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buildings or public places. In order to evaluate

the predictive power of mathematical models

designed to emulate human crowd behaviour,

it is a common procedure to compare numer-
ical simulations based on these models with
empirical data.

1 Introduction

The study of pedestrian dynamics has impor-
tant applications in crowd management such
as devising strategies for the evacuation of

Summary: In the framework of macroscopic mod-

els of human crowds, pedestrian dynamics are de-

scribed via local density and low ields. In this pa-

per, we expand our previous work on the extraction

of pedestrian trajectories and density ields from

video recordings of crowd experiments in two

ways. Firstly, we include data from different video

cameras in order to cover a larger observation area.

Secondly, we improve our previous density estima-

tion method by introducing a new kernel function

which (a) yields density ields that are also differen-

tiable functions in time and (b) models the inlu-

ence of multiple neighbouring pedestrians on the

personal space of an individual.

We apply this density computation method to pe-

destrian trajectories extracted from video data of a

crowd experiment conducted by us, and compare

the results with other common methods for density

computation in this context: a technique based on

Voronoi diagrams, and a ixed-bandwidth estima-

tor. We come to the conclusion that the technique

proposed by us combines advantages from both al-

ternative methods, yielding spatio-temporally

smooth density ields close to the standard deini-

tion of density at all scales.

Zusammenfassung: Multiperspektivische Erfas-

sung dynamischer Dichtefelder von Fußgängern.

Makroskopische Modelle zur Beschreibung von

Personenbewegungen greifen auf Konzepte wie lo-

kale Dichte- oder Flussfelder zurück. In einer frü-

heren Arbeit haben wir ein Verfahren beschrieben,

durch das individuelle Trajektorien sowie Dichte-

felder mithilfe von Videoaufnahmen von Experi-

menten mit Personenströmen erfasst werden kön-

nen. Dieses Verfahren wurde in zweierlei Hinsicht

erweitert bzw. verbessert: Zum einen können Vide-

odaten aus mehreren Kameras dazu verwendet

werden, einen größeren Beobachtungsbereich ab-

zudecken. Zum anderen kann unsere Methode der

Dichteschätzung durch Verwendung einer anderen

Kernfunktion verbessert werden. Der so erhaltene

Schätzer liefert Dichtefelder welche (a) bzgl. des

Zeitparameters differenzierbare Funktionen dar-

stellen und (b) den Einluss mehrerer benachbarter

Personen auf den von einem Individuum einge-

nommen Raum modellieren.

Mithilfe dieser Methode berechnen wir Dichte-

felder auf Grundlage von Trajektorien, welche aus

Videoaufnahmen eines von uns durchgeführten

Fußgängerexperiments gewonnen wurden. Das Re-

sultat vergleichen wir mit zwei in diesem Kontext

gebräuchlichen Methoden zur Dichteberechnung:

einem auf Voronoi-Diagrammen basierenden Ver-

fahren sowie einem Kerndichteschätzer mit kon-

stanter Bandbreite. Wir kommen zu dem Schluss,

dass mit unserem Ansatz Vorteile der beiden alter-

nativen Methoden vereint werden, indem die Be-

rechnung raumzeitlich glatter Dichtefelder ermög-

licht wird, welche auf allen Skalen standardmäßig

berechnete Dichtewerte approximieren.
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ing pedestrian lows (Fig. 1). To this end, we

set up an experiment where two unconined,

perpendicularly intersecting pedestrian lows

have been recorded by multiple cameras with

overlapping ields of view. To the best of our

knowledge, no such experiment has previous-
ly been conducted.
In that section, we also describe a semi-au-

tomatical technique to extract the spatio-tem-
poral positions of pedestrians in a crowd of

low density at close range from an arbitrary

observation angle. Due to constructional limi-
tations, it was not possible to install the cam-
eras to provide a bird’s eye view. This situa-
tion is very different from most experimental

setups found in the common literature, where

a bird’s eye view installation of the camera(s)

in suficient height provides an advantageous

perspective. In some studies, the heights of the

pedestrians are also indicated by visual mar-

kers, which also greatly facilitate automated

pedestrian tracking (Boltes et al. 2010). Hav-
ing neither bird’s eye views nor markers, we

devised a method to extract the loor positions

of the pedestrians without knowing their re-

Furthermore, different modelling ap-
proaches demand the extraction of different

types of data: For example, the social force

model (HelBing & Molnár 1995) and cellular
automaton model (Burstedde et al. 2001) aim
at predicting pedestrian trajectories, whereas

continuum methods adopted from luid me-
chanics (HugHes 2002) describe the dynamics
via the density and low of the crowd. In our

work, we develop models based on these three

approaches in order to simulate intersecting
pedestrian lows and compare these simula-
tions with the real world. Here, we describe

one important part of this work: the extraction

of the trajectories and a dynamic, continuous

density ield from video recordings of human

crowd experiments. The work presented here

is an extension of Plaue et al. (2011).

1.1 Challenges and Contribution

In section 2, we describe an experiment that
was conducted with the purpose of demon-
strating the dynamic behaviour of intersect-

Fig. 1: Human crowd experiment from three different observation points. Bottom right: extracted
pedestrian positions at time step t = 68.2 s of group A (red diamonds) and group B (blue). Arrows
indicate current velocity; the maximal length corresponds to 1.4 m/s.
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In this work, we follow the suggestion of

Boltes et al. (2010), who process video data

similar to ours, and use the Lucas-Kanade al-
gorithm (sHi & toMasi 1994) to facilitate the
extraction of the spatio-temporal positions of

the pedestrians. Additionally, we employ an
algorithm to merge the trajectories from dif-
ferent overlapping camera views via the Hun-
garian method (KuHn 1955, MunKres 1957).
Note that we merge the trajectories after pro-
cessing the video data, in contrast to the de-
tection of objects from multiple views during

tracking (see for example KaHn et al. 2001).

Pedestrian density estimation

Probably the most basic way to compute a
density would be to divide the number of pe-
destrians in a given region by the area of that

region, at a given point in time. However, this

“standard” density estimator is not a smooth
point-wise density function and yields data

with large scatter.
At least two approaches for measuring the

(local) density of human crowds have been

suggested in the literature as alternatives:
● InHelBing et al. (2007), a local density ield
is computed via the sum of Gaussians with

ixed standard deviation (typically 0.7 m)

centred at each pedestrian. Formally, this
approach is identical to kernel density es-
timation with ixed bandwidth, which is a

basic tool in statistical data analysis (see
silverMan 1986, for example). This meth-
od yields a smooth density ield deined at

every point.
● In steffen & seyfried (2010), estimators
are proposed based on the Voronoi diagram
deined by the position of each pedestrian

as a Voronoi site. The main idea in this ap-
proach is to account for the personal space

occupied by each pedestrian, and this per-
sonal space is represented by the area of the

corresponding Voronoi cell. The values for

the Voronoi density are very close to stand-
ard densities, but with a signiicantly small-
er scatter. However, the Voronoi estimator

does not yield a smooth local density de-
ined at every point.

The algorithm that we propose here is con-
ceptually a combination of the Voronoi esti-

spective body heights beforehand. Further-
more, we perform a fusion of data from multi-
ple video cameras.

The estimation of the density ield of a

sparse crowd is a challenging task because

of the low number of samples. In section

3, we propose a novel method to compute a

high-resolution smooth density ield from the

spatio-temporal positions of the pedestrians

based on a kernel density estimator with vari-
able bandwidth. In that section, we also give

a comparison of our results with other densi-
ty estimators. Finally, an overview of future

work will be given in section 4.

1.2 Related Work

Human crowd experiments

Empirical data for the evaluation of human

crowd models are usually extracted from

video recordings of either naturally occur-
ring crowds (HelBing et al. 2007) or pedestri-
an lows that have been produced under con-
trolled conditions (daaMen & Hoogendoorn
2003, galea et al. 2011, ZHang et al. 2011). In
general, the latter are devised to demonstrate

crowd behaviour in special situations such as

evacuation or passage through a bottleneck. In

our work, we wish to analyze the dynamics of

intersecting pedestrian lows. A very similar

experiment with this purpose has been con-
ducted by guo et al. (2010); however, data
from only one camera was processed in that

case. Also, in our experiment, the pedestrians
did not move along speciied, conined corri-
dors.

(Semi-) automatic pedestrian tracking

There exists a large body of literature on meth-
ods for the detection and automatic tracking of

humans. The range of application of such al-
gorithms varies greatly. For example, scHMidt

& HinZ (2011) address the problem of tracking
the positions of pedestrians from aerial im-
ages which provide very low resolution, and

creMers (2006) proposes a method to track

the contour of an individual through noise and

occlusion. For an overview on different meth-
odologies, we refer to Hu et al. (2004).
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1. The video is played back frame by frame.
Image segments corresponding to the heads
of pedestrians that newly enter the scene

are marked manually. These templates are

used to determine the head positions in the
next frame via the Lucas-Kanade tracking

method (sHi & toMasi 1994). Based on the
difference of spatial positions in consecu-
tive frames as well as the residual i.e., dif-
ference between the detected texture and

the template, an error score is computed for

each person. If this score is too high or the

user spots a possible tracking error regard-
less of the score, the head position/template

can be corrected manually.
2. Once the image coordinates of the heads of
the pedestrians have been determined, the

video is played again from the beginning.

For each pedestrian in the frame, the head

position is shown together with the corre-
sponding loor position, initially under the

assumption that every pedestrian has a

standard height of h = 1.70 m. In each frame

the user may correct the loor position of

a pedestrian by simply clicking into the

frame, and the current height and loor po-
sition coordinates are updated via the hom-
ography determined in camera calibration.

3. Each pedestrian is assigned a inal height
value equal to either the arithmetic mean

of the height values from the corrections

in step 2, or equal to the standard height
h = 1.70 m if no user instruction for this pe-
destrian is available during this step. Based

on this inal height value and the image

coordinates of the head, in each frame we

compute the world coordinates (X, Y, 0) of
each pedestrian’s position on the loor.

Remarks

● In our scenario, the loor position of most

of the pedestrians is visible at some point

in time, for example before entering or ex-
iting the crowded intersection area. There-
fore, manual correction of the loor position

is feasible.
● In order to improve the user’s corrections

of the loor positions it might be reasonable

to provide a view of all cameras and the re-
spective positions during step 2.

● One might introduce/implement a pattern
recognition module to carry out the func-

mator (accounting for personal space) and the

ixed-bandwidth kernel estimator (yielding

smooth density ields).

2 Experiments and Trajectory
Extraction

In the following, we describe human crowd

experiments that we conducted in the lobby
of the Department of Mathematics building

of Technische Universität Berlin in December

2010, and the extraction of the trajectories of

the participants from video streams captured

by several cameras.

2.1 Experimental Setup

In the experiment which we use to illustrate
our method, two pedestrian lows (group A,
142 subjects, and group B, 83 subjects) inter-
sected at an angle of 90 degrees for one min-
ute in a region of about 25 m2, reaching a peak

density of about ive pedestrians per m2. The
scene was recorded from a gallery at a height

of about 6 m with ive networked and tempo-
rally synchronized JVC VN-V25U surveil-
lance video cameras. Here, we will analyze

the data provided by the three central cameras

which covered the area where the actual in-
tersecting of the pedestrian lows took place

(Fig. 1).

2.2 Extraction of Spatio-Temporal
Positions

For camera calibration, we assumed a pinhole
model and estimated the model parameters by
measurement of the world and image coordi-
nates of about 30 ixed reference points in the

scene. For each camera, this procedure result-
ed in a camera matrix, and thus enabled us to
deduce the parameters of a homography be-
tween the camera’s image plane and the loor.

The video data have been analyzed in a semi-

automatical manner for each camera as de-
scribed in the following (see also Plaue et al.
2011). Our main goal is the supervised extrac-
tion of reliable data.
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from the cameras on the side towards the

corresponding positions from the central

camera for the differences between the lo-
cations in different videos to be minimized

after merging the data. Finally, for each pe-
destrian, all available data points are ap-
proximated by cubic B-splines to yield

smooth trajectories (t, X(t), Y(t)). By differ-
entiating these trajectories with respect to

the time parameter t, the velocities of the
pedestrians can be easily computed (Fig. 1).

A frame of the analyzed video sequence

can be seen in Fig. 1. Since we use the central
camera as the reference view in step 3 above,

measurement errors are particularly visible in

the camera views from the side. One can see

that in this particular scene, the positions of

some pedestrians located near the intersection
area are not marked. This is due to the fact

that these pedestrians could not be reliably as-
signed a trajectory over a suficiently extend-
ed time period, and therefore were discarded.

Note that with the currently available image

size of 640 × 480 pixels, it proves dificult to

trace individual pedestrians in a very crowded

scene, even for an attentive human observer.

In our earlier experiments, we bypassed this
problem by equipping the subjects with col-
oured clothing hoping to establish a better vis-
ual contrast.

3 Variable-Bandwidth Kernel
Density Estimation

In the following, we describe and investigate

a novel method for kernel density estimation.

We apply this technique to compute a density
ield from the trajectories of the pedestrians.

3.1 Deinition

Consider a Gaussian kernel density estimator

with variable bandwidth to compute the den-
sity at time t and position x:

2

2 2

( )1 1
( , ) exp

2 ( ( )) 2( ( ))

i

i J i i

t
t

d t d t
ρ

π λ λ∈
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∑
x x
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(1)

tion of an automatic marker. However, even

if the whole algorithm provided a fully au-
tomatic analysis, manual veriication would

nevertheless be good experimental practice

in order to obtain reliable data.

2.3 Merging Trajectories from
different Camera Views and
Smoothing

The above procedure yields the positions of the

pedestrians on the loor covered by each cam-
era. Originally the cameras were positioned
so that these loor areas overlapped. However,

it was not immediately possible to merge the
trajectories since they are not labelled as indi-
vidual pedestrians. To solve this problem, we

implemented the following algorithm:

1. For each pair of pedestrians captured by
different cameras, compute their distance

in each frame. Compute the mean value

across the frames. Due to measurement er-
rors, this value does not vanish even if it is

computed for the same pedestrian captured

by two different cameras. However, we ex-
pect the mean distance to be minimal if the

same pedestrian is captured by two differ-
ent cameras. If two pedestrians do not ap-
pear together in at least one frame, a very

large distance value is assigned to this pair

of pedestrians. If one camera captures few-
er pedestrians than the other, pedestrians
very far away will be added to this data set

to yield a square distance matrix.
2. The problem to ind the permutation of la-
bels that yields the minimal distance for

each pair of pedestrians is a combinatorial

optimization problem that we solve with the

Kuhn-Munkres algorithm, also known as

the Hungarian method (KuHn 1955, MunK-
res 1957). Data that cannot be assigned au-
tomatically can be assigned manually, or be
discarded. In our case, data from about 15

pedestrians had to be managed in this way.
3. Due to systematic errors such as lens dis-
tortion and due to errors in the measure-
ment process, the positions of the pedes-
trians from the cameras on the side show a

displacement with respect to those obtained
from the central view. We use the central

view as a reference and shift the positions
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ues of the parameters p and λ. For large val-
ues of the parameter p, the bandwidth only
depends on the nearest neighbour. For small
values of p, the bandwidth is a function of all

nearby pedestrians, and it decreases with the
number of nearby pedestrians. Therefore, this

parameter deines the degree to which other

nearby pedestrians inluence personal space.

Fig. 3 shows the density ield computed

with this kernel at a particular point in time.

By comparison with the ixed-bandwidth es-
timator, this igure also illustrates how the

variable-bandwidth estimator distributes “pe-
destrian mass” to favour densely crowded re-
gions. We would like to note that this feature

is consistent with a model assumption that is
frequently found in the description of pedes-
trian dynamics (“chemotaxis”): interactions
between pedestrians are repulsive for short

distances and attractive for longer distances

(see for example scHadscHneider et al. 2002).
Also, we expect the proposed density esti-
mator is useful for the visualization of other

types of data, in particular if one is interested

in highlighting clusters. For large values of the

parameter λ, the density ield becomes more
spatially smoothed and less “ine-grained”,

distributing pedestrian mass more broadly.

Here, J denotes an index set labelling the
pedestrians, and λ is an additional dimension-
less smoothing parameter. The bandwidth
λd

i
(t) is estimated from the trajectories x

i
(t) of

the pedestrians – the formal analogy in statis-
tical data analysis is also known as a sample

smoothing estimator (terrell & scott 1992).
For example, assuming λ = 1, for the nearest-
neighbour kernel estimator (Plaue et al. 2011),

,
( ) min ( ) ( )i i j

j J j i
d t t t

∈ ≠
= −x x . (2)

However, this kernel and therefore the to-
tal density are not differentiable with respect

to time. Furthermore, it does not account for

the fact that the personal space of a pedestrian

is affected not only by the nearest pedestrian

but also by other pedestrians in the immediate
vicinity. Therefore, we propose the following

alternative:

1
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This is a smooth function and at the same

time generalizes the nearest-neighbour kernel

as its limiting case of p→ ∞.

3.2 General Properties and
Parameters

In Fig. 2, a toy-model calculation for a single

pedestrian is shown in order to demonstrate
how the bandwidth is determined by multiple
neighbouring pedestrians for reasonable val-

Fig. 2: The bandwidth, deined by (3) with
p = 4, assigned to a particular pedestrian A as
a function of the distance to another individual
pedestrian B. Dotted line: with no other pedes-
trian present. Solid line (dashed line): with one
other pedestrian C (three other pedestrians C,
D and E) located at a constant distance of two
metres to A.

Fig. 3: Top: pedestrian density ield, computed
with the kernel deined by (3) with λ = 1, p = 4;
bottom: computed with a ixed bandwidth of
d = 1 m. Black indicates a density > 4 m−2.
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of certain radius centred at the respective pe-
destrian.
All methods yield results very similar to

the standard density when computed for very

large regions, with the possible exception of

the Voronoi estimator (without cut-off) be-
cause of boundary cells of ininite size. How-
ever, for smaller regions, the ixed-bandwidth

estimator typically yields values that are sig-
niicantly lower than the standard density

since a large portion of the pedestrian mass is

located outside the respective region. For very

small “microscopic” regions, such as A
3
, the

densities computed with the ixed-bandwidth

estimator can be larger than the standard den-
sity since pedestrian mass from outside the

region cumulates inside the region regardless
of the number of pedestrians already occu-
pying that location. In contrast to this, Fig. 4
demonstrates that the estimator proposed by
us yields values that are close to the standard

density at all scales. As a result, small tem-
poral variations in density are also described

more faithfully by this estimator. Therefore,

we may compute pedestrian density data with
high spatio-temporal resolution and high pre-
cision. We expect that this feature is particu-

larly useful to analyze the ine structure of

fundamental diagrams (ZHang et al. 2011).

4 Conclusion and Future Work

In this work, we present a framework for

measuring local density ields from video re-
cordings of human crowds captured by multi-
ple cameras. By utilizing methods from pho-
togrammetric image analysis, we irst extract

the trajectories of the pedestrians from each

camera, and merge these data by matching lo-
cations with minimum spatio-temporal dis-
tance.
From these trajectories, we compute the pe-

destrian density ield via a modiied version of

a nearest-neighbour kernel estimator recently

proposed by us, with an additional parameter
p that serves as a temporal smoothing parame-
ter for the bandwidth. The density obtained in

this way is a smooth function of the object co-
ordinates and time, and faithfully represents

the standard density when averaged over re-
gions of arbitrary sizes.

3.3 Comparison with other Density
Estimators

In Fig. 4, a plot of the density versus time is

shown, averaged over the regions marked in

Fig. 3, and computed by four methods: the

standard method of counting people in the

region, a ixed-bandwidth kernel estimator,

our variable-bandwidth estimator, and inally

the density estimator based on Voronoi dia-
grams denoted in steffen & seyfried (2010)
as “D

V
”. The regions have the respective areas

A
1
= 15.8 m2, A

2
= 6 m2, and A

3
= 1 m2.

Remark

The Voronoi method in its original form is

not designed for unconined crowds; we work

around this fact by assuming that the pedes-
trians stop and cease to move once they exit

the area covered by the cameras, thereby lim-
iting the size of the boundary Voronoi cells.

More recently, liddle et al. (2011) propose to
simply cut off the Voronoi cells beyond a disk

Fig. 4: From top to bottom: pedestrian density,
spatially averaged across the areas marked A

1
,

A
2

and A
3

in Fig. 3. Kernel density with ixed
bandwidth d = 0.7 m (blue line), with variable
bandwidth (black line), Voronoi density (dashed
green line), standard density (thin black dashed
line).
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In addition, the reader may be aware that
the density ield is applicable in the estimation

of a low ield by requiring that the continuity

equation holds. This approach is the subject of

present work, the results of which will be re-
ported in Plaue et al. (2012), where we will
also describe how obstacles and boundaries
can be taken into account.

Note that the automatic, data-driven esti-
mation of values for p and λ is still an open
problem in our context. Methods from statis-
tical data analysis for automatic bandwidth

selection might prove to be appropriate tools

to attack this problem (coManiciu 2003, Wu

2007).
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