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neity affects species diversity and ecosystem
functions, such as pollination (e.g. WESTPHAL

et al. 2006, TSCHARNTKE et al. 2012). Land-
scape complexity in this context is routinely
quantified by measures of landscape compo-
sition and configuration (landscape metrics).
Remote sensing based land cover and habitat

1 Introduction

Human-dominated landscapes are charac-
terised by complex mosaics of agricultural,
semi-natural and natural habitats. Several
studies have shown that landscape heteroge-

Summary: Satellite based habitat maps are the
main source for the analysis of landscape pattern
and its effect on species diversity and ecosystem
functions. Nonetheless, only few studies systemati-
cally investigated the optimal constellation of mul-
ti-source satellite input data for habitat mapping
and the effect of mapping accuracy on landscape
pattern indices and hence on ecological analysis.
The present study underlines the importance of a
careful selection of input data for land cover type
classification and highlights the synergistic poten-
tial of optical/SAR data fusion for habitat mapping
purposes. With regard to landscape analysis the
study reveals the impact of classification accuracy
on variation in landscape metrics. This impact is
not uniform and not always directly related to clas-
sification accuracy but is depending on the nature
of landscape metrics. Area metrics show strong
variations with the magnitude of variation being
much higher than the classification errors whereas
variation of diversity and connectivity measures is
significantly below the classification error. Finally,
it is demonstrated that spatial uncertainty in land
cover maps has to be addressed in any landscape
analysis at spatial scale.

Zusammenfassung: Die Habitatkartierung aus
Daten optischer und SAR-Satelliten: Synergieef-
fekte und Unsicherheiten bei der Analyse der Land-
schaft. Die Analyse der Zusammenhänge zwischen
Landschaftsmustern und Artenvielfalt bzw. Öko-
systemfunktionen im Allgemeinen ist in vielen Fäl-
len auf satellitenbasierte Habitatkartierungen ge-
stützt. Hierbei wird aber nur in wenigen Fällen un-
tersucht, welche Sensoren und Aufnahmezeitpunk-
te am besten geeignet sind. Darüber hinaus wird in
den meisten Fällen nicht berücksichtigt, welche
Auswirkungen die Klassifikationsgenauigkeit auf
die Berechnung von Landschaftsmaßen und damit
auf die Auswertung ökologischer Zusammenhänge
haben kann. In diesem Zusammenhang hebt der
vorliegende Beitrag die Wichtigkeit und Notwen-
digkeit der sorgsamen Auswahl von Satellitendaten
für Landbedeckungskartierungen hervor und un-
terstreicht das Potential der Fusion von optischen
und SAR-Daten für qualitative Fernerkundungs-
auswertungen. Die Ergebnisse machen den Ein-
fluss der Klassifikationsgenauigkeit auf die Berech-
nung von Landschaftsmaßen (landscape metrics)
deutlich. Dieser Einfluss ist nicht einheitlich son-
dern von den Eigenschaften der Maße abhängig,
wobei flächenbezogene Indikatoren einer stärkeren
Schwankung unterworfen sind als Konnektivitäts-
und Diversitätsmaße. Insgesamt unterstreichen die
Ergebnisse die Notwendigkeit der Berücksichti-
gung von Unsicherheiten in den Datengrundlagen
bei der räumlich expliziten Landschaftsanalyse.
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scape is dominated by intensive agricultural
production fields (cropland and grassland) that
are flanked by many small to large lakes, fens
and mires. Besides intensive agriculture, there
are considerable areas of extensive cultivation
and semi-natural habitats.

2.1 Field Data

Land use type was mapped in a field campaign
in 2009 in 5 different land use clusters com-
prising more than 3000 polygons and cover-
ing a total area of 22,891 ha. Additionally, in-
formation on crop type and productive grass-
land were available for the investigation pe-
riod (2011) from the agricultural ministry of
the federal state of Brandenburg. These two
data sources were merged to a comprehensive
ground truth dataset for our investigation. In
total, the land cover is represented by a two-
level classification system including 6 general
land use types at the first level and 18 habitat
subtypes at the second level. However, earli-
er investigations (ERASMI et al. in press) have
shown that some of the thematic classes at the
sub-level are not well represented by the avail-
able satellite data. Furthermore, not all of the
subtypes are relevant for habitat and biodiver-
sity mapping within the present case study.
This is why in this study the number of sub-
types was aggregated to the 9 classes grass-
land (managed), semi-natural habitats (mainly
extensively grassland, fallow land and wet-
land), bushland (also including trees outside
forest, hedges, scrups), water, settlements and
four types of cropland (cereals, corn, rape-
seed, other crops).
Following MCCOY (2005) and taking into

account the resolution (5 m) of the satellite im-
ages and the positional accuracy of the remote
sensing data and the field data, the minimum
mapping unit (MMU) was determined with
500 m2. In order to avoid mixed pixels and im-
prove spectral separability, only the core areas
of fields were analysed using a margin zone of
10 m for all objects. After applying the MMU
and core area criteria and further taking into
account the intersection of the coverage of the
different satellite data sources, a total of 1581
patches remained for the analysis.

maps provide the base for the calculation of
those landscape metrics and have been wide-
ly used for ecological studies that account for
spatial scale as an indicator for ecological di-
versity (e.g. GILLESPIE et al. 2008, PEROVIC et
al. 2010). The statistical background and be-
haviour of landscape metrics is well docu-
mented (RIITTERS et al. 1995, NEEL et al. 2004).
Less attention has been paid to the spatial un-
certainty of the satellite maps underlying the
landscape metrics calculation. Uncertainty in
this context can be a function of the classifi-
cation scheme, the spatial/thematic scale and
the classification accuracy and has been sub-
ject to investigation in many theoretical stud-
ies based on synthetic data (e.g. BUYANTUYEV
& WU 2007, LANGFORD et al. 2006, WICKHAM

et al. 1997, SAURA 2002). However, in a recent
study LECHNER et al. (2012) reported that only
1 out of 59 studies in landscape ecology ac-
counted for the effect of classification accura-
cy on landscape metrics and hence on ecologi-
cal analyses.
In this study, a multi-sensor optical and

SAR satellite dataset (RapidEye, RADAR-
SAT-2, TerraSAR-X) is evaluated for its abili-
ty to map land cover type with a focus on func-
tional habitat types (semi-natural habitats) for
ecological studies. The quality of land cover
maps is documented in terms of classification
accuracy and variation in accuracy measures.
The synergy of optical and SAR data for map-
ping land cover is evaluated by means of clas-
sification accuracy and relative importance of
input variables. In a second step, the effect of
classification accuracy on variations in land-
scape metrics is tested. Here, the author fol-
lows the hypothesis of LANGFORD et al. (2006)
and LECHNER et al. (2012) that uncertainty in
land cover maps induces errors in landscape
pattern analyses.

2 Data

The study area is located in the vicinity of the
UNESCO-biosphere reserve “Schorfheide-
Chorin” in eastern Germany, about 50 kilo-
metres north of Berlin. It is characterized by
sander areas and moraines which are repre-
sentative for the glacially formed lowlands
of north-eastern Germany. The cultural land-
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10.3 software (PCI 2013). The output is a data-
set of six spectral parameters (blue, green, red,
Red-Edge, NIR, NDVI) at 5 m spatial resolu-
tion for each acquisition. However, for anal-
ysis, only four parameters were used (green,
Red-Edge, NIR, NDVI) to minimize redun-
dancy in the input variables. RADARSAT-2
single look complex (SLC) data were filtered
using the SCL Gaussian DE MAP Filter (NEZ-
RY & YAKAM SIMEN 1999). Filtering was fol-
lowed by a “Pauli coherent decomposition” of
the fully polarimetric SLC dataset in terms of
elementary scattering mechanisms (CLOUDE&
POTTIER 1996). Geometric and radiometric cal-
ibration (sigmaθ, dB) together with mosaick-
ing of a pair of two adjacent scenes resulted in
a dataset of six polarimetric layers (HH, HV,
VV, Pauli1, Pauli2, Pauli3) at 5 m spatial res-
olution for each acquisition period (RS1 and
RS2, Fig. 2).
TerraSAR-X SLC data were processed us-

ing a De Grandi multitemporal filter (DEGRAN-
DI et al. 1997). Together with multilooking, co-
registration and radiometric calibration, two
filtered polarization layers (HH, HV) at 5 m

2.2 Satellite Data

In total, six RapidEye level 1B (RE1 – RE6),
six TerraSAR-X stripmap (dual polarization)
(TS1 – TS6) and four RADARSAT-2 scenes
(fine beam Quad polarization) (RS1 and RS2)
were successfully acquired during the grow-
ing season 2011. Fig. 1 shows extracts of col-
our composites for all satellite sensors to-
gether with an overview of the classification
scheme. Fig. 2 illustrates the temporal distri-
bution of the data acquisitions for all three
sensors along the growing period from April
to mid of August 2011. Due to weather con-
straints, no RapidEye acquisitions were pos-
sible after 29th June 2011. Heavy rainfall on
4th July also impacted the X-Band SAR image
from TerraSAR-X and the acquisition could
not be used for further investigations.
The processing of the RapidEye data in-

cluded rigorous orthorectification after TOU-
TIN (2004), co-registration, atmospheric cor-
rection (ATCOR) and calculation of the nor-
malized difference vegetation index (NDVI).
All processing was done using PCI Geomatica

Fig. 1: Overview of data sources (a) ground truth, (b) RapidEye image (NIR, RE, G, 26th May 2011),
(c) RADARSAT-2 image (VV,VH,HH; 20th May 2011), (d) TerraSAR-X image (17th August, 21st May,
7th April 2011).
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sifications were chosen that are in the upper
10%-quartile for at least two land cover cat-
egories. Out of this subset (n = 16), all possible
bi-sensoral combinations (n = 77) between the
three sensor systems were evaluated.
All classifications were run using a classifi-

cation and regression tree (CART) algorithm
(BREIMAN et al. 1984) in SPSS ® Version 20.0.
Training data were selected from the ground
truth dataset using a random split-sample vali-
dation approach with 30% training and 70%
validation samples. Accuracy of the classifi-
cation result was accounted for by calculat-
ing the overall accuracy assessment (OAA)
as well as producer’s accuracy (PA) and Co-
hen’s kappa coefficient. Additionally, in order
to evaluate the best predictors for every single
classification, the normalized importance fac-
tor (NI) was computed (ERASMI et al. in press).
The NI is based on the importance of each
independent variable (input channel) for the
regression tree classifier, weighted over the
number of classification attempts where the
variable was used:

,

1

n
p i

p
i

I
NI

n=
= ∑ (1)

where

NIp = normalized importance of independent
variable p

Ip,i = importance of parameter p in classifi-
cation i

n = total number of classifications with pa-
rameter p

3.2 Landscape Metrics

Based on the classification results a number
of selected landscape metrics were computed.
The subset is oriented towards a comparison
of different groups of metrics and their sensi-
tivity to classification accuracy of the under-
lying land cover maps. The chosen subset in-
cludes area metrics (percentage of land cover
type: PLAND), shape metrics (perimeter area
ratio: PARA), diversity metrics (Shannon’s di-
versity: SDI; Shannon’s eveness: SEI; Domi-
nance) as well as connectivity metrics (land-
scape division index: LDI). For a comparison

spatial resolution were produced for each ac-
quisition date. All SAR processing was done
using ENVI/SarScape4.4 ® software.

3 Methods

3.1 Image Classification

The classification concept builds on the object
(or patch) as the smallest entity. This means
that each set of parameters from the optical
and/or SAR data is examined at the patch-lev-
el of the existing ground truth base map. This
ensures that every single object in the ground
truth data base is assigned to a single land use
type and within-field heterogeneity or mis-as-
signments are minimized. In the present study,
spatial statistics (mean) were calculated at the
patch level for each spectral and polarimetric
parameter using standard GIS software (ESRI
2013). The outcome was a database of 46 in-
dependent variables that built the independent
variables for the classifier. The variables were
grouped by date of acquisition (n = 13) and by
sensor (n = 3). In a first run, the information
content of the variables was systematically
evaluated using all possible combinations of
acquisition dates for a single sensor system
(n = 89). In the second run, only the best sen-
sor-specific combinations of input variables
were tested for synergy effects with the other
two sensors systems. The precondition for the
selection in the second run was based on the
analysis of the quartiles of data distribution
for all land cover types where only those clas-

Fig. 2: Temporal profile of acquisitions for
RapidEye and RADARSAT-2 and TerraSAR-X
data.
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acquisitions) and three attempts for RADAR-
SAT-2 data (single or bi-temporal acquisition).
The OAA for all single-sensor combinations
is given in Fig. 3. This graphical overview il-
lustrates the considerable variability of OAA
within a sensor-group and between sensor-
systems. The CART-ID in Fig. 3 refers to a set
of single-time to multi-temporal image com-
binations for the three sensor systems (see
Fig. 2). The complexity of the input dataset
for each sensor increases with the rank of the
CART-ID. The results for RapidEye classifica-
tions show a general increase of OAA with in-
creasing complexity of the input data (= num-
ber of acquisitions). However, highest OAA is
achieved for a bi-temporal configuration us-
ing acquisitions RE3 and RE4 (beginning and
end of May; CART-ID 15; OAA = 82.78%).
TerraSAR-X data perform significantly worse
compared to RapidEye in terms of OAA.
Best results were reached with a combina-
tion of four out of five acquisitions covering
the whole investigation period from begin-
ning of April until mid of August (CART-ID
82: T1,-2,-3,-5; OAA = 73.45%). OAA values
for RADARSAT-2 classifications are in the
same magnitude as TerraSAR-X but with con-
siderable lower OAA for the best classification
result (mono-temporal, CART-ID 86: RS1;
OAA = 66.83%).
The second run of classifications aimed at

the optimization of the previous results with
regard to OAA and PA. This was accom-
plished using only selected bi-sensoral com-
binations of input datasets as described in the
methods section. The graphical summary of

and explanation of all metrics, see e.g. RIIT-
TERS et al. (1995). Area, shape and connectiv-
ity metrics were calculated at the class level
for four habitat types only. Diversity metrics
can only be computed at the landscape level
and made use of all available land cover types.
All landscape metrics were calculated with V-
LATE 2.0 beta for ArcGIS 10.0 (ZGIS 2013).
Variability of landscape metrics values with
regard to the entity of classification attempts
was assessed by computing the normalized
deviation of the landscape index values in
relation to the metrics value of the reference
data, dp,i:

,
,

p i
p i

ref

LI
d

LI
= (2)

where

dp,i = normalized deviation of landscape in-
dex p for classification i

LIp,i = value of landscape index p for classifi-
cation result i

LIref = landscape index value for reference
classification

In order to avoid pseudo-variation in the land-
scape metrics due to inadequate input param-
eters (here: classification results), only classi-
fied images with an OAA of 75% and higher
were considered for landscape analysis. The
similarity of the input data was further eval-
uated using a non-parametric hypothesis test
for statistical dependence based on the tau co-
efficient (Kendall rank correlation). The out-
put proved that, based on a significant differ-
ence at p = 0.01, all classified images were
similar to the reference dataset (n = 1580).

4 Results

4.1 Classification and Accuracy
Assessment

Land cover classifications were run for all
possible single-sensor combinations with re-
gard to the date of acquisition. This yielded in
a total of 57 classifications for RapidEye data
(with one to six acquisition dates), 29 combi-
nations for TerraSAR-X data (with on to five

Fig. 3: Overall accuracy assessment (OAA) for
single-sensor band combinations (RE = Rapid-
Eye, TSX = TerraSAR-X, R2 = RADARSAT-2).
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values even in cases where the 10%-quartile is
higher than 90% (see classes “water”, “bush-
land”, “rapeseed”, “corn” in Tab. 1). This is in
accordance with the full data range of those
classes and a minimum of 0% for the classes
“water”, “rapeseed”, “corn” and “other crops”.
Bi-sensoral classification runs, in gener-

al, show lower variability with a cv for three
classes below 10% (“grassland”, “bushland”,
“cereals”). Only two classes (“water”, “other
crops”) could not be distinguished in at least
one of the classification attempts. In both cas-
es, “semi-natural habitats” perform under av-
erage. However, the variation of the accuracy
significantly decreases with bi-sensoral ap-
proaches (21.68% to 13.63%). The compari-
son of the OAA statistics shows a substantial
enhancement of the classification quality with
a decrease of the cv from 11.93% to 5.95%
and a remarkable increase in the mean OAA
(67.46% to 73.36%) as well as the 10%-quar-
tile (76.15% to 79.25%).
Another focus within the systematic evalu-

ation of the information content for the data-
set of the three sensors was on the determi-
nation of the most relevant independent var-
iables for mapping habitat type in the study
area. The normalized importance factor (NI)
provides an estimate of the importance of
each independent variable (input channel) for
the regression tree classifier. Fig. 5 presents a
summary of the NI for 25 out of 46 variables.
Highest NI is observed for input channel two
(green light) of RapidEye acquisition no. six
(29th June) followed by channel 4 (Red-Edge)
of RE4 and RE3 (26th May and 06th May). RA-
DARSAT-2 variables are amongst the top ten
highest NI values (mid of May, VV and HH
polarized) and further spread throughout the
whole chart. In contrast, TerraSAR-X vari-
ables are only present at the end of the list
with two HH-polarized layers from end of
April (T2) and mid of May (T3). The number
of CART-runs (n) in Fig. 5 gives guidance to-
wards the overall relevance of the variables
with high NI values. The highest n values are
connected to the RapidEye acquisitions RE3
and RE4. This is a consequence of the high PA
and OAA values for RapidEye classifications
including these two scenes. Hence, the maxi-
mum number of n = 63 CART-runs (RE/TS or
RE/RS) is realized.

OAA values for all 77 tested combinations is
given in Fig. 4. Highest OAA for RapidEye
and TerraSAR-X combinations is achieved
for a combination of the best single-sensor
datasets (CART-ID 131: RE3,-4,T1,-2,-3,-5;
OAA = 81.13%). However, the OAA is below
the value for theRapidEye single-sensor classi-
fication. The variability of OAA for all Rapid-
Eye-/TerraSAR-X-attempts is lower com-
pared to single-sensor classifications. Rapid-
Eye and RADARSAT-2 acquisitions yielded
the highest OAA for all bi-temporal combi-
nations. Again, the best result is achieved us-
ing the best single-sensor datasets (CART-ID
138: RE3,4,RS1; OAA = 84.53). In this case,
the OAA increased more than 3% compared
to the highest single-sensor OAA. TerraSAR-
X and RADARSAT-2 performed best for a
combination of both RADARSAT-2 acquisi-
tions together with the best single-sensor Ter-
raSAR-X dataset (CART-ID 165: T1,-2,-3,-5,
RS1,-2; OAA = 76.41%).
The statistics of the producer’s accuracy

(PA) for all land cover types together with
OAA for single-sensor and bi-sensoral clas-
sification configurations are summarized in
Tab. 1. The variability of the PA is document-
ed by the spread (minimum, maximum, coef-
ficient of variation (cv)) and further character-
ized by the upper 10%-quartile of the distri-
bution function for the PA values. The lowest
cv values for single-sensor observations are
found for the class “grassland” (cv = 6.32%).
All other classes show considerably higher cv

Fig. 4: Overall accuracy assessment (OAA) for
bi-sensoral parameter combinations (RE =
RapidEye, TSX = TerraSAR-X, R2 = RADAR-
SAT-2).
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around the reference map and landscape met-
rics show low to moderate variation in terms
of the cv.
The main findings from the summary sta-

tistics are confirmed by a closer look at the
data distribution for selected metrics at class
and landscape level. In Fig. 6, the normalized
deviation (dp,i) is computed for “semi-natural
habitat” class metrics (PARA, PLAND, LDI)
compared to diversity metrics at landscape
level. The graphs illustrate the high variation
of area metrics (PLAND) compared to the
connectivity and diversity metrics (SDI, SEI,
Dominance).
The dissimilarity in sensitivity is mostly ex-

plained by the nature of the metrics itself. E.g.,
PLAND is directly and exclusively depending
on changes in land cover composition that are
caused by variations in classification results.

4.2 Landscape Metrics and
Uncertainty Assessment

The land cover maps provided the base for
the computation of landscape metrics at class
and landscape level. As described earlier in
the methods section, only classified images
(single-sensor and bi-sensoral) with an OAA
of at least 75% were considered for analysis
(n = 42).
The results of the landscape analysis for

the study site are summarized in Tab. 2. The
shape metrics at class level in general show
low variation except for the class “rapeseed”.
Compared to this, the area metrics at class
level indicate moderate to high variation with
cv values ranging from 7.94% to 24.46%.
Class connectivity metrics are in a close range

Tab. 1: Statistics of producer’s accuracy (PA) for all land cover types and overall accuracy assess-
ment (OAA) for single-sensor and bi-sensoral classification configurations.

Land cover type Min Max Mean Upper
10%-Quartile

Coefficient
of Variation

PA
si
ng
le
-s
en
so
r

Grassland 64.72 95.75 83.89 89.04 6.32

Semi-natural habitats 16.10 71.42 52.04 64.17 21.68

Water 0.00 99.92 66.50 99.32 55.54

Bushland 52.66 93.14 80.62 92.09 14.60

Settlements 3.83 82.42 42.81 69.23 55.10

Cereals 45.36 90.39 71.10 83.33 14.30

Rapeseed 0.00 94.72 41.97 92.42 77.42

Corn (maize) 0.00 95.01 65.53 90.44 37.67

Other crops 0.00 64.62 21.53 55.75 92.17

Overall Accuracy 47.69 82.78 67.46 76.15 11.93

PA
bi
-s
en
so
ra
l

Grassland 83.43 94.67 89.18 93.09 2.87

Semi-natural habitats 34.29 71.84 58.71 66.18 13.63

Water 0.00 99.57 63.07 99.52 53.63

Bushland 71.32 93.99 87.45 92.55 6.50

Settlements 14.41 71.04 62.94 70.36 20.22

Cereals 71.52 92.58 80.55 87.00 5.91

Rapeseed 5.65 93.94 34.53 78.70 71.34

Corn (maize) 42.65 95.40 77.36 95.01 19.40

Other crops 0.00 50.93 13.88 38.98 109.54

Overall Accuracy 60.83 84.53 73.36 79.25 5.95
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On the other hand, diversity metrics like SDI
are less sensitive to changes in landscape com-
position and configuration because they are
focused on the occurrence of land cover types
more than on the areal extent.

Fig. 5: Normalized importance factor (NI) of
spectral and polarimetric parameters for all bi-
sensoral classifications. A value of 1.0 means
that the parameter shows highest relative im-
portance (100 %) in all CART-runs (thin black
lines = n, grey bars = NI).

Fig. 6: Normalized deviation (dp,i) of class met-
rics for semi-natural habitats and landscape
metrics for all classifications with OAA higher
75 % (n = 42) (PARA = perimeter area ratio,
PLAND = percentage of land cover type, LDI =
landscape division index, SDI = Shannon's di-
versity, SEI = Shannon's eveness).

Tab. 2: Statistics (normalized deviation, dp,i) describing the variation of the landscape metrics at
class and landscape level for selected habitat types in relation to ground truth data.

Level Group Metric Min Max Mean Coefficient
of variation

Class level Shape PARA_grassland 1.06 1.23 1.15 3.10
PARA_semi-natural 0.83 0.94 0.89 3.13
PARA_bushland 0.91 1.02 0.98 2.54
PARA_rapeseed 0.77 2.66 1.19 46.33

Area PLAND_grassland 0.92 1.34 1.12 7.94
PLAND_semi-natural 0.90 2.21 1.39 24.46
PLAND_bushland 1.19 2.50 1.65 21.65
PLAND_rapeseed 0.43 1.07 0.93 12.88

Connectivity LDI_grassland 0.998 1.001 1.00 0.05
LDI_semi-natural 0.81 1.00 0.95 6.55
LDI_bushland 0.98 1.00 0.99 0.63
LDI_rapeseed 0.95 1.01 0.99 1.23

Landscape
level

Diversity Shannon’s Diversity 0.89 1.03 0.98 2.97
Shannon’s Eveness 0.92 1.03 0.99 2.44
Dominance 0.85 1.43 1.07 12.31
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tat type mapping and hence directly influ-
ence any study that aims at quantifying the
composition and configuration of landscapes
for biological conservation issues. As shown
here, variations in landscape metrics are the
result of only slight changes in input variables
for land cover classification approaches. The
same problem arises, when different classifi-
cation algorithms are used to map a landscape
from identical input data as shown in MAS et
al. (2010) or when spatial or thematic resolu-
tion is not a constant in the model (BALDWIN
et al. 2004, BUYANTUYEV &WU 2007). On the
other hand, there are groups of landscape met-
rics that are not affected by changes in land-
scape composition as reported also by WICK-
HAM et al. (1997). Therefore, comparison of
landscape metrics for different regions or for
temporal change analysis always has to ac-
count for the accuracy of the underlying land
cover map and for the sensitivity of the land-
scape metrics to land cover variations.
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5 Discussion and Conclusions

The results of the land cover classifications
confirm the general ability of optical high
temporal and spatial resolution satellite data
(RapidEye) for mapping and monitoring habi-
tat types in a heterogeneous agricultural land-
scape. The accuracy of mapping considerably
increases with the availability of multi-tem-
poral datasets for the growing period. High
accuracy could already be obtained with bi-
temporal observations, where acquisitions
at an early stage during the growing season
yielded highest accuracy. The NI-index dem-
onstrates the high impact of the spectral and
temporal domain of the RapidEye time series.
In particular, it stresses the relevance of the
Red-Edge channel of the RapidEye system
for mapping vegetated surfaces. Compared
to this, the results of RADARSAT-2 and Ter-
raSAR-X single-sensor classifications are sig-
nificantly worse. Bi-sensoral combinations of
optical and SAR-data yielded satisfying ac-
curacy, where RADARSAT-2 polarimetric
data outperform the TerraSAR-X time series
with regard to its potential for synergistic op-
tical/SAR habitat type mapping. However, the
documented potential of optical-SAR fusion
is clearly directed towards the availability of
SAR data in mid-latitude regions with fre-
quent weather constraints.
The landscape analysis in terms of class

and landscape metrics shows diverse patterns
of uncertainty that can be addressed by differ-
ent groups of metrics. In general, the results
show that area based metrics, e.g. percentage
of land cover class, are most sensitive to clas-
sification accuracy and variability of mapping
results. The magnitude of variation for those
metrics is much higher than the classification
errors. The same problem has been reported
by LANGFORD et al. (2006). Shape and connec-
tivity measures at class level seem to be more
resistant to changes in landscape composition
and configuration. The same applies for diver-
sity metrics at landscape level that are less af-
fected by landscape composition which is in
accordance with findings byALTAMIRANO et al.
(2012).
The results demonstrate that the choice of

satellite sensor systems and acquisition pe-
riods essentially impact the result of habi-
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