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Summary: Almost all pixels located in the urban
region imaged by high/medium spatial resolution
sensor systems are mixed. To resolve this problem,
usually the unmixing techniques are deployed. One
of the useful unmixing methods is spectral mixture
analysis. It can be grouped into two parts of spec-
tral unmixing and spatial unmixing. In this study,
spectral reflectance of important urban classes is
determined using spatial unmixing method. To this
end, spatial information from IKONOS imagery
and spectral information from Hyperion data are
employed. The validity of the proposed method is
substantiated through comparison of an original
Hyperion image with the reconstructed image. The
experimental results lead to a mean RMSE and a
mean NCC of 0.03 and 0.89 respectively. In the next
stage, using the extracted spectral reflectance, an
image with 4 m spatial resolution and 136 bands is
produced where variability of urban land covers is
taken into account. It is believed that this methodol-
ogy will help researcher to monitor urban change as
well as urban pollution effectively.

Zusammenfassung: Neue Methode zur spektralen
Verbesserung von rdumlich hoch aufgelosten Fern-
erkundungsszenen. In urbanen Gebieten besitzen
Fernerkundungsszenen fast ausschlieBlich Misch-
pixel. Ublicherweise werden unmixing Methoden
wie die spectral unmixing analysis verwendet. Die-
se ldsst sich in die spektrale und die rdumliche Ent-
mischung gliedern. Die vorliegende Untersuchung
hat gezeigt, dass mit Unterstiitzung der raumlichen
Entmischung die Identifizierung der spektralen
Klassen stidtischer Gebiete verbessert werden
kann. Die Methode wurde mit IKONOS-Daten fiir
die rdumliche und Hyperion-Daten fiir die spektra-
le Information erprobt und ergab eine Genauigkeit
fiir den RMSE von 0,03 und den NCC von 0,89.
Aus beiden Datensétzen wurde eine Bildkarte mit
einer GSD von 4 m und einer spektralen Auflosung
von 136 Kanilen hergestellt, die sehr gut die Viel-
falt der urbanen Landnutzung wiedergibt und das
Monitoring von Landnutzungswandel und Um-
weltverschmutzung ermoglicht.

1 Introduction

There are several important un-answered
questions regarding the spectral properties
of urban surface materials. For instance, how
do these materials differ in their spectral re-
sponses? What are the most suitable spectral
bands for mapping urban land cover? What
are spectral limitations of current high spatial
resolution remote sensor systems in terms of
mapping urban land cover?

Merging the data collected by sensors with
different spatial and spectral resolutions may
in many cases be a valuable tool to the analyst
(HAERTEL & SHIMABUKURO 2005). Multisensor
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multiresolution technique (MMT) is a tech-
nique that can be applied to unmix low spa-
tial resolution images using information re-
garding pixel composition extracted from co-
registered high-resolution images. This makes
fusion of the low and high-resolution images
for synergetic interpretation possible (ZHUKOV
et al. 1999).

High resolution remote sensing data are of
special interest for a variety of applications
related to urban planning and management.
Hyperspectral data, on the other hand, pro-
vide extensive spectral information that can
help to discriminate materials (MOBASHERI &
GHAMARY AsL 2011) and (HeroLD et al. 2002).
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In this work, an approach that employs the
linear unmixing model is used. The technique
is expected to produce reflectance images
with both high spectral and spatial resolution.
The data used are IKONOS multispectral and
Hyperion hyperspectral images in urban envi-
ronments. The concept of mixed pixels, spec-
tral mixture analysis (SMA) and MMT is dis-
cussed in section 2. Section 3 illustrates the
proposed method. Study area and preprocess-
ing steps are introduced in section 4. The ex-
periments, results and discussion are present-
ed in section 5. Finally, conclusions and rec-
ommendations for MMT application in urban
environments are given in section 6.

2 Background
2.1 Fraction Determination

Some approaches determine the endmem-
bers in mixed pixels. This is done by using the
SMA technique. The equations of the SMA
technique can be given by:

N
PL=Y S pu+E, (1)
i=1

Where p; is mixed pixel reflectance, f, and
p,, are fraction and reflectance of ith endmem-
ber in the pixel respectively and ¢, is the mod-
el residual taken as error involved due to the
un-accounted materials as well as measure-
ment errors. Then for determining endmem-
ber fractions, (1) can be written in a matrix
form as:
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where m is the number of bands, i.e. number

of equations, » is the number of endmembers,

i.e. number of column of the p matrix. The

fraction of each endmember in a pixel can be

calculated using the least-squares method in

which the residual ¢, is minimized. The least-
squares method is subject to two constraints:

all fractions are nonnegative and sum of frac-
tions equals 1.

In a standard application of SMA, a fixed
number of sample endmembers are selected
and the entire image pixels are modeled by the
spectra of the components of these samples.
However, this procedure is limited, because
the selected endmember spectra may not ef-
fectively model all elements in the image, or a
pixel may be modeled by endmembers that do
not correspond to the materials located in its
field of view (PowkLL et al. 2007). Multi end-
member spectral mixture analysis (MESMA)
allows the number and type of endmembers to
vary pixel by pixel and as a result endmember
variability is taken into account.

2.2 Determination of Class
Reflectance Spectra

The determination of the radiance (or reflec-
tance) spectra of the classes in each mixed
pixel using spectral mixture analysis is the ob-
jective of some urban research. For determin-
ing class reflectance spectra in one band and n
pixels, (1) can be written as:

pl’ fn f]z fln P

p2’ — f21 f22 fzn pz +€l (3)

pr,r/ fml fmZ T fmn pn

wherep’, fandp aren x 1,n X mand m X 1 are
matrices, » is the number of pixels, i.e. num-
ber of equations, m is the number of classes
and the number of column of the f matrix and
¢ is the model residual. A constrained least-
squares method is used to retrieve spectral in-
formation (band-i reflectance) for each of the
class reflectance spectra (p). The use of a con-
strained method is justified when one expects
that the solution fulfils the following two con-
ditions: 1) the radiance (or reflectance) values
must be positive and 2) the radiance values
cannot be larger than the radiance saturation
values of low resolution sensor (or reflectance
cannot be larger than 1). In these approaches,
determination of class fractions for forming
coefficient matrix and selection of suitable
pixels are of vital importance.
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In recent years Znukov et al. (1999), Zuri-
TA-MiLLA et al. (2008), ZuriTa-MiLLa et al.
(2009), MEzNED & ABDELJAOUED (2009), HAER-
TEL & SHIMABUKURO (2005), ZENG et al. (2007),
Buserto et al. (2008), Amoros Lopez et al.
(2010) and Amoros Lopez et al. (2011) used
this method for determining class reflectance
spectra. Subtle analysis of these works reveals
that there are a few of these researches that
have been focused on urban environments us-
ing this method applied to very high spatial
resolution images such as IKONOS, Quick-
Bird and GeoEye as well as hyperspectral im-
ages such as Hyperion and AVIRIS.

To apply the aforementioned equations to
all bands and all pixels in the image, there
are still two major problems. Firstly, the coef-
ficient matrix (fractions matrix) may get too
big. Secondly, the variability of spectra within
a class cannot be found, i.e. only one spectrum
can be determined for each class. To over-
come these problems, different solutions are
suggested. A window with certain dimension
in low spatial resolution image can be used to
consider class spectra variability in the whole
image where the central pixel will be unmixed
using characteristics of its neighbouring pix-
els. It is noteworthy that in this approach, win-
dow size and pixel size in low resolution imag-
ery is important since it might produce large
errors particularly for the case of urban areas.

3 Methodology

It is believed that by using high spatial and
high spectral resolution imagery of the same
scene, it is possible to extract spectral reflec-
tance of sub-pixel themes. However, in this
process two assumptions are made: 1) avail-
ability of relatively high spatial/spectral res-
olution images for the scene, 2) applicability
of the linear mixing model. The technique
presented in this work is named spectral en-
richment of the high-spatial resolution im-
ages (SEHR). The method consists of five
steps. In the first step, the high spatial resolu-
tion data are used to compute the fractional
coverage of different classes present in each
pixel. In the second and third steps the frac-
tions are used to look for per-pixel endmem-
bers reflectance spectra. In the fourth step, the

extracted reflectance curves will be validated
and in the final step, this information will be
fused to high spatial resolution image to pro-
duce an image having both high spatial and
spectral characteristics simultaneously. From
this point of view, the high-resolution image
is conventionally called the classifying instru-
ment (CI), while the lower-resolution image is
called the measuring instrument (MI) (Znu-
Kov et al. 1999).

(3) is used for the determination of the class
reflectance in one band and in » pixels. The
SMA equation system and its constraints for
the determination of reflectance spectra of
each of the classes are presented in (4).

P'=F.P+V
P=(F'wF)'F'wp’

VWV : min
0<P<l1

Where P’ is the mixed pixels reflectance
matrix, F/ and P are the fraction and the re-
flectance matrices respectively, V' is the model
residual matrix, P is the estimated reflectance
and W is the weight matrix.

As mentioned earlier, the method consists
of the following operations:

1. Classification of high resolution image and
extraction of the pixels class fractions.

2. Window-based unmixing of the MI-pixels
for the calculation of the reflectance spectra
for each class.

3. Class reflectance spectra clustering for de-
termination of class sample reflectance
spectra.

4. Validation.

5. Image fusion.

Q)

3.1 Fraction Determination

The high spatial resolution image is used to
determine the fraction of the main class com-
ponents present in the mixed pixels. In many
researches (section 2), the CI image is classi-
fied using unsupervised classification tech-
nique. In this study, in order to compare the
result of hard and soft classification in the
MMT, the CI image is classified into nc class-
es using K-means as a hard clustering tech-
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(a)

Moving window

(b)

Fig. 1: (a) Fraction determination: The fractions related to each MI pixel are calculated using the

area of each class; (b) Weighted moving window.

nique (MACQUEEN 1967) and Fuzzy C-means
as a soft clustering technique (Bezpek 1981).
Several nc values ranging from 3 to 20 are
tested in this work. In this paper a novel ap-
proach is used for the determination of each
class fraction in each mixed pixel. Both CI and
MI images are brought to the same coordinate
system. The fractions related to each MI pix-
el are calculated using the area of each class
in one mixed pixel in the map coordinate sys-
tem through (5). It is important to note that in
the map coordinate system, the intersection of
low and high spatial resolution pixels result in
many sub-pixel regions where they have been
considered in this equation (Fig. 1a). There-
fore, these sub-pixels area that contributed to
mixing reflectance spectra are considered in
(5). In addition, the sum-to-one and non-nega-
tivity of fraction values are also satisfied.

347

fo=p Q)

where, f; is the fraction for ith class, Af’ is the
area of jth polygon in ith class, A* is the area
of a mixed pixel and # is the number of poly-
gons in ith class.

3.2 Calculation of Class Reflectance

To retrieve the class reflectance spectra, the
inverse linear spectral mixture analysis is
used (4). The unmixing procedure for the MI
pixels is performed. According to ZHUKOV et
al. (1999), “the unmixing of the MI pixels is
performed in the moving window mode”. In
order to unmix the central MI pixel in the win-
dow, contextual information of the surround-
ing MI pixels is used” (Fig. 1b). A n by n win-
dow which is moving 1 MI pixel step at a time
is used in order to solve n? equations to unmix
the central pixel. The size of selected window
should be kept as small as possible so that the
fused image gets spectrally consistent with
the variability expected for the low spatial res-
olution images (ZuriTa-MiLLA et al. 2008). On
the other hand, the size of this window should
be sufficiently large to provide enough equa-
tions for solving the equation system. Since
each system of equations results in a unique
solution, the size of the selected windows
should be appropriate to fulfil this task (Zuri-
TA-MiLLa et al. 2008). In this study, moving
windows of 3 by 3 and 5 by 5 pixels dimen-
sions are used, since high spectral variability
of urban areas does not allow the use of win-
dows of larger size. A weighted constrained
least-square method is deployed for deriving
the class reflectance spectra (Fig. 1b). Weights
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can be calculated using spectral similarity and
Euclidean distance in each window (BUSETTO
et al. 2008). For the spectral similarity, the
spectral information divergence (SID) meth-
od (CHANG 1999) is used. As a result, larger
weights are assigned to the pixels which are
closer and more similar to central pixel in each
window (6).

_ Similarity ©)

Distance

3.3 Determination of the Candidate
Class Reflectance Spectra

Having applied the aforementioned moving
windows to MI pixels, a set of reflectance
spectra for each class is derived (Fig. 2a). It is
worth noting that by averaging over this set,
one reflectance spectra will be assigned to
each class. However, this averaging procedure
misses the within-class variability. Moreover,
with this averaging it becomes hard to iden-
tify the noisy spectra if one is interested in.
To avoid these difficulties, as a novel approach
the K-means clustering technique is used in
this work. Each set of reflectance spectra for
each class is clustered into ns candidate class
reflectance spectra (Fig. 2b).

3.4 Validation of the SEHR
Technique

If the class reflectance spectra and class frac-
tions in the mixed pixels are accessible, it is
possible to reconstruct the reflectance spectra
of that mixed pixel using (1). However, these

(a)

mixed pixels not being used in the calculation
of the class reflectance spectra can be used for
validation. The validity of the proposed meth-
od is substantiated through a comparison of
the original mixed pixels with the reconstruct-
ed ones. As mentioned in section 3, each class
has many candidate reflectance spectra and
each mixed pixel contains several classes. For
the reconstruction of the mixed pixel, differ-
ent combinations of class reflectance spectra
are mixed and tested with the original pixel
reflectance spectra. The best reconstructed
mixed pixel compared to the relevant origi-
nal mixed pixel is selected based on minimum
root-mean-square error (RMSE) values. This
approach is based on MESMA technique of-
fered by PoweLL et al. (2007).

The quantitative assessment is conducted
by applying the RMSE, relative error (R_Er-
ror) and normalized cross correlation (NCC)
(BieniARrz et al. 2011) for each reconstructed
MI pixel (7, 8 & 9). Finally, the mean RMSE,
mean R_Error and mean NCC for the whole
reconstructed MI image are calculated.

Z(p,

i=1

RMSE ; =

Nee, = ! z(p, pm)(p, -p)
j:I:N ®)

0_ ¢
R_Error; = P~ Pn

x100 j=1:N (9

where, N is the number of reconstructed pixels,
n is the number of bands, p and p? stand for

Bana

(b)

Fig.2: (a) A set of reflectance spectra for one class; (b) Candidate class reflectance spectra for

same class.
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reconstructed and original reflectance in ith
band, p¢ and p? are the mean of reconstructed
and original reflectance in » bands, (¢¢) and
(0©) are the standard deviation of reconstruct-
ed and original reflectance in 7 bands.

3.5 Image Fusion

Finally, a fused image is generated by replac-
ing each of the CI pixels by its correspond-
ing spectral signature. This process results in
a hyperspectral/high spatial resolution image
with spatial/spectral variability in an urban
environment. Spatial variability is addressed
by allowing the type of reflectance spectra for
each class to vary throughout the image. Spec-
tral variability is addressed by allowing the
number and type of spectra to vary from pixel
to pixel as defined by PowkLL et al. (2007).

4 Datasets and Pre-processing

41 Study Area

The test area is located at Qods city in the
south west of Tehran, Iran. An IKONOS MS
and EO-1 Hyperion image with 4 m and 30 m
spatial resolution respectively are supplied for
this area (Fig.3). This area is selected based
on heterogeneity of the landscape in urban
environment, cloud free condition and small
difference in the acquisition time of IKONOS
and Hyperion images.

Markazi

4.2 Image Pre-processing

IKONOS Data

The IKONOS data consisted of one pan-
chromatic image with 1 m spatial resolution
and one multi-spectral image with 4 spectral
bands (b/g/r/nir) and 4 m spatial resolution. It
was acquired on August 29, 2004.

Geometric correction is carried out by the
supplier (National Cartographic Center of
Iran) using 1:2000 topographic maps through
the nearest neighbour re-sampling approach.

10 and 11 are used for converting IKONOS
DN data to reflectance (TavrLor 2005). This
preprocessing is needed for image fusion ap-
proach mentioned in the previous section.

Reflectance is defined as (TayLor 2005),

2
= _mLd” (10)
E. cos(0)

where, p, is the unitless planetary reflectance,
L, is the radiance for spectral band 7 at the sen-
sor’s aperture (W/(m?'um-sr)), d is the Earth-
sun distance, £, is the mean solar exoatmos-
pheric irradiance at band i (W/(m?*pm)) and
0 is the solar zenith angle. L, can be obtained
with the correct units from the IKONOS
image product by converting from DN to radi-
ance using (12) (TayLor 2005),

4
10" x DN, a1

L =
' Calcoef, X bandwidth,

3951440.00N (m)

509876 00E (m)

IKONOS Image (4m)

Fig. 3: Location of the study area in Qods city in the south west of Tehran, Iran.
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where, Calcoef, is the radiometric calibra-
tion coefficient (DN/(mW'cm?sr)) and band-
width, is the width of the spectral band i (nm).
Both Calcoef, and bandwidth, for the IKONOS
bands are given by TayLor (2005). The Earth-
sun distance (d) can be obtained from any nau-
tical handbook (TayLor 2005).

Hyperion data

An EO-1 Hyperion image acquired on August
21,2004, around 11:00 a.m. local time is used
for this study. These data are available from
the USGS website with 242 spectral bands at
30 m spatial resolution.

Due to the low signal-to-noise ratio for the
first few as well as the last few Hyperion spec-
tral bands and also because of the heavy water
absorption in several bands, only 196 bands
were selected (bands 8 to 57 and 79 to 224). A
shift of one pixel in the line direction is cor-
rected in the SWIR image data. This shift oc-
curs at column 128 (Staenz et al. 2002). In ad-
dition, an atmospheric correction is carried
out using FLAASH in ENVI 4.7 ® software
with the appropriate input data. As a result,
radiance is converted to reflectance.

Geometric correction for Hyperion rela-
tive to geo-referenced IKONOS is done using
18 ground control points (GCPs) and 7 check
points by the nearest neighbour re-sampling
and second order of polynomial equations in
PCI ® 9.1 software. The geometric errors ob-
tained for GCPs and check points are 5.95 m
and 6.63 m, respectively. However, using very

E
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high spatial resolution images, it is necessary
to carry out precise registration and avoid mis-
alignment errors. In this paper the geocoding
results are adequate, showing a RMSE of 0.2
pixels. An analysis of the MMT sensitivity to
sensor errors showed that the co-registration
errors should not exceed 10 to 20 percent of
the low-resolution pixel size (ZHukov et al.
1999).

Finally, the corrected Hyperion data with
136 appropriate bands according to EO1HS-
DATA (Barry 2001) in the UTM Zone 39 N
WGS-84 projection are used in this study.

5 Results and Discussion

A sample subset (30 by 30 pixels) from Hy-
perion image is selected as the study area.
This subset corresponds to a subset (219 by
219 pixels) of the IKONOS image. Both image
subsets covering the study area are shown in
Fig. 4. The sample site is predominantly cov-
ered by urban structures, i.e. buildings, road,
roofs, parking lots etc. The subset from Hy-
perion image has no bad stripes. The sample
subset is divided into two parts. Part 1 is used
for determination of class reflectance spectra
using inverse linear spectral mixture whereas
part 2 is used for validation. Hereinafter, part
1 and 2 are called the unmixing image (UI)
and validation image (VI), respectively.

For an assessment purpose, four different
schemes are deployed (Tab.1). The results
of mean RMSE for these four schemes are

509640.0E(m)
3952292.0N(m)

Fig.4: The sample site, (a) Hyperion image (30 m) (30x30 pixels) and (b) IKONOS image (4 m)

(219x219 pixels).
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Tab. 1: The four different proposed schemes.

Scheme | Detail

1 IKONOS image classification using K-means algorithm and linear constrained least-square
unmixing

2 IKONOS image classification using K-means algorithm and linear weighted constrained
least-square unmixing

3 IKONOS image classification using Fuzzy C-means algorithm and linear constrained least-
square unmixing

4 IKONOS image classification using Fuzzy C-means algorithm and linear weighted
constrained least-square unmixing

0.14

012

—(1)KM _Linear

(1)

Constrained Least Square

T

=—(2) KM_Linear Weighted
Constrained Least Square

——(3)FCM_Linear
Constrained Least Square

(4)

——(4)FCM _Linear Weighted

0.02

Constrained Least Square

0 T T T T T
3 4 5 6 Fi

Number of Classes

Fig.5: The mean RMSE for four schemes.

shown in Fig. 5. It can be seen that the weight-
ed unmixing performs better compared to un-
weighted unmixing. In addition, image clas-
sification by the Fuzzy C-means algorithm
works better compared to the K-means algo-
rithm (Fig. 5). So, the best results are obtained
through the 4th scheme.

The classification of CI into six and ten
classes has produced minimum mean RMSE
(Fig. 5, curve 4). However, it should be noted
that this is not a decisive result for the best
number of classes in the proposed methodolo-
gy because the unmixing results may vary for
different conditions, like subset dimension,
number of candidate reflectance spectra, mov-
ing window size and random rules in K-means
clustering. Classification of IKONOS image is

performed with nc=3 to nc=20 where nc=10
gives a minimum mean RMSE during the
constrained unmixing in six runs of the meth-
od (Fig. 6). For the number of classes greater

Tab.2: Mean errors (RMSE and R_error) and
Mean NCC values between reconstructed and
original Hyperion image.

10 Number of Classes
4 Maximum number of sub
classes

[0.008, 0.183, 0.027]
[0.002, 35.21, 5.00]

[min, max, mean] RMSE

[min, max, mean]
R_Error (%)

Mean NCC

0.89
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Fig.6: The mean RMSE for the 4th scheme.

510090.0E(m)
3952320.0N(m)
510090.0E(m)

3952320.0N(m)

(@ (b)

Fig.7: (a) Original Hyperion (30 m); (b) reconstructed Hyperion (30 m).

509640.0E(m)
3952292 ON(m)

(a) (b)
Fig. 8: (a) IKONOS image (4 m); (b) fused image (4 m).
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than 9, an increase in the window size corre-
sponds to an increase in the amount of error
(Fig. 6) all due to the fact that the larger win-
dows may have more land cover variability.

According to section 3.4, the Hyperion im-
age is reconstructed for VI using defined can-
didate reflectance spectra form UI (Fig. 7). The
range and mean errors (RMSE and R_error)
and mean NCC values between reconstructed
and original Hyperion image are depicted in
Tab. 2. The results indicate that the SEHR ap-
proach is successful in retrieving urban class
reflectance from the Hyperion image.

The fused image has the property of a hy-
perspectral image with 136 bands as well as
a high spatial resolution image with 4 m pix-
el size (Fig. 8). It is important to notice that
the accuracy of the results is influenced by the
preprocessing steps. The Hyperspectral im-
age was geo-referenced using a mathemati-
cal polynomial model. The geo-referencing
results were showing a RMSE near 0.2 pixel
size, i.e. 6 m. This error caused a misalloca-
tion in the fused image of about 2 pixels con-
sidering the spatial resolution of IKONOS im-
age (4 m) and probably bad representation of
the fused image due to this mis-registration.
Also, the quality of the fused image is impact-
ed by the quality of the reflectance values of
the CI that is mentioned in section 3.5.

6 Conclusions

In this paper, a new approach (SEHR) for
spectral enrichment of high spatial resolution
images such as IKONOS was suggested. Four
different schemes were designed and tested
to retrieve surface spectral reflectance based
on spatial unmixing processes. The technique
was performed using Hyperion and IKONOS
image data.

The estimated values for the spectral reflec-
tance were evaluated by comparing the orig-
inal mixed pixels to the reconstructed ones.
The results showed that the IKONOS classi-
fication works better if Fuzzy C-means algo-
rithm and linear weighted constrained least
square unmixing were deployed compared to
other schemes. Then, the retrieved class re-
flectance spectra were used to fuse a 30 m res-
olution hyperspectral image with 136 bands

(Hyperion data) with a 4 m resolution multi-
spectral image (IKONOS data). The fusion of
the Hyperion with IKONOS datasets can be
considered as a powerful technique to differ-
entiate land cover classes. It was also found
that, regardless of characteristics of different
images, fusion can be carried out in feature
level as well. Although SEHR was designed
for IKONOS MS and Hyperion data, it can be
applied to any two sets of image data. Output
of this approach can be used to identify land
covers, developing a spectral library of urban
material, urban air pollution monitoring, ex-
ploring the parameters affecting urban reflec-
tance changes and energy flows.
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