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dense point cloud recording from imagery
are particularly suitable for cultural heritage
applications, where the requirements regard-
ing acquisition eficiency, lexibility, but also

spatial resolution and precision are high. For
high resolution data recording in cultural her-
itage applications, the use of a rig with mul-
tiple cameras is beneicial. With one shot mul-

1 Introduction

In the past few years, close-range and/or low-
cost photogrammetry has become a focus of
research especially since cameras enable data
acquisition at very low prices, but with high
geometric and radiometric quality. Therefore,
low-cost multi-camera systems for eficient

Summary: Reconstruction of image orientations

and geometry from images is one of the basic tasks

in photogrammetry and computer vision. A fully

automated solution of this task in terrestrial appli-

cations is still pending in case of large unordered

image datasets especially for close-range and/or

low-cost applications. Current solutions require

high computational efforts for image networks with

high complexity and diversity regarding acquisi-

tion geometry. Unlike the methods suitable for

landmark reconstruction from large-scale Internet

image collections we focus on datasets where one

cannot reduce the number of images without losing

geometric information of the dataset. Within the

paper, an automated pipeline for the reconstruction

of reliable and precise camera orientation from un-

ordered image datasets is presented. Results for a

close-range cultural heritage application, the exam-

ple of the Amsterdam project, are shown to demon-

strate the performance of the presented pipeline for

applications with low cost and high accuracy re-

quirements.

Zusammenfassung: Automatische und hochge-

naue Orientierung von großen, ungeordneten Bild-

verbänden bei der photogrammetrischen Aufnah-

me von Weltkulturdenkmälern. Die Rekonstruktion

von Kameraorientierungen und Objektstrukturen

aus Bildern ist eine der Hauptaufgaben der Photo-

grammetrie und der Computer Vision. Eine vollau-

tomatische Lösung für terrestrische Anwendungen

mit unregelmäßig angeordneten Bildverbänden,

unabhängig vom Kamerasystem (professionell

oder Amateuraufnahmen), steht noch aus. Gegen-

wärtige Lösungen erfordern einen hohen Rechen-

aufwand für komplexe Bildkompositionen. Im Ge-

gensatz zu Ansätzen zur Landmarkenrekonstrukti-

on mittels Bilddatensätzen des Internets will der

vorliegende Beitrag alle verfügbaren Bilder nutzen,

um wertvolle geometrische Details nicht zu verlie-

ren. Aus diesem Grund stellen wir einen automati-

schen Worklow für die Rekonstruktion von repro-

duzierbarer und präziser Geometrie aus ungeord-

neten Bildkompositionen vor. Dieser wurde für

eine spezielle Anwendung bei der Rekonstruktion

der beiden Tympana des Königlichen Palastes in

Amsterdam entwickelt und getestet. Die Ergebnis-

se belegen die Leistungsfähigkeit des Gesamtkon-

zepts wie auch der im automatischen Worklow re-

alisierten Einzelpakete hinsichtlich niedriger Kos-

ten und hoher Genauigkeit.
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of images dramatically without losing a sub-
stantial part of the model.
A third solution is the so called partition-

ing method, which we follow in this paper, as
presented in Gibson et al. (2002). Here the key
idea is reducing the problem to smaller and
better conditioned sub-problems. The main
advantage of these methods is not only the
equalized error distribution on the entire data-
set but also a speed up of the processing time.
Recently, Klopschitz et al. (2010) present-
ed a robust and lexible SfM pipeline where

they used the image triplets as a base to rea-
son about feature track compatibility and im-
age connectivity. Within the following section

the example of the cultural heritage data re-
cording project in Amsterdam is briely intro-
duced. A description of the reconstruction of
orientation and structure is given in section 3.
In section 4 the clustering process of the glob-
al graph is described, where the large dataset
is split into smaller clusters. Within section

5 the incremental reconstruction being per-
formed for each cluster is discussed. Section
6 contains the stitching process of the multiple
clusters to one cluster. Furthermore, the glob-
al bundle adjustment of the resulting cluster
is explained. Experimental results for the pre-
sented dataset are shown in section 7, followed
by the conclusions in section 8.

2 The Amsterdam Project

In March 2011 the Research Group “Photo-
grammetry and Computer Vision” of the In-
stitute for Photogrammetry (University of
Stuttgart) had an industrial contract to collect
photos for a very dense 3D point cloud gen-
eration of the two Tympana of the Royal Pal-
ace in Amsterdam (Fig. 1). Each tympanum
covers a triangular shape area of about 25 m
in width by 5 m in height containing a relief
with complex surface geometries such as stat-
ues. For this purpose it was planned to use a
multi-camera system incorporating a fully
automated pipeline for image orientation and
dense matching methods. Thus, a method ca-
pable of processing very large image datasets
with high accuracy and suficient time was re-
quired here. The irst comprehensive reports

about the project are presented in Fritsch et

tiple views enable the dense reconstruction of
the object surface using dense image match-
ing methods, such as semi global matching
(hirschmüller 2008). Thus, the high similar-
ity between the imagery is exploited to gen-
erate one high resolution point cloud with a
low amount of occlusions for each shot. How-
ever, for multiple shots the imagery requires
an automatic registration method. Therefore,
a structure-from-motion (SfM) reconstruc-
tion method was developed in the context of

an example project of data recording using

ive industrial cameras. They are mounted on

a compact square shaped rig, which enables
handheld recording of complex objects. How-
ever, for large scale data recording the deri-
vation of accurate orientation for the high
number of imagery is a key problem to be
solved.
The aim of this paper is to report a pipeline

for fully automatic derivation of image orien-
tations by using a divide-and-conquer strate-
gy to speed up the SfM process from general

imagery networks without initial orientation
values. SfM was originally developed to esti-
mate geometry and camera motion from mul-
tiple images of a scene. It is used for the de-
termination of initial values for the inal and

global bundle adjustment step in our pipeline.
Most SfM methods are starting with a small

reconstruction, i.e. a pair or triplet of imag-
es, and then expanding the bundle incremen-
tally by adding new images and 3D points as
in snavely et al. (2008). Here, each pose es-
timation and point triangulation is followed
by an outlier rejection and a bundle adjust-
ment. Other approaches increase the bundle
hierarchically by merging smaller reconstruc-
tions (Farenzena et al. 2009). Unfortunately,
both approaches require multiple intermediate
bundle adjustment results and rounds of out-
lier removal to minimize error propagation as
the reconstruction grows due to the incremen-
tal approach. This can be computationally ex-
pensive for large datasets. This issue is con-
sidered to be solved partially in Farenzena et
al. (2009) by the introduction of a local bun-
dle adjustment procedure and in snavely et al.
(2008) by optimizing the system over a graph
to order the images and remove obsolete im-
ages from the dataset. However, we focus on
datasets where one cannot reduce the number
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3 Orientation Reconstruction
Pipeline Overview

Our 3D reconstruction pipeline intends to au-
tomatically and accurately process unordered
sets of images to determine relative image ori-
entations and a sparse point cloud of tie points
without prior knowledge of the scene. The
pipeline, as shown in Fig. 2, mainly consists
of four processing steps: (1) Employ fast im-
age indexing to avoid costly matching of all

possible image pairs, which dominates com-
putational complexity along with the mul-
tiple bundle adjustment steps. (2) Generate
tie points by means of feature extraction and

matching where the required automatic mea-
surements are realized at maximum accuracy

and reliability. (3) Building and optimizing a
geometry graph based on the image network,
whereby the dataset can be split into reliable
clusters of neighbouring images that can be
processed independently and in parallel with-
in the reconstruction step. (4) Merge all clus-
ters and then inally adjust the full model with

integrating the ground control points. A de-
tailed description of the individual process-
ing steps is given in the following sections. In
general, camera calibration parameters are not
strictly necessary for Euclidean 3D modeling,
since self-calibration methods exist. However,

if a stable camera with a ixed focal length is

used and the values for the interior orienta-
tion are determined a priori by standard cali-
bration methods robustness and accuracy are
usually greatly improved. Furthermore, also
an increase in processing speed is achieved
due to the lower dimensionality of the prob-

al. (2011) andWenzel et al. (2011). The sensor,
as shown in Fig. 1 right, consists of four cam-
eras used for the dense image matching and
one camera with a larger ield of view for the

registration of multiple shots. The four cam-
eras for the dense image matching have a reso-
lution of 5 Megapixels and are equipped with

lenses with a focal length of 8 mm. They are
arranged in a square with the size of 7.5 cm
by 7.5 cm on a solid aluminum bar to provide
a stable relative orientation. The ifth camera

with a resolution of 2 Megapixels, equipped

with a lens with 4.7 mm focal length, is in-
stalled between the lower two matching cam-
eras. An aluminum frame is surrounding the
cameras in order to protect them from dam-
age. Several mounts for the connection to tri-
pods and arms for a lexible use are installed at

this frame. The Microsoft Kinect is attached

at the top with the pattern projector at the
same height like the cameras to minimize oc-
clusions.
In order to derive a point cloud with a sam-

pling of 1 mm on the object and sub-mm ac-
curacy, the presented sensor was employed for
the data recording on scaffolding. Within 9.5

days about 2,000 stations were acquired lead-
ing to a total amount of about 10,000 images.
First, to achieve a complete coverage, the im-
ages were acquired in nadir direction in a me-
andering pattern within each of the three lev-
els of scaffolding. Then convergent shots have
been captured to complete surfaces which
were occluded or not covered. Ground control
points measured by tachymetry provided the
transformation to the global coordinate sys-
tem.

Fig. 1: East tympanum of the Royal Palace of Amsterdam; left: from distance; upper middle: with
the scaffold; lower middle: a DSLR colour image of the scene shows the relief containing whole
statues (size of visible control point target is 4 x 3 cm2); right: sensor design overview.
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of kd-trees, which represents the search data-
set, to improve the effectiveness of the repre-
sentation in high dimensions. Each descriptor
in the query image is matched to its nearest
neighbours in feature space (we used 10). For
that purpose we used the fast library for ap-
proximate nearest neighbours FLANN (muja

& loWe 2009) and the kd-tree implementation
in the VLFeat library (vedaldi & FulKerson
2008).
Thus, each feature in a query image is ini-

tially matched to 10 features of the search da-
taset. Then we indicate the outliers which have
a feature distance more than a certain thresh-
old. We used twice the standard deviation of

the distances as threshold value. That gives
us a statistical information about the number
of matched features between the query im-
age and the remaining images which we can
store in a 2D histogram. For more eficiency

we used a weighted 2D histogram where the
inverse of the distances between each matched
feature pair are used as weights. Furthermore,
we introduce additional quality measures for
possible connections between the query im-
age and the remaining images such as the ap-
proximate area of overlap derived from the

convex hull of the matched feature points. Fi-
nally, the quality measures and the 2D histo-
grams are normalized and summarized to one
single quality 2D histogram, which is stored
in the index matrix (Fig. 3a). Then this index
matrix is binarized to the connectivity matrix,

using three thresholds determined empirical-
ly, to determine initial probable connections
as shown in Fig. 3b. Here any image pair with
a quality value more/less than irst/second

threshold is indicated as connected/discon-
nected pair. The number of connected images
will be compared to the third threshold, which

lem. Pursuant to that, we prefer to use interior
calibration parameters for high accuracy ap-
plications where these values can be consid-
ered to be stable.

3.1 Initial Network Geometry Analysis

This step is designed to accurately and quickly
index unordered collections of photos. A con-

nectivity matrix is the output of this step and

it reveals singleton images and small subsets
that should be excluded from the dataset. Fi-
nally, it is used to guide the process of pair-
wise matching (section 3.2). Recent develop-
ments regarding this analysis can be distin-
guished into two major categories according
to the type of image representation. Local fea-
ture based approaches use quality measures of
matched local descriptors while global feature
based approaches utilize matching histograms
of full images visual words (aly et al. 2011).
In fact, both categories represent the same ap-
proach with varying degrees of approximation

to improve speed and/or storage requirements.
Generally, the irst category provides superior

recognition performance and the dimensional-
ity is not an issue when only several thousands
of images need to be processed. Consequently,
we utilise a local feature based method in the
pipeline presented in this paper.
For local feature-based indexing, we follow

an approach adapted to the method presented
in broWn & loWe (2003) and Farenzena et al.
(2009). The irst step is the extraction and de-
scription of local invariant features from each
image by using the SURF (bay et al. 2006)
operator on a downsampled image, e.g. using
images with 2 Megapixels resolution. Then all

descriptors are stored in a randomized forest

Initial network analysis
•Build connectivity graph

•Build geometry graph

Divide dataset into clusters
•Tie point generation

•Find suitable patches

Clusterwise reconstruction
•Find initial pair

•Increase bundle incrementially

Final bundle adjustment
•Stitch clusters

•Adjust all

Fig. 2: Flowchart of the presented pipeline.



Mohammed Abdel-Wahab et al., Orientation of Large Unordered Image Datasets 683

by a standard RANSAC based geometric ver-
iication step, which robustly computes pair-
wise relations. Homography and fundamental
or essential, in the calibrated case, matrices
are used with an eficient outlier rejection rule

refers to the minimum number of images con-
nected to the query image. If this threshold is
not met, images with values between the irst

and second threshold will be added in de-
scending order until the condition is satisied.

We used 0.7, 0.3 and 10 as the threshold values

respectively.

3.2 Pairwise Feature Matching

Matching each connected image pair is ac-
complished using the connectivity matrix
obtained during the previous section. Corre-
sponding 2D pixel measurements are deter-
mined between all connected image pairs. Af-
terwards a weighted undirected graph, we call
it geometry graph G

E
= (V, E) where V is a set

of vertices and E is a set of edges, is construct-
ed. Thus, two view relations are encoded such
that each vertex refers to an image while each

weighted edge presents the overlap between
the corresponding image pairs. The weights of
the edges are stored according to the number
of their common points, w

ij
p, and the overlap

area, w
ij
a, between view i & j. For the compu-

tation we follow the approach of Farenzena et
al. (2009) where a set of candidate features is
matched using a kd-tree procedure based on
the approximate nearest neighbour algorithm.

This step is followed by a reinement of cor-
respondences using an outlier rejection proce-
dure based on the noise statistics of correct/
incorrect matches. The results are then iltered

Fig. 3: Top cluster of the east tympanum dataset. The axes refer to the image identiiers in the
dataset. (a) Index matrix according to the method presented in section 3.1 with 1457 edges, co-
lour-coded between one/zero indicating connected/disconnected pair; (b) adjacency connectivity
matrix before geometry veriication, where the number of edges is reduced to after binarization; (c)
adjacency connectivity matrix after geometric veriication and only 2 edges removed (section 3.2).
A white entry in a connectivity matrix indicates that the image pair is connected. (d) Connectivity
matrix after the graph optimization step with 396 edges (section 5.1).

Tab. 1: Pseudo code for the clustering ap-
proach.

Input:

Output:

Geometry graph G
E

Collection of clusters graph

1. Set new empty graph (cluster) G
c
= {}

2. Determine most reliable edge E
ij
in G

E

3. Add the vertices V
i
, V

j
of this edge into

G
c

4. Set E
ij
= 0 in G

E

5. ∀V
k
in G

E
connected at least with two

vertices V
n
, V
m
in G

c

If w
nk
p & w

mk
p ≥ max

1
,200

2

p

ij
w

 
 
 

& w
nk
a

& w
mk
a ≥

1

2

a

ij
w

● Add V
k
into G

c
and set E

nk
& E

mk
= 0

in G
E

6. Add edges in between inlier vertices in

G
c

7. Set all these edges = 0 in G
E

8. Repeat steps 5, 6 and 7 until

● if V
k
= 0 in step 5

● or if size of G
c
= predeined value

9. Store G
c
and repeat all steps until all

edges in G
E
= 0
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is ensured by considering and removing con-
nections (edges in the graph) only instead of
images. Thus, common cameras between the
clusters remain.

5 Cluster Reconstruction

Once the clusters are divided as described in
the previous section, we can start the recon-
struction process for each cluster as follows.

5.1 Optimization of Cluster Graph

For each cluster we track the keypoints only
over images in this cluster (locally) and store
the results in a visibility matrix, which de-
picts the appearance of points in the images.
The results of this step will be the keypoints
which have been correctly tracked in at least
three images. For more eficiency, we apply a

non-maximum suppression iltering approach

(Fig. 4) for the tracked points to keep only
the points with the highest connectivity. For
each image we sort the keypoints in descend-
ing order according to their number of projec-
tions in other images. Then, the point with the
greatest number of projections is visited, fol-
lowed by an identiication and rejection of all

nearest neighbour points with a distance less
than a certain threshold, e.g. 20 pixels. This

step is repeated until the end of the points list.
In order to maintain continuity, all points se-
lected in an image must be considered as il-
tered (ixed) in the following iltering of other

images. Filtering is done in order to increase
the accuracy but also to reduce the number of
obsolete observations. Consequently, the geo-
metric distribution of keypoints is improved,
which reduces the computational costs signii-
cantly without losing geometric stability.
Once correspondences have been tracked

and iltered, we optimize the cluster graph

such that we construct a weighted undirect-
ed epipolar graph for each cluster G

p
contain-

ing common tracks. The weight w
ij
of an edge

represents the number of common points be-
tween the corresponding image pair. Then we
build G

r
, the edge dual graph of G

p
, where ev-

ery node in G
r
corresponds to an edge in G

p
.

Two nodes in G
r
are connected by an edge if

called X84 (hampel et al. 1986) to increase re-
liability and accuracy. The inal output of this

step is the geometry matrix or graph as illus-
trated in Fig. 3c. For an in-depth discussion
see Farenzena et al. (2009) and snavely et al.
(2008) and references therein.

4 Clustering of the Global Graph

In order to speed up the computation of the
incremental reconstruction, we address a fast
local optimization instead of a global optimi-
zation approach. We divide the dataset into n

overlapping clusters, where each one contains
a manageable size of images. Thus, a parallel-
izable process replaces the process of recon-
struction of the whole scene at once. This is
particularly important since for complex da-
tasets the large number of iterations with the
growing number of unknowns can lead to
very high computation times for complex da-
tasets. The idea is to start from the most re-
liable part and use three images as the basic
entity to extend each cluster until a predeined

size. In practice, we use the worklow as pre-
sented in Tab. 1 to identify reliable clusters
with the highest mutual compatibility. The
idea is to start each cluster G

c
from image pair

i and j with high overlap in order to ensure a
reliable geometry. As shown in Tab. 1, we se-
lect an initial pair according to the most reli-
able edge being identiied by its weights, w

ij
p

and w
ij
a within the geometry graph as present-

ed in section 3.2. The graph of this cluster is
then extended by the neighbouring edges with

a weight (common points) greater than the half
of the weight of the initial edge of this cluster
or a certain threshold (we used 200 matching
points for the presented dataset). We repeat

this process until a predeined cluster size is

reached or until no more images have sufi-
cient overlap with this cluster. For this we ap-
ply thresholds depending on the initial edge
weights. Furthermore, only images overlap-
ping with at least two images inside the clus-
ter are considered. While the cluster graph is

growing, each used edge is eliminated in the
geometry graph. As soon as the cluster graph
is inalized, the whole procedure is repeated to

ind the next cluster until all imagery is cov-
ered. The overlap between the inal clusters
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Reconstruction of the initial pair

The incremental reconstruction step begins
with the reconstruction of orientation and 3D
points for an initial image pair. The choice of
this initial pair is very important for the subse-
quent reconstruction of the scene. The initial
pair reconstruction can only be robustly esti-
mated if the image pair has at the same time
a reasonable large baseline for high geometric
stability and a high number of common fea-
ture points. Furthermore, the matching fea-
ture points should be distributed well in the
images in order to reconstruct a maximum of

initial 3D structure of the scene and to be able
to determine a strong relative orientation be-
tween the images. Therefore, suitable image
pairs should be selected according to the fol-
lowing conditions: the number of matching
points is acceptable and the fundamental ma-
trix must explain the matching points far bet-
ter than homography models. Here we employ
the geometric robust information criterion
(GRIC) scores to ensure that the criteria are
met as used in Farenzena et al. (2009). After
that, relative orientation values for this initial
pair are estimated by using Nister’s imple-
mentation of the ive point algorithm (nistér

2004). A two-frame bundle adjustment start-
ing from this initialization is performed to im-
prove the reconstruction.

Adding new images and points

After reconstructing the initial pair addi-
tional images are added incrementally to the
bundle. The most suitable image to be added

and only if they are sharing an image and 3D
points. Thus, each edge represents an image
pair with suficient overlap. Note that even

if G
p
is fully connected any spanning tree of

G
r
may be disconnected. This can happen if

a particular pairwise reconstruction did not
have 3D points in common with another pair.
Thus, we use three images as basic geometric
entity by using only points that were tracked
in at least three images. These points are used
to build the graph in order to guarantee full
connection for any sub-sequential image. The
maximum spanning tree (MST), which maxi-
mizes the total edge cost of the inal graph, is

then computed. The image relation retrieved
as G

p

max graph is used for the bundle adjust-
ment. For example, Fig. 6 presents the results

of the top cluster of the east tympanum where
the previous process reduced the pairwise
connection from 600 edges (Fig. 3d) to 396 to
orient 150 images.

5.2 Camera and Geometry Recovery

Each cluster is processed individually begin-
ning with an initial reconstruction for the two,
most suitable images. After this step, orienta-
tions and tie points in object space are avail-
able for these two images where one image de-
ines the local coordinate system. Within the

incremental approach images are added to the
existing bundle by triangulating new points,

rejecting outliers and performing another it-
eration of the bundle adjustment. This incre-
mental process is repeated until all images
within the cluster are processed.

Fig. 4: Point distribution before and after iltering, 3395 & 819 points according to a iltering dis-
tance of 40 pixels.
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are available they can be used to improve the
bundle stability and to enable georeferencing.

7 Experimental Results

For the derivation of the point cloud, the ex-
terior orientations were derived irst using the

presented method, where each façade was au-
tomatically divided into 6 individually pro-
cessed patches. Secondly, an additional dense
image matching step followed using the ob-
tained orientations. However, since the ex-
posure of all cameras was not synchronized
suficiently, the relative orientation was not

suficiently stable. This is particularly impor-
tant since the acquisition distance was short
and the accuracy requirements were high.
Thus, the relative orientation from the cali-
bration was omitted and determined using the
SfM process instead. In order to use the rela-
tive orientation directly, hardware triggering
of the cameras should be used instead of soft-
ware triggering.
Figs. 5 and 6 depict the results of the tym-

panum at the west façade where approximate-
ly 4000 images are oriented. The irst row

shows the reconstructed and stitched 6 clus-
ters where the mean reprojection error before
merging are around 1 pixel and it is reduced

to 0.5 pixel after the inal bundle adjustment

step. The second row left shows the full sparse
cloud of 1.1 million feature points in object
coordinates and right the dense point cloud
derived by a subsequent dense image match-
ing step with about 1.1 billion points. As pre-
sented in section 2, the targets are distributed
over the whole object and are used for geore-
ferencing. These control points are captured
in 12 independent clusters. The white circles
within the targets are detected and measured
automatically using an ellipse it. These image

measurements are considered to have an accu-
racy of about 0.1 pixels.

Up to this point the control points are not
used in the bundle and thus do not impact the
orientations to be evaluated. Consequently,
they can be used to assess the quality of the
relative orientations by evaluating the repro-
jection errors. These results are demonstrated
in Tab. 2 rows 2 and 5, for each cluster of both
tympana respectively. The root-mean-square

is selected according to the maximum num-
ber of tracks from 3D points already being
reconstructed. Within this step not only this

image is added but also neighbouring images
that have a suficient number of tracks as men-
tioned in snavely et al. (2007). Adding mul-
tiple images at once reduces the number of re-
quired bundle adjustments and thus improves
eficiency. Next, the points observed by the

new images are added into the optimization.
A point is added if it is observed by at least
two images, and if the triangulation gives a
well-conditioned estimate of its location. This
procedure follows the approach of snavely et
al. (2007).

Sparse bundle adjustment

Once the new points have been added, a bun-
dle adjustment is performed on the entire
model. This procedure of initializing a camera
orientation, triangulating points, and running
bundle adjustment is repeated, until no im-
ages observing a reasonable number of points
remain. For the optimization we employ the
sparse bundle adjustment implementation
“SBA” (louraKis & arGyros 2009). SBA is a
non-linear optimization package that takes ad-
vantage of the special sparse structure of the
Jacobian matrix used during the optimization

step in order to provide a computation with re-
duced time and memory requirements.

6 Stitching of Clusters and
Global Adjustment

After the reconstruction of points and orien-
tations for the overlapping clusters the results
are merged. Since outlier rejection was per-
formed within the previous steps, the available
3D feature points are considered to be reliable
and accurate. Due to the overlap, the clusters
have a certain number of points and image ori-
entations in common which enables the deter-
mination of a seven-parameter transformation
in order to align the clusters into a common
coordinate system. The transformed orienta-
tions and points are introduced into a com-
mon global bundle adjustment of the whole
block. If ground control point measurements



Mohammed Abdel-Wahab et al., Orientation of Large Unordered Image Datasets 687

for the image scale of this dataset. This is con-
sidered to meet the requirements for the lat-
er dense surface reconstruction step, where

of the reprojection errors for each dataset is
about 0.3 pixels. At 70 cm distance this cor-
responds to an error of approximately 0.2 mm

Tab. 2: Overview of the 6 clusters C1–C6 and their performance of the east and west tympanum.
Time = runtime for each cluster, GC point / Projection = identiied ground control points per overall
count of projections in the image, RMS (pixel) = error of the reprojection, GC = number of ground
control points, RMS (mm) = error of a ground control point in object space.

Cluster Ids. C1 C2 C3 C4 C5 C6 .

E
a
st
ty
m
p
a
n
u
m

Images 909 526 440 682 412 460

3D points 517,360 386,708 300,799 420,020 276,534 258,184

Time (hrs) 3.48 1.62 0.61 3.08 0.69 0.78 Mean

GC points/Proj. 20/163 12/63 11/52 13/80 5/17 9/55 11.67/71.67

RMS (pix.) 0.39 0.18 0.26 0.26 0.36 0.21 0.28

GC points 18 6 11 13 5 9 10.33

RMS (mm) 2.63 2.16 2.18 3.25 2.97 3.21 2.73
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m

Images 862 478 779 995 956 849

3D points 318,064 149,349 245,232 318,366 332,613 322,151

Time (hrs) 3.47 0.71 3.26 4.21 3.27 3.38 Mean

GC points/Proj. 24/176 11/65 12/85 15/97 13/95 15/114 15/105.33

RMS (pix) 0.26 0.26 0.26 0.31 0.26 0.26 0.27

GC points 20 9 7 14 12 15 12.83

RMS (mm) 2.24 1.59 1.36 2.06 1.13 1.90 1.71

Fig. 5: Reconstructed cameras and point clouds of the tympanum at the west façade. First row:
geometry of imagery with close-up area is shown in upper right corner; second row: sparse point
cloud resulted from SfM (left) and derived by dense image matching (right).
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ciically suitable for large scale photogram-
metric applications at low costs. In order to
complement the measures of computational
efforts it was our goal from the beginning that
the whole processing pipeline should run on
standard PC enviroments (for example i3 pro-
cessors).
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