
steps, a time update and a measurement up-
date. Since the challenges for implicit con-
straints are in applying the measurement up-
date, we mainly investigate the integration of
implicit constraints to the update step.

Recently, the unscented Kalman filter
(JULIER & UHLMANN 1997) has obtained a
lot of attention which aims at improving the
stochastic properties of the filter. Instead, our
work aims at simplifying the specification of
measurement equations instead.

This work is structured as follows: first we
derive the prerequisites for the recursive esti-
mation algorithm based on implicit measure-
ment functions in section 2.1. Then we show,
how outliers can be detected and the algorithms
robustness can be improved. The final algo-
rithm is given in section 2.3. Finally we present
examples of computer vision tasks benefitting
from the proposed algorithm in section 3. This
comprises different tasks such as pose estima-
tion, point cloud fitting and structure from mo-
tion.

2 Kalman Filter Update using
Implicit Constraints

In this section we first derive the classical
Kalman filter update using explicit measure-
ment equations. Based on this concept, we
show how to incorporate implicit constraints
and adress the treatment of outliers. Section &�!
provides a summary of the final algorithm.

2.1 Update Estimation

The Kalman filter consists of a dynamic model
(prediction step) and a correction step (update
step). The dynamic model is given by a non-
linear function h which provides a predicted
state vector p̄ by p̄ = h(p) + ε, with p as the
previous state vector and ε as additional Gaus-
sian random noise that influences the state vec-
tor. In addition, the state vectors uncertainty is
given by its covariance matrixCpp that has to be
computed for the predicted state vector C̄pp by
error propagation from the previous time step.
After the prediction, we usually obtain mea-
surements to update the predicted state vector.
Note that this process can be interpreted as a
weighted mean (2), (3) of the predicted state it-
self and the state implied by the measurements.
The measurement equation is given by

z + v = f(p), (1)

with z as the observation vector, v as the esti-
mated residuals and f (p) as an explicit func-
tion of the state vector. In general, f is non-
linear and we have to update the state vector it-
eratively by pν = pν−1+Δpν until the conver-
gence point has been reached (Δpν = 0). The
index ν indicates the iteration counter. The up-
date vector Δpν can be obtained by an iterative
maximum likelihood estimate using

Δp
ν = Fvν (2)

= F
(
z − f (pν−1)− A(p̄− p

ν−1)
)

with A as the Jacobian of f w.r.t. the updated
state vector pν and F as the influence or gain
matrix by

F = C̄ppAT(Czz + AC̄ppAT)−1, (3)
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where Czz denotes the covariance matrix of the
observations. The last term A(p̄ − pν−1) in-
troduces the correction in the iterative extended
Kalman filter (WELCH & BISHOP 1995). The
covariance matrix of the estimated state vector
can be obtained by the error propagation of (2)
via

Cpp = (I − FA)C̄pp. (4)

See WELCH & BISHOP (1995) or THRUN et al.
(2001) for further details.

In the following, we derive a recursive es-
timation scheme for the case of non-linear
implicit measurement constraints using the
weighted mean idea. In complete analogy to
the classical explicit Kalman filter we start with
a parameter vector p̄1 (the state vector) and its
covariance matrix C̄1 resulting from some pre-
diction step. This state shall be updated accord-
ing to a newly acquired measurement vector
z that implicitly constrains the parameter vec-
tor. By implicit we mean that the measurement
model is given by a non-linear implicit function

g(p,z) = 0 (5)

relating the unknown parameter vector p to the
observation vector z. Such an implicit obser-
vation model equation is often much easier to
obtain than the explicit function z = f(p)
required by the classical Kalman filter. Note
that every explicit function is easily made im-
plicit by subtraction of the measurement vector
0 = g(p,z) = f(p)− z.

We start by analyzing how a new parameter
vector can be estimated from those observations
alone by looking at the Taylor expansion of the
observation model equation in (5)

0 ≈ g(pν ,zν) + A(p− p
ν) + BT(ẑ − z

ν)

= g(pν ,zν) + AΔp+ BT(ẑ − z + z − z
ν)
(6)

containing the Jacobians

A =
∂g(p,z)

∂p

∣∣∣∣
zν ,pν

B =
∂g(p,z)T

∂z

∣∣∣∣
zν ,pν

.

(7)
By rearranging this equation, we obtain the lin-
ear (left) and non-linear (right) contradiction

part

AΔp+BT(ẑ−z) = −g(pν ,zν)−BT(z−z
ν),
(8)

which are equal at the convergence point with
the final estimated observation vector ẑ. Given
enough such observations, the maximum like-
lihood estimate of the parameter vector p
is obtained by iteratively updating (FÖRST-
NER & WROBEL 2004) similarly to the classi-
cal Kalman filter by

p
ν = p

ν−1 +Δp
ν , (9)

with the non-linear contradiction cg in

Δp
ν = CAT(BTCzzB)−1

c
ν
g (10)

using the covariance matrix

C = (AT(BTCzzB)−1A)−1 (11)

and the non-linear contradiction vector

c
ν
g = −g(pν−1,zν−1)−BT(z−z

ν−1). (12)

We can also compute the residuals of the obser-
vations (MIKHAIL & ACKERMANN 1976)

v
ν = ẑ − z

= CzzB(BTCzzB)−1(cνg − AΔp
ν) (13)

yielding the linearization point for the next iter-
ation zν+1 = z + vν and pν from (9).

This estimation scheme for the computation
of a parameter vector from a given observa-
tion set using implicit constraints is also known
as the Gauss-Helmert model. Now we com-
bine this estimation scheme with the state vec-
tor from the prediction step to achieve an iter-
ative recursive update. To do so, we interpret
the predicted state vector p̄ as a direct observa-
tion z1 of the new state vector, which fits into
the above estimation scheme using the model
equation

0 = g1(p,z1) = p− z1 (14)

and the observations z1 = p̄ having the covari-
ance matrix Czz1 = Cpp1 = C̄pp. Because
this constraint is linear, the Jacobians are in this
case simply A1 = I and B1 = −I and indepen-
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dent of the linearization point. Considering the
prediction of the state vector alone, we would
obtain p = p̄ so that cg1 = 0. As the measure-
ment update is supposed to influence the state
vector and thereby the joint linearization point,
we have to cope with the change of the contra-
diction incurred by this change, which we call
Δcg1 in the following to reflect this important
property. Plugging the direct measurement (14)
and its Jacobians into (12) yields the contradic-
tion

Δcg1 = p̄− p
ν (15)

because g1(p
ν ,zν

1) = 0 is immediately ful-
filled for the direct observation. Therefore, also
the equation

C−1
pp1

Δp1 = C−1
pp1

Δcg1 (16)

holds, which will become useful in the follow-
ing.

We are now ready to formulate the recursive
estimation as a weighted mean process of two
variables being the predicted state p1 on the
one hand and the estimated state from the novel
observations p2 on the other hand. Hence, the
state update is given by

Δp = (C−1
pp1

+C−1
pp2

)−1(C−1
pp1

Δp1+C
−1
pp2

Δp2).
(17)

Substituting (16) and (10) into this weighted
mean update, we obtain

Δp =

Cpp︷ ︸︸ ︷
(C−1

pp1
+ C−1

pp2
)−1

(C−1
pp1

Δcg1 + AT
2 (B

T
2CzzB2)

−1
cg2). (18)

Using the well known matrix inversion
(WOODBURY 1950) identity

(K + LN−1M)−1 =

K−1 −K−1L(N +MK−1L)−1MK−1,

we can reformulate (18) and finally get

Δp
ν = Fcg2 + (I − FA2)Δcg1, (19)

with the substitution

F = Cpp1A
T
2 (B

T
2CzzB2 + A2Cpp1A

T
2 )

−1,
(20)

yielding the iterative update pν+1 = pν+Δpν .
The residuals are computed using (13)

v1 = −Δcg1 +Δp
ν (21)

v2 = CzzB2(BT
2CzzB2)

−1(cg2 − A2Δp
ν)
(22)

allowing to compute the contradiction for the
next iteration

cg2 = −g2(p
ν ,z2 + v2) + BT

2v2. (23)

Finally, note that the new covariance matrix of
the state vector is given by

Cpp = (I − FA2)C̄pp. (24)

As already mentioned, the explicit model of the
classical Kalman filter can be transformed to an
implicit model into the form 0 = f(p) − z.
Applying this to the novel framework, the Jaco-
bian w.r.t. the observation becomes B2 becomes
the negative identity matrix −I. Therefore, the
gain matrix in (20) boils down to the classical
gain matrix in (3). The contradiction in (23) be-
comes

cg2 = −(f(p)− z + v) + v

cg2 = z − f (p) (25)

Substitute cg2 and (15) into the update equation
(19) we obtain

Δp
ν = F(z − f(pν−1))

+ (I − FA2)(p̄− p
ν−1)

= (p̄− p
ν)

+ F
(
z − f(pν−1)− A2(p̄− p

ν−1)
)

as the iterative update to the approximate val-
ues pν = pν−1+Δpν . To be equal to the clas-
sical iterative Kalman filter, this can be rewrit-
ten into (2) using the predicted state at ν = 0
as the reference state. As a conclusion, the
classical iterative Kalman filter is just a spe-
cialization of the novel framework derived here.
Therefore, there is no need to compare the novel
Kalman filter with the classical Kalman filter as
from theory both are equal. A full proof can be
found in (STEFFEN 2009).

The presented algorithm is based on a least
squares optimization, which is known to be very
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sensitive to outliers. In the following section,
we show how the robustness of the presented
method can be increased by re-weighting the
observations.

2.2 Robustification by Re-Weighting

The classical Kalman filter as well as the esti-
mation scheme presented so far minimizes the
squared residuals of the observations, which is
known to be sensitive to outliers. We now show
how outliers may be detected by considering the
plausibility of the computed residuals with re-
spect to the expected uncertainty. By reducing
the influence of such observations on the esti-
mation, the robustness can be increased.

The weighted mean process is mainly influ-
enced by two error effects. First, an erroneous
dynamic model results in an erroneous predic-
tion. Second, noisy observations yield a correc-
tion effect to the estimated state.

In TING et al. (2007) a robust outlier detec-
tion is presented for the classical Kalman filter.
We will adapt this technique using an alterna-
tive re-weighting method proposed in HUBER
(1981). Assuming an error free prediction, the
update of the observations in v2 is normal dis-
tributed with zero mean. In this case, we are
able to detect outliers by simply normalizing
v2 with the inverse observation covariance Czz

and reweight the observations accordingly.
However, in realistic applications the predic-

tion model does not always hold true. Its ef-
fect on the improvement of the observations in
v2 can not be modeled in general and depends
on the system noise of the dynamic model. For
instance, in the structure-from-motion problem
an error in the camera position orthogonal to the
viewing direction results in a consistent transla-
tion fraction in the image coordinates.

One common way to solve this problem is
to approximate the complex deformation of the
estimated observation ẑ = z + v. This can
be done by choosing an approximation func-
tion depending on the expected deformations.
In the case of image observations, a homogra-
phy could be a good choice. The robust esti-
mation of this function and the detection of the
outliers can then be done by a RANSAC based
approach or by a robustified least square solu-
tion. However, such a procedure for outlier de-
tection is often quite expensive.

Fig. 1: Full cosine wavelength 2π, sampled with
500 samples, noise is 0.05, system noise 0.01,
5 percent outliers with strength of 2, iteration to
convergence.

Fig. 2: Recursive estimation using the non-
robustified and the robustified version of the
Kalman filter.

From another point of view, the influence of
the erroneous prediction is small if the system
noise is large enough to compensate for the pre-
diction error, which should be the case for a
well approximating dynamic model. Thus, we
are able to robustify the update by reweighting
the observations in the following sense.

We first normalize the residuals v2j with the
uncorrelated observation standard deviation to
get standard normal distributed test values

cj =
v2j
σj

. (26)

One can argue that the normalization should be
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done using σv from Cvv. However, in the case
that all observations can be assumed to have the
same influence (equal redundancy number) to
the parameter vector, it is suitable to use σz in-
stead. The absolute test values cj allow to de-
cide for each single observation, whether there
is a reason to consider it as an outlier. We then
compute a variance factor wj for each observa-
tion according to HUBER (1981)

wj =

{
1 if ‖cj‖ ≤ k
‖cj‖

k
if ‖cj‖ > k

, (27)

which does not alter the observations within the
range of k times the expected standard devia-
tion and reduces the effect of observations out-
side this range on the estimation. To perform
the desired re-weighting, we use the observa-
tion covariance matrix

C(ν)
zz = diag(w)C(0)

zz (28)

instead of the initially given covariance matrix
C(0)

zz in each iteration.
Following the experimental validation of

TING et al. (2007), we also demonstrate the ro-
bustification on the one dimensional estimation
of a cosinus curve containing some outliers. In
Fig. 1 the noisy observations with 5% of out-
liers are shown. Fig. 2 shows the non robust
and the robust version of the estimated curve
parameters. The robustification yields a much
smoother estimate not being perturbed by the
outliers.

2.3 The final Algorithm

We now summarize the recursive estimation al-
gorithm. From a previous estimation or pre-
diction step of the filter, a current state vector
p1 together with its covariance C11 is known.
We gather additional observations z2 together
with their covariance matrix C22 in a subse-
quent measurement step. The following algo-
rithm may then be applied to update the state
vector accordingly
1. set Δp = 0
2. set p = p̄

3. set v1 = 0
4. set v2 = 0, hence z0 = z

5. Iterate until Δpν is sufficiently small
(a) compute Jacobians A2 and B2 at pν and

zν

(b) compute the gain matrix F according to
(20)

(c) compute cg2 according to (23)
(d) compute Δcg1 according to (15)
(e) compute Δpν according to (19)
(f) update pν with Δpν

(g) compute v1 according to (21)
(h) compute v2 according to (22)
(i) update zν = z + v2

(j) compute normalized test values accord-
ing to (26)

(k) compute variance factor for all observa-
tions with (27)

(l) compute reweighted observation co-
variance matrix for the next iteration

6. compute Cpp according to (24) .
After the algorithm is converged, we finally ob-
tain the updated state vector p together with its
covariance matrix Cpp. The only problem spe-
cific part is the computation of the Jacobians in
step 5a, which has to be adapted. This com-
pletes the measurement update using the im-
plicit constraint and a subsequent time update
may be performed. Also note that for implicit
measurement equations obtained directly from
explicit equations by subtraction, the presented
algorithm yields the same results as the classi-
cal iterated extended Kalman filter.

3 Exemplary Applications

In this section we present some examples for
the usefulness of the proposed algorithm. Given
that theoretically both our proposed framework
and the traditional Kalman filter are equivalent,
we do not provide a numerical example. More
precisely, the results of the proposed algorithm
is equivalent to the results of the traditional
Kalman filters when using the explicit con-
straints as well when using the pseudo param-
eterization. Our motivation is to demonstrate
the straightforwardness using implicit measure-
ment equations for Kalman filter based estima-
tion. Note, the observation in a Kalman filter
must be minimal represented. For instance, us-
ing homogeneous observations lead to a singu-
lar covariance matrix of the observations and
the Kalman filter update will fail.

3.1 Line and Plane Estimation
The recursive estimation of basic primitives
from an uncertain point cloud is useful in a lot
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of applications, e.g. in the task of urban scene
reconstruction (POLLEFEYS et al. 2008). In this
section we demonstrate solutions for a recursive
2d line and a recursive 3d plane estimation. A
2d line can be represented given a set of two pa-
rameters l = {a, b}. For every Euclidean point
xi = {xi, yi} the incidence with the line l is
given by

yi = axi + b. (29)

Note, we are not able to reformulate this equa-
tion for both observations xi and yi explitely,
but we can easily rewrite (29) in the implicit
form

0 = g(p,z) = axi + b− yi. (30)

Using our proposed method to estimate the line
parameter recursively with (30) as measure-
ment update equation, the state vector contains
p = [a, b]T and the observation vector the ob-
served 2d points z = [xi, yi]

T. To handle ver-
tical lines, (30) should be replaced by 0 = lTx
with l as the homogeneous line with the un-
known parameter d (distance from origin) and
φ (angle of the line) and x as the homogeneous
2d point.

In a similar way, we are able to recursively
estimate a plane which approximates a given
point cloud. The incidence of an homogeneous
3d point Xi = [Xi, Yi, Zi, 1]

T and a plane
A = [n,−d]T can be expressed as a simple
bilinear constraint (Fig. 3).

0 = ATXi. (31)

Again, this constraint can not be easily refor-
mulated to an explicit observation measurement
function.

3.2 Pose Estimation with
parameterizable Shapes

Pose estimation from a single camera observa-
tion is another interesting application. In this
section, we give an example for the pose esti-
mation of a simple sphere. In the subsequent
section, we extend this approach to a more gen-
eral formulation.

Assume that we are able to observe the sil-
houette of a projected sphere with a known ra-
dius (Fig. 4). For every point xi on the silhou-

Fig. 3: Left: Recursive 2d line estimation from
uncertain 2d points. Right: Recursive 3d Plane
estimation from an uncertain 3d point cloud.

ette we can formulate an implicit measurement
equation in the following way:

The projection ray Li = [Lh,L0]T in
Pluecker representation can be obtained using
a known camera orientation by

Li = P̄T
Lxi =

[
Lh

L0

]
=

[
C
D

]
xi (32)

The inverse projection matrix P̄L can be com-
puted as a function of the camera orientation
and its calibration (HEUEL 2004). The dis-
tance between the projection ray of the silhou-
ette points Xi and the center of the sphere Xc

has to be the known radius R. We can express
this constraint implicitly using S(•) as the skew
matrix of a vector by

0 =
‖S(Lh

i )Xc + L0
i ‖

‖Lh
i ‖

−R

=
S(Cxi)Xc + Dxi

‖Cxi‖
−R. (33)

Estimating the center of a moving sphere ob-
serving the projected silhouette and assuming a
linear motion model, the state vector contains
the spheres center and its velocity. The obser-
vation vector contains the observed Euclidean
silhouette image coordinates. The parameters
C,D and R are assumed to be known and con-
stant.

3.3 Pose Estimation with meshed
Shapes

Pose estimation from a single camera often
deals with known shapes given as 3d meshes,
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Fig. 4: Recursive 3d pose estimation of a sphere
with known radius using observed silhouette
points in an image.

(ROSENHAHN et al. 2004). Extracting the
silhouette in the projected image of the ob-
served object, we can use an edge (from the
mesh) to point (from the silhouette) incidence
as the measurement equation, similar to the well
known ICP algorithm.

Fig. 5: Recursive 3d pose estimation with a sin-
gle camera of a known object. The object is rep-
resented as a meshed shape with observed sil-
houette points in an image (Image and silhouette
data provided by B. ROSENHAHN, MPI).

The pose of an arbitrary 3d object can be rep-
resented by its Euclidean position r and its ori-
entation q represented as quaternion. Position
and orientation are combined in the motion ma-
trix

M = M(r,q) =

[
R(q) r

0T 1

]
. (34)

Applying the motion to the homogeneous 3d
mesh point coordinates Xi given in a local ob-
ject system and projecting them into the image
space, we get the image coordinates of the pro-

jected mesh points with

xi = PMXi. (35)

Mesh edges are defined by two connected
points {a, b}. The congruent line in the image
space can be obtained by

lab = S(xa)xb. (36)

The incidence of the observed silhouette point
x′ and this projected edge is given by a bilinear
contraint

0 = lTabx
′. (37)

Substitute (35) and (36) into (37) we get the fi-
nal contraint

0 = (S(PMXa)PMXb)
Tx′. (38)

Using our recursive update model, the state vec-
tor contains the position and orientation of the
3d object and its velocities assuming a linear
prediction model given by

p = [r q ṙ q̇]T. (39)

The measurement vector contains the observed
Euclidean 2d silhouette points.

3.4 Artificial Horizon Estimation

In the field of robotics and navigation, an ar-
tificial horizon identification can be useful to
stabilize the system over a long period of time
as shown in NETO et al. (2011). In case of
real measurements, the horizon line measure-
ment is uncertain. This leads to undesirable ef-
fects in subsequent processes. In this case, the
first choice is a Kalman filter based smoothing.

Using an implicit measurement update equa-
tion leads to an astonishling simple solution.
The reference horizon in a normalized camera
coordinate system can be expressed as a line in
homogeneous representation by

lo =

⎡⎣ 0
1
0

⎤⎦ .

We denote the desired pitch by ω and roll by
κ. In homogeneous representation, we use the
simple measurement equation by the incidence
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Fig. 6: Artificial horizon estimation from a single
horizon line.

formulation

0 = S(l)RκRωl
o. (40)

Again, using our recursive update model the
state vector contains the roll and pitch angles
and their velocities by p = [κ ω κ̇ ω̇]T.
The measurement vector contains a line rep-
resentation, for instance by angle and distance
from origin (������� ��	��� !�	�) or by �	����
��� ��� ����	���� {a, b}, (29).

3.5 Structure from Motion with Points
and Lines

Following the approach of DAVISON (2003),
the motion of a single camera can be described
by the following state vector

p = [r q ṙ q̇ X1 . . .Xi L1 . . .Lj ]
T

(41)
comprising the camera state followed by a set
of feature parameters. The camera trajectory is
represented by its actual position r, its orienta-
tion quaternion q, its velocity vector ṙ and its
angular velocity vector q̇. The 3d point coordi-
nates are represented by their Euclidean points
Xi. Additionally we introduce 3d lines rep-
resented by its Pluecker coordinates Li. The
interior camera parameters are assumed to be
known.

We assume a linear time update model. In
the approach of DAVISON (2003) the measure-
ment model for object points is based on the co-
linearity equations, which can be written as ho-
mogeneous equations

xi = PX i with P = KR(q) [I3×3| − r] .
(42)

As our approach is able to cope with implicit
functions, we formulate the co-linearity con-
straint using the cross-product such that the co-
linearity equations can be stated as an implicit
equation

S(xi)PXi = −S(PXi)xi = 0. (43)

Obviously, those implicit constraints are equiv-
alent to the explicit constraints used in DAVI-
SON (2003). Also observe that they are non-
linear in the camera pose parameters. Using
only the point observations in our filter, the re-
sults are equal to the results achieved using a
classical iterative extended Kalman filter.

Now let us incorporate the lines in the same
way. The co-linearity equations for lines can be
represented in homogeneous coordinates by

lj = PLLj with PL
3×6

= PL(P), (44)

where PL can be computed as a function of the
camera orientation and its calibration (HEUEL
2004). This constraint can not be easily ex-
pressed as non homogeneous observations in an
explicit formulation. Using implicit constraints
we can reformulate (44) in the same easy way
to

S(lj)PLLj = −S(PLLj)lj = 0. (45)

Using two constrains for points in (43) and two
constrains for lines in (45) for every image point
and line as an observation, we can solve the
Kalman filter based update combining points
and lines in one update step.

4 Conclusion

We presented a novel derivation of a recursive
estimation framework in a Kalman filter ap-
proach which allows us to use implicit mea-
surement constraint equations rather than being
restricted to explicit ones. By using implicit
constraints, the task of modeling recursive es-
timation schemes is eased significantly. Fur-
thermore, we presented an improvement to the
framework in order to deal with outliers in the
observations. Instead of the elimination of ob-
servations, we used a re-weighting method.

We demonstrated the usefulness of this new
algorithm on exemplary classical computer vi-
sion tasks.
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The presented method is applicable to a
broad range of time driven estimation problems,
especially including all those resulting in homo-
geneous equation systems.
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