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Summary: Planar partitions are frequently used to

model, among others, land cover, cadastral parcels

and administrative boundaries. In practice, they are

often stored as a set of individual polygons to which

attributes are attached, e.g. with the Simple Fea-

tures paradigm, causing different errors and incon-

sistencies, e.g. gaps, overlaps and disconnected

polygons, which are introduced during their crea-

tion, manipulation and exchange. These errors se-

verely hamper the use of planar partitions in other

software, e.g. due to false assumptions causing er-

roneous calculations. Existing approaches to vali-

date planar partitions involve irst building a planar

graph of the polygons and enforcing constraints,

then repair is done by snapping vertices and edges

of this graph. We argue that these approaches have

many shortcomings in terms of complexity, numer-

ical robustness and dificulty of implementation,

and do not guarantee valid results. Furthermore,

they are semi-automatic, requiring manual user in-

tervention. We propose in this paper a novel meth-

od to validate and automatically repair planar parti-

tions. It uses a constrained triangulation of the

polygons as a base – which by deinition is a planar

partition – and only simple operations are needed,

i.e., labelling of triangles, to both validate and re-

pair. Perhaps the biggest advantage of our method

is that we can guarantee that a planar partition is

valid after repair. In the paper we describe the de-

tails of our method, our implementation, and the

experiments we have done with real-world datasets.

We show that our implementation scales to big

datasets and that it offers better capabilities and

overall performance than existing solutions.

Zusammenfassung: Validierung und automati-

sche Korrektur von planaren Graphen unter Be-

nutzung von bedingter Triangulation. Planare Gra-

phen werden neben anderen Methoden oft für die

Modellierung von Landnutzung, Kataster und Ver-

waltungsgrenzen verwendet. In der praktischen

Anwendung werden die Flächeneinheiten oft als

selbstständige Polygone, denen Attribute zugeord-

net sind, gespeichert, z.B. als Simple Features. Die

Anwendung dieser Methode verursacht oft Inkon-

sistenzen, z.B. Lücken, Überlappungen und nicht

verbundene Polygone. Diese Fehler behindern die

Weiterverarbeitung der Flächenaufteilung in ande-

ren Anwendungen, z.B. wenn falsche Annahmen

den Folgeberechnungen zu Grunde gelegt werden

müssen. Existierende Verfahren zur Validierung

von planaren Graphen nutzen oft einen bedingten

planaren Graphen. Die Korrektur wird dann durch

Snapping auf Knoten und Kanten des Graphen

durchgeführt. Wir sind der Meinung, dass dieses

Verfahren Nachteile bezüglich Komplexität, nume-

rischer Stabilität und Implementierung hat. Vor al-

lem kann ein richtiges Ergebnis nicht garantiert

werden. Darüber hinaus sind die Algorithmen oft

nur halbautomatisch. Daher schlagen wir in diesem

Artikel ein neues Verfahren zur Validierung und

automatischen Korrektur von planaren Graphen

vor. Es beginnt mit einer bedingten Triangulation

der gegebenen Polygone, die per Deinition ein pla-

narer Graph ist. Danach sind nur einfache Operati-

onen zur Beschreibung der Dreiecke, zur Validie-

rung und zur Korrektur erforderlich. Wahrschein-

lich ist der größte Vorteil unserer Methode, dass

eine gültige Raumaufteilung im Ergebnis garan-

tiert wird. Im Artikel beschreiben wir unsere Me-

thode, die Implementierung und die Anwendung

auf reale Datensätze. Wir zeigen, dass unsere Me-

thode auch für große Datensätze geeignet und so-

gar leistungsfähiger als andere Methoden ist.
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Solving that issue entails working on two
related problems: (1) how to identify errors in
a planar partition; and (2) how to repair these
errors. As described in section 2, both prob-
lems have been tackled in the past with the
creation of a planar graph of the input. The
validation, the simpler of the two problems,
is usually implemented as a set of topologi-
cal and geometrical constraints that the planar
graph must have. As for the repair, it is usually
performed by snapping together the vertices
and edges of the graph, or by using topologi-
cal information. As we discuss in section 2,
both approaches have drawbacks for users: the
former method is error-prone, i.e., topological
inconsistencies can be created, and the latter is
only semi-automatic, because in practice real-
world datasets can easily contain several hun-
dred errors.
We present in this paper a novel method to

both validate and automatically repair planar
partitions stored according to the Simple Fea-
tures speciications. Our method, which is an

extension of our preliminary results (Ledoux
&Meijers 2010), uses a constrained triangula-
tion (CT) of the polygons as a support – which
is by deinition a planar partition – and both

the validation and the repair functions are
performed with relatively simple operations.
These are the labelling of triangles, and stand-
ard graph traversal algorithms (such as depth-
irst search). Since errors are repaired by re-

labelling triangles (vertices are never moved),
we can guarantee that a given repair operation
will preserve the topological consistency of
the whole planar partition. We describe in sec-
tion 3 how the CT is used, how the polygons
are labelled, how the validation is performed,
and how we can automatically repair a planar
partition. Moreover, we describe six different
repair operations that can be used to obtain
different output.
We have implemented the method in C++,

and its most relevant details are discussed in
section 4. Our software takes as input poly-
gons stored according to the Simple Features
speciication, validates them, repairs them if

they contain errors, and returns a new set of
polygons that is guaranteed to be a valid pla-
nar partition. We also report in that section
our experiments with several real-world data-
sets, some of them rather large, and we com-

1 Introduction

Planar partitions are frequently used in GIS
to model concepts such as land cover, the ca-
dastre, or the administrative boundaries of a
given country. As shown in Fig. 1, a planar
partition is a subdivision of a polygonal subset
of the plane into non-overlapping polygons.
In practice, planar partitions are often repre-
sented, and stored in a computer, as a set of
individual polygons to which one or more at-
tributes are attached, and the topological rela-
tionships between polygons are not explicitly
stored, i.e., shared boundaries are thus repre-
sented and stored twice. The preferred method
of practitioners is representing polygons ac-
cording to the Simple Features speciications
(OGC 2006), for instance as an Esri shapeile
(esri 1998) or in a database, such as PostGIS
(PostGis 2012).
If a planar partition is stored as a set of indi-

vidual polygons, then in practice errors, mis-
takes and inconsistencies will often be intro-
duced when the planar partition is built, up-
dated or exchanged. Examples of common er-
rors are: overlapping polygons, gaps between
polygons, and polygons not connected to the
others. This can be, among others, due to hu-
man error, the use of loating-point arithme-
tic, or limited precision (schirra 1997). These
errors can have catastrophic consequences for
practitioners since most software and algo-
rithms using planar partitions as input assume
that this input is valid. At best erroneous re-
sults are returned, at worst it causes a software
failure, often without any warning to the user.
Moreover, such problems are often not visible
at the scale that the data is usually viewed, ex-
acerbating the problem (Laurini & MiLLeret-

raffort 1994).

Fig. 1: Part of the Corine Land Cover dataset
for the region around Delft, The Netherlands.
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The validation of a single polygon is pos-
sible with different libraries, GEOS (GEOS
2012) and JTS (Vidid soLutions 2012) being
two widely used open-source examples.
The repair of single polygons is a less docu-

mented topic than their validation. Different
software vendors offer tools to help identify
and semi-automatically repair broken poly-
gons. Examples are ST_MakeValid() from
PostGIS and the constraints in 1Spatial Radius
Topology. The method we present in this paper
has been adapted to automatically repair com-
mon errors in individual polygons, e.g. wrong
ring orientation, or holes that split the interior
of a polygon (Ledoux et al. 2012). However,
we focus in this paper on the validation and
repair of planar partitions only and we assume
that the input polygons are individually valid.

2.2 Validation of a Planar Partition
Using a Planar Graph

Assuming that individual polygons have been
deemed to be valid, it is possible to test the va-
lidity of a planar partition by identifying the
two types of invalid conigurations: overlaps

and gaps.
If individual polygons are checked with-

out building a planar graph or an indexing
structure, inding overlaps involves checking

whether any possible pair of polygons over-
lap. This is a computationally expensive op-
eration to make because of its quadratic be-
haviour, even when heuristics to speed up the
process are used (Badawy& aref 1999, KirK-
PatricK et al. 2002). Additionally, robustness
issues are signiicant in polygon intersection

tests (hoffMann et al. 1988). Finding the po-
tential gaps in a planar partition is even more
problematic. For this, computing the union of
the entire set of polygons is required, which is
also computationally expensive (MarGaLit &
Knott 1989, riVero & feito 2000).
The validation process can be sped up by

irst building a planar graph of the input poly-
gons, which is afterwards checked for consis-
tency. It should irst be noticed that while dif-
ferent approaches are available to construct a
planar graph (shaMos&hoey 1976, Van roes-
seL 1991), it is still sometimes dificult, espe-
cially if the polygon contains holes. The graph

pare our method and its implementation to al-
ternatives, both for validation and for repair.
Finally, we discuss the advantages and disad-
vantages of using our method and the conclu-
sions drawn from this in section 5.

2 Related Work

Since a planar partition is formed by a set of
individual polygons, we irst discuss what a

valid polygon is in our context, and then we
review existing methods to validate and repair
planar partitions.

2.1 Simple Features and Validity of
Simple Polygons

While there are several deinitions of what

constitutes a valid polygon (Van oosteroM et
al. 2004), we use in the following the stand-
ard Simple Features (OGC 2006), with the ad-
dition of the ISO 19107 Spatial schema (ISO
2003) polygon orientation rules. Simple Fea-
tures deines a polygon as follows: “A Poly-
gon is a planar Surface deined by 1 exterior

boundary and 0 or more interior boundaries.
Each interior boundary deines a hole in the

Polygon.”. In the speciication, six assertions

are given that together deine a valid polygon.

Essential for a valid polygon is that the bound-
aries of the polygon must deine one connect-
ed area. Additionally, a polygon can contain
holes. We say that the exterior boundary of the
polygon is the outer ring, and a hole is an in-
ner ring. These holes can be illed by one or

more polygons, which can recursively contain
holes, which are illed by other polygons. Ob-
serve also that holes are allowed to interact
with each other and the outer boundary un-
der certain conditions, e.g. they are allowed
to touch at one point, as long as the interior
of the polygon stays one connected area. Each
polygon is stored independently from other
polygons, and it is not possible to store top-
ological relationships between the polygons.
The ISO 19107 standard (ISO 2003) is more
ambiguously deined, but it does establish ori-
entation rules (counter clockwise for the outer
ring, clockwise for the inner ones), which we
use in our output.
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2.3 Repair Using Point and Edge
Snapping and Splitting

The most common method for planar par-
tition repair is based on the assumption that
polygons approximately match each other at
their common boundaries. This implies that
they should be within a certain distance of
each other along those edges. If, additional-
ly, all parts further apart than this value are
known not to be common boundaries, it is
possible to “snap” together polygons that are

closer to each other than this threshold, while
keeping the rest untouched. This method of
planar partition repair is available in many
GIS packages, including ArcGIS (ArcGIS
2012), FME (FME 2012), GRASS (GRASS
2012) and Radius Topology (1sPatiaL 2012).
Since thresholds are central to this meth-

od, it is of utmost importance to select a good
threshold value, something that is completely
different in each dataset. For planar partition
repair to be successful using this method, such
a threshold should be chosen in a careful man-
ner, and always comply with a few conditions.
These have been summarised as follows:
● Adjacent polygons should not be further
apart than this threshold along any part of
their common boundaries (shown as the
maximum threshold in Fig. 2 (a). Other-
wise, gaps cannot be ixed.

● Adjacent polygons should not overlap each
other in areas which are further inwards

of the boundary can then be unconnected and
extra machinery is necessary to represent the
knowledge of holes in the graph structure. The
fact that holes are also allowed to touch com-
plicates the task of validation even further,
since holes cannot be assumed to form an un-
connected planar graph.
Based on this graph, PLüMer & GröGer

(1997) specify a list of minimal mathemati-
cal axioms that can be used to check the va-
lidity of a planar partition: no dangling edges,
no zero-length edges, planarity, no holes, no
self-intersections, no overlaps, and having a
connected graph. It is important to note that
PLüMer & GröGer base their axioms on con-
cepts from graph theory, but they also high-
light the fact that a graph-based approach
alone is not enough: the graph has to be aug-
mented with geometrical knowledge (each
vertex has geometry attached, i.e., the coor-
dinates of points have to be stored). Validation
is thus underpinned by both geometrical and
topological concepts and systems thus have to
deal with those two concepts at the same time.
The method we propose in this paper – using
a constrained triangulation – permits us to do
exactly this: to embed both geometry and to-
pology in the same structure.

(a) Gaps between polygons (b) Overlapping polygons

Fig. 2: Deining a threshold for vertex, edge and face snapping. The threshold to be used should
be larger than the largest minimum distance between the matching boundaries, and smaller than
the minimum distance between vertices.
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This threshold value is usually manually
determined, either by trial and error, or by an-
alysing certain properties of the dataset(s) in-
volved, e.g. point spacing, precision, or map
scale. However, it is often hard to ind an op-
timal threshold for a certain dataset, since en-
suring that it works well for every part of a
dataset is unrealistic. Moreover, sometimes
such a threshold does not even exist, e.g. be-
cause point spacing in some places might be
smaller than the width of the gaps and over-
laps present.
Since the aforementioned conditions are

frequently not met or are not checked before-
hand, and since it is still necessary to per-
form repair of a dataset, snapping is often per-

than this threshold from their common
boundaries shown as the maximum thresh-
old in Fig. 2 (b). Otherwise, overlaps cannot
be ixed.

● None of the vertices of a polygon should be
closer to each other than this threshold, in-
cluding non consecutive vertices shown as
the minimum thresholds in Fig. 2. Other-
wise, they might be snapped together, cre-
ating repeated vertices, disjoint regions, or
various topological problems.

● None of the vertices of a polygon should
be closer than this threshold to any non
incident edge. Otherwise, they might be
snapped together, creating disjoint regions
or various topological problems.

(a) Before snapping (b) After snapping (invalid topology)

Fig. 3: Spikes and punctures can be created by snapping, since the bases of these elongated
forms (encircled) might be narrower than the threshold, but its length is not.

(a) Before snapping (b) After snapping (yellow peninsula cut off)

Fig. 4: Polygons can be split by snapping, since some parts of them might be narrower than the
threshold (encircled). While this result does not create an invalid planar partition, it can change the
number of polygons present and their topological relations, and can therefore be undesirable.
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be used to (manually) detect overlaps and gaps
based on the number of labels using the func-
tions v.what and d.what.vect. However, there
is no simple automated procedure to get the
number of labels at a certain point, which
makes it very cumbersome and time consum-
ing to use GRASS for this purpose.
Meanwhile, ArcGIS provides a more com-

plete solution, using a method similar in some
ways to the one developed and described in
section 3. It involves using the Geodatabase
feature of the software with some combined
validation rules, e.g. must not overlap and
must not have gaps. However, ixing every

problematic area in an appropriate manner
requires extensive user intervention (Fig. 5),
since the best choice for each case depends on
the speciic coniguration of the error.

Since both the aforementioned programs
do not offer an automated process to correctly
solve this problem and GRASS lacks the abil-
ity to visualise problem areas, they are not re-
ally comparable to our solution. A planar par-
tition can easily contain tens of thousands of
polygons, possibly generating thousands of er-
rors, which need to be checked and repaired
semi-automatically.

formed nevertheless, possibly creating invalid
polygons and/or planar partitions, or signii-
cantly changing the topology of the existing
features. Two examples of this phenomenon
are shown in Figs. 3 and 4.
While these examples show that snapping

is not problem-free, it is important to note
that commercial GIS packages often imple-
ment more complex snapping options such as
point-to-edge, edge-to-edge, or using a refer-
ence dataset. These options can help to solve a
problematic case, but can also have undesired
consequences, such as changing the topolo-
gy of the polygons. Another problem is that
post-processing operations to clean resulting
polygons might be required, e.g. disposing of
polygons with small areas, removing redun-
dant lines, thresholds for minimum angles
etc., which could again create invalid conigu-
rations, requiring iterative validation or repair
processes.

2.4 Repair Using Topological
Information

A different approach for planar partition re-
pair, based on topological information, is
available in some software.
GRASS also creates a graph, using edges as

a base structure instead of triangles, and could

(a) Viewing a topology error in ArcGIS (b) Assigning an overlapping region to one of
the polygons involved

Fig. 5: Planar partition repair in ArcGIS. The user is expected to zoom in to a particular error, ana-
lyse the situation, e.g. by looking at the properties from the surrounding polygons, and make a
decision to assign the problematic region to a certain polygon. More than 11,000 errors were de-
tected in this tile of the Corine dataset.
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The general worklow of our approach to

both validate and repair a planar partition is
as follows:
● the CT of the input segments forming the
polygons is constructed;

● each triangle in the CT is labelled with the
label of the polygon inside which it is lo-
cated;

● problems are detected by identifying tri-
angles having no or multiple labels, and by
verifying the connectivity between trian-
gles;

● repairing of the problems is made by re-la-
belling triangles to ensure that each triangle
has exactly one label;

● extracting the polygons from the triangu-
lation (polygons modelled with the Simple
Features speciications).

As mentioned previously, for this worklow

we assume that each input polygon is indi-
vidually valid. We describe in the following
section the concepts needed and we give a de-
tailed description of the different steps.

3.1 Triangulation of a Polygon and
Constrained Triangulation

A triangulation subdivides an area into non-
overlapping triangles. Using a constrained tri-
angulation, every line segment that deines the

boundary of a polygon, is ensured to appear as
an edge in the triangulation. It is known that

3 Validation and Automatic
Repair Using a Constrained
Triangulation

Our approach to validation and automatic re-
pair of planar partitions uses a constrained tri-
angulation (CT) as a supporting structure be-
cause it has many good properties, including
the following:
● It is by deinition a planar partition. There-
fore, as long as we keep the information
about which polygon each triangle belongs
to, the reconstructed polygons will be either
a valid planar partition, or multiple ones.

● It can be built quickly, in O (n logn) with
a variety of approaches (cLarKson et al.
1992, GuiBas & stoLfi 1985, MücKe et al.
1999). The actual computational complex-
ity can be O (n logn) + k, with k being the
number of edge-edge intersections, which
could conceivably even be n2. However,
k= n for most GIS datasets.

● Changes to the triangulation, e.g. adding a
new constrained edge is local, and therefore
fast.

● Constrained edges can usually be added
in constant time, being only signiicantly

slower and more complex when there is an
intersection with an existing constrained
edge (shewchuK 1997b).

● Implementation-wise, several stable and
fast triangulation libraries exist, including
CGAL (2012), Triangle (shewchuK 1997a)
and GTS (2006).

Fig. 6: (a) A polygon with 4 holes; (b) the constrained triangulation of the segments of this polygon.
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property is used for robust labelling of each
polygon. Triangles adjacent to the outer ring
of the polygons are labelled irst, and this is

later expanded to triangles further in the in-
terior of the polygon, recursively labelling
adjacent unlabelled faces as long as no con-
strained edges are crossed. After this opera-
tion, all triangles that are part of any polygon
have been labelled, with overlapping regions
having multiply labelled triangles. However,
holes are then indistinguishable from triangles
outside the planar partition, since both have
zero labels. Therefore, a special label is cre-
ated for all triangles outside the planar parti-
tion, referred to as the “universe” label, which

are labelled by recursively labelling adjacent
triangles from any triangle known to lie in the
exterior of the planar partition. To achieve this
we exploit the concept of the “far-away point”

(Liu & snoeyinK 2006); which is used by sev-
eral implementations and is also known as the
“big triangle” (faceLLo 1995).

3.3 Validation

If the set of input polygons forms a planar par-
tition then all the triangles will be labelled
with one and only one label. The problems are
easily detected:
● Gaps are detected by inding triangles

without any labels.
● Overlaps are detected by inding triangles

with two or more labels.
● Disjoint regions are detected by identify-
ing regions separated by the “universe” la-
bel. This is done by starting at a given tri-
angle, and doing a breadth-irst search on

the dual of the triangulation, without visit-
ing the triangles labelled as “universe”. If

all triangles can be reached, no polygons of
the planar partition are disjoint.

3.4 Repair Operations

The greatest beneits of using a labelled trian-
gulation for planar partition repair stem from
the fact that while repair operations are per-
formed, the validity of the planar partition
is always kept, together with the integrity of
the data. Unlike snapping, vertices are not re-

any polygon (also with holes) can be triangu-
lated without adding extra vertices (de BerG
et al. 2008, shewchuK 1997a). Fig. 6 shows an
example.
In our approach, the triangulation is per-

formed by constructing incrementally a CT of
all the segments representing the boundaries
(outer + inner) of each polygon. If the set of
input polygons forms a planar partition, then
each segment will be inserted twice except
those forming the outer boundary of the set of
input polygons. This is usually not a problem
for triangulation libraries because they ignore
points and segments at the same location as is
the case with the solution we use, see section
4. When segments are found to intersect, they
are split with a new point created at the inter-
section. This is the only situation in which the
generation of new points is required.
Notice that our approach requires only a

constrained triangulation, which not neces-
sarily includes the Delaunay criterion (shew-
chuK 1997a). However, having well-shaped
triangles is useful for repair purposes and
does not signiicantly increase the processing

time. Therefore our implementation actually
constructs and uses a constrained Delaunay
triangulation.

3.2 Labelling the Triangles of a
Planar Partition

Labelling a triangle means assigning to it the
label(s) of the polygon(s) that it belongs to. If
two input polygons overlap, each triangle in
the overlapping region should have the labels
of the two polygons.
In our previous work on validation (Ledoux

& Meijers 2010), we used the centroid of a
polygon to start the labelling process, but this
method is prone to errors if for instance the
calculated centroid is outside or on the bound-
ary of the polygon and does not allow us to
differentiate between gaps and overlaps.
To solve these problems, we store infor-

mation about the constrained edges of the
CT. Since it is known that the input rings
are closed and have a known orientation ac-
cording to the ISO 19107 orientation rules, it
is also known on which side of a certain line
segment the interior of the polygon lies. This
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Fig. 7: The steps in a generic repair operation.
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Tab. 1: The repair operations currently implemented in our software. The types of operations are
deined according to the map algebra classiication by toMLin (1994).

Repair operation Type Criteria

Triangle by priority list Varies Label that has the highest priority according to a

predeined priority list

Triangle by number of neighbours Focal The label present in the largest number of adjacent faces,

overlaps included

Triangle by absolute majority Focal Label present in two or more valid adjacent faces

Triangle by longest boundary Focal Label present along the longest portion of the boundary

of the adjacent faces

Regions by longest boundary Focal of

zonal

Label present along the longest portion of the boundary

of the adjacent faces

Regions by random neighbour Focal of

zonal

Random label from the adjacent faces

(a) The original polygons (b) Repaired each triangle using the label adja-
cent along the longest boundary from the
neighbouring triangles

(c) Repaired each region using the label adja-
cent along the longest boundary from the
neighbouring triangles

(d) Repaired each region using a random label
from the neighbouring triangles

Fig. 8: Different repair operations used in the two polygons for the Arribes del Duero Natural Park
in Spain (red) and the International Douro Natural Park in Portugal (green). All of them can be
considered best by a certain criterion, like (b) preserving the area ratio between the two polygons,
(c) smoothness of the boundary, or (d) a balance between the two.
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be further developed. For instance, triangles
could be split to subdivide an area with prob-
lems as in Bader & weiBeL (1997), or sliver
triangles/regions could be discarded (and then
illed during repair).

3.5 Extraction of Polygons from a
Triangulation

Starting from a labelled triangulation, it is
possible to reconstruct the individual poly-
gons of a planar partition to conform to valid
polygons according to the ISO 19107 and the
Simple Features speciications, which allows

users to incorporate automatic validation and
repair in their worklow.

We do this operation polygon by polygon
and start at an unprocessed triangle. Then we
visit all the connected triangles that have the
same label, reconstruct the polygon, and mark
the triangles as processed. Note that since all
of these triangles are connected, the outer and
inner boundaries of a polygon are all simple,
i.e., non self-intersecting. We repeat this op-
eration until all triangles have been processed.
For each polygon, we have to recover not

only its outer boundary, but also its inner
boundaries, which are not connected. Observe
that we cannot simply follow the original con-
strained edges as these do not have any mean-
ing after a planar partitions was repaired; the
boundaries of the repaired polygons are in-
stead formed by edges incident to two trian-
gles having different labels.
For each polygon, we start at a triangle,

and move on to triangles having the same la-
bel. As the process goes on, a single polyline
that runs along all boundaries of the polygon
is generated. This involves a depth-irst search

(clockwise) that recursively reaches until the
boundary of a polygon, returning a long chain
of edges in a procedure similar to following
the boundary edge by edge. The procedure is
shown step by step in Fig. 9.
The polyline created with this method has

“bridges”, which allow us to keep all inner

boundaries (holes) connected with the outer
boundary, in a manner that keeps the interior
connected as well. These help to preserve con-
nectivity and the relations between different
boundary types (outer and inner), but are re-

quired to be moved during the process, and
unlike snapping, repair is performed using lo-
cal criteria, instead of global ones because the
snapping-threshold is usually the same for the
whole dataset. This comes in contrast to other
methods, where care needs to be taken to en-
sure that the geometric or topologic validity
is kept.
Fig. 7 shows the standard steps required in

a repair operation. In order to avoid order de-
pendency when repairing, the repair operation
is always performed after all choices for label-
assigning have been made.
In particular, we propose six different re-

pair operations that can be used to ix gaps

and overlaps. These are shown in Tab. 1 and
all imply re-labelling triangles.
Four of them use triangles as a base, i.e.,

the label assigned is based only on that of its
three neighbouring triangles, which is fast and
modiies the area of each input polygon the

least. Despite their simplicity, they offer sub-
stantial control over the results. For instance,
the irst two operations only differ from each

other in their handling of overlapping faces;
but triangle by number of neighbours is better
for large overlapping regions, while triangle
by absolute majority is better in ixing small

problems. Having well-shaped (Delaunay) tri-
angles is most useful for triangle-based repair
functions. Two of them use regions of adja-
cent triangles with equivalent sets of labels,
which is slower than a triangle-based method
but yields results that can be cartographically
more pleasing. An interesting repair operation
for practitioners is the one in which a priority
of labels is used, i.e., in case of gaps/overlaps
the labels in the triangle (overlap) or in the ad-
jacent polygons (gap) are ordered according
to a user-deined priority, and the highest pri-
ority is assigned to the problematic triangles.
Notice that these repair operations can be used
one after the other (in a hierarchical man-
ner), for instance if irst the repair according

to the longest boundary is used but one zone
has two or more boundaries with exactly the
same length, then the deadlock can be solved
by choosing one randomly. A sample of the re-
sults obtained with different repair operators
is also shown in Fig. 8.
More repair operations based on extensions

of the idea of labelling triangles/regions can
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Fig. 9: The traversal order when navigating through triangles in a clockwise manner. Starting at
VA and the edge between VA and VB, the operations occur according to the encircled numbers.
Black arrows denote when an unprocessed triangle is found, red arrows when it is not. Notice how
the traversal is performed clockwise (shown in dark blue arrows) for both cases, despite starting
from different sides.

Fig. 10: Processing the polyline shown starting from vertex a and moving towards polyline A, the
following operations occur: (1) A unclosed → push, (2) B unclosed → push, (3) C unclosed →
push, (4) D unclosed → push, (5) E unclosed → push, (6) F closed → store, (7) pop → EG closed
→ store, (8) pop → DH degenerate→ erase, (9) pop → CI closed → store, (10) pop → BJ degen-
erate → erase, (11) pop → AK closed → store.



Ken Arroyo Ohori et al., Validation and Automatic Repair of Planar Partitions 625

for many robust spatial data structures and the
related operations; we use its constrained tri-
angulation module.

4.2 Experiments with Real-World
Planar Partition Datasets

We have made experiments with four freely
available real-world datasets, i.e., we have val-
idated and automatically repaired them with
our implementation; the overview of these
datasets is shown in Fig. 11 and their proper-
ties in Tab. 2. The datasets are the following:
● E41N27 Corine 2000 (Corine 2000) tile
E41N27, which contains a shifted polygon
(by about 10 cm), creating many small gaps
and overlaps in the dataset. The snapping
threshold has been set to 1 m.

● 4tiles Corine 2000 tiles E39N32, E39N33,
E40N32 and E40N33, which are known
to have long and thin overlapping regions
(1 mm) with each other. The snapping
threshold has been set to 1 cm.

● 16tiles 16 adjacent Corine 2000 tiles:
E39N30, E39N31, E39N32, E39N33,
E40N30, E40N31, E40N32, E40N33,
E41N30, E41N31, E41N32, E41N33,
E42N30, E42N31, E42N32, E42E33. Be-
tween some of them are gaps, others are
overlapping. However, all match within a
few centimetres. The snapping threshold
has been set to 10 cm.

● Mexico 1:1,000,000 scale land cover data-
set from INEGI consists of over 26,000
polygons. It is mostly valid according to the
Shapeile speciication, but contains some

very large polygons, with tens of thousands
of vertices, which presents dificulties to

most existing software.
As a comparison, we have also tried to per-

form the same operations with other avail-
able software. While the capabilities for pla-

moved later in the process to conform to the
Simple Features speciications. Also, its ori-
entation conveys the information of whether
a section of it is part of an inner or an outer
boundary.
This polyline is processed with a stack-

based algorithm that generates separate closed
rings for the outer boundary and each of the
inner boundaries, collapsing the “bridges”

that were generated. In order to do this, the
polyline is cut at the positions where more
than two edges join, and these are joined in
the correct order by keeping track of (yet)
unclosed rings. When a new segment is pro-
cessed, it can be one of three options: one that
completes a ring, one that is part of a bridge,
or one that is not yet closed. Closed rings are
stored and bridges are removed, while un-
closed rings are saved in the stack until they
can be popped to form a closed ring together
with a new segment. This is shown in Fig. 10.

4 Implementation and
Experiments

4.1 Implementation

An implementation of the algorithms de-
scribed in section 3 was written in the C++
programming language, using external li-
braries for some functionality. The devel-
oped software is called pprepair, and is open
source and freely available at http://tudelft-
gist.github.com/pprepair/. C++ was selected
in order to have good control with regards to
low level details and to achieve good perfor-
mance, which makes it possible to compare
it with existing solutions. The libraries used
are: the OGR Simple Features library (GDAL
2012) which allows input and output from a
large variety of data formats common in GIS;
and CGAL (CGAL 2012) which has support

Tab. 2: Properties of the datasets used for the experiment.

# pts in avg # pts
# polygons # pts largest polygon per polygon

E41N27 14,969 496,303 26,740 33.7
4tiles 4,984 365,702 16,961 74.7
16tiles 63,868 6,622,133 95,112 103.7

Mexico 26,866 4,181,354 117,736 155.6
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set with XY resolution values equal
to the snapping threshold. The fea-
tures are imported into it and the
merge and dissolve operations are
used to merge adjacent polygons
with the same ID. Topology is then
generated to check that the planar
partition is valid. Everything is i-
nally exported to a single Shapeile.

The individual parts of the process
are timed and the total is recorded.
Memory usage is calculated as the
difference between the just load-

nar partition repair among the software tested
vary considerably, with full topological repair
only available in ArcGIS (using manual op-
erations only), it is also important to consid-
er how different repair implementations scale
to large datasets. For this, a few performance
tests were made in our implementation, and
three planar partition repair tools that perform
this process using snapping and splitting. The
testing methodology for each tool is as fol-
lows:
ArcGIS In ArcCatalog, a multiple feature

dataset is created in a Geodatabase,

(a) E41N27 (b) 4tiles

(c) 16tiles (d) Mexico

Fig. 11: Overview of the four datasets.
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methods, keeps topological consistency, and
does not require inding out the appropriate

threshold value (if it exists). More important-
ly, it is able to directly state whether the result
is a planar partition, unlike the three other so-
lutions (with these snapping is performed but
that does not guarantee that the output is a val-
id planar partition). The results of the experi-
ments are shown in Tab. 3.
We have made the experiments in order to

have an idea of the processing time and the
memory usage involved. As Tab. 3 shows, our
approach uses somewhat more memory than
other solutions. This is explained by the ex-
tra (unconstrained) edges that are added to
the input over when triangulating them. It
should however be noticed that both ArcGIS
and GRASS crashed with the biggest data-
set 16tiles. Our implementation is the fastest
of the four tested, being for instance around
three times faster than FME for the biggest
datasets. Only for the Mexico dataset is our
implementation slower than FME. This is
(probably) explained by the fact that its poly-
gons already form a valid planar partition, and
therefore very few snapping operations have
been performed by FME; the planar graph
of the input was basically built, and then the
polygons saved back to disk. We believe that
ArcGIS and GRASS struggled with the data-
set because it contains several very large poly-
gons (with more than 10,000 vertices). Our
implementation took 3m31s, but, as Tab. 4
shows, it took CGAL 3m02s to simply trian-
gulate the input edges.
This table also demonstrates the eficiency

of our approach: for the four datasets, around
85 % of the time of our approach was used –
by the CGAL library – to read the input from
disk and triangulate the input edges.
During the implementation, we took sever-

al engineering decisions to optimise our pro-

ed ArcCatalog application and its
maximum memory usage through-
out the process.

FME A reader is created for each in-
put ile, which serves as input to a

Snapper transformer; features with
the same IDs are then dissolved,
and inally they are output into a

new Shapeile writer. The topology

generator is used to be able to tell
whether the result is a valid planar
partition. Results are timed and the
maximum memory allocation of the
fme.exe process is recorded.

GRASS Input iles are imported with v.in.

ogr, with all polygon cleaning oper-
ations performed and snapping set
to the correct values. Boundaries
between features with the same IDs
are then dissolved using v.dissolve.
Files are then exported with v.out.
ogr. Times reported by GRASS are
added together to give the total,
while memory usage by the v.in.ogr.
exe, v.dissolve.exe and v.out.ogr.exe
are monitored and their maximum
is recorded.

pprepair Files are read and put into the tri-
angulation, the triangulation is la-
belled, the repair is performed
with the longest boundary irst (see

Tab. 1), with ambiguous cases re-
solved with a random choice. Poly-
gons are then extracted from the
triangulation and output to a sin-
gle Shapeile. The entire process is

timed, and the maximum amount of
memory used is recorded.

Notice that we are somewhat comparing ap-
ples with oranges here since our implemen-
tation is able to repair more cases than other

Tab. 3: Planar partition repair comparison using large datasets.

pprepair ArcGIS FME GRASS
memory time memory time memory time memory time

E41N27 145 MB 19s 145 MB 1m3s 158 MB 31s 59 MB 3m09s
4tiles 116 MB 17s 113 MB 37s 105 MB 31s 49 MB 53s
16tiles 1.45 GB 4m47s crashes – 636 MB 15m48s crashes –

Mexico 1.01 GB 3m31s 216 MB >1d 264 MB 2m45s 408 MB 11m38s



628 Photogrammetrie • Fernerkundung • Geoinformation 5/2012

age compared to a pure graph-based approach
– this difference is mainly caused by the un-
constrained edges introduced by the triangu-
lation. While it would be possible to use our
repair rules together with a (primal/dual)
graph-based approach, these additional edges
in the triangulation give ine-grained control

over the repair operations, and ensures that
the graph is connected, which facilitates the
reconstruction of polygons.
We have implemented our algorithm over a

numerically robust triangulator (CGAL) and
since repair operations are expressed solely
in terms of re-labelling of triangles (no geo-
metric computation is involved), the approach
is also fully robust. Since, during our experi-
ments, most of the time was used to compute
the constrained triangulation, another library
could also be tested to improve the implemen-
tation.
For the future, we plan to:

● Improve the scalability of the approach and
process datasets with more than 10 million
polygons. It is known that using divide-
and-conquer techniques triangulation algo-
rithms can handle big datasets (aMenta et
al. 2003, BLandford et al. 2005). We will
investigate whether it is possible to auto-
matically repair each divided part individu-
ally and ‘glue’ the repaired parts together.

● Investigate snap rounding (de BerG et al.
2007, hoBBy 1999) as a pre-processing step
– or embedded directly in the triangulation
– to guarantee that repaired planar parti-
tions have no vertices that are closer than a
certain threshold. However, snap rounding
may change the topology of the input, but
the output will nevertheless be a valid parti-
tion as the topology will be repaired. Apart
from topological changes, snap rounding
can also lead to removed polygon parts that
are too small to be preserved based on the
chosen ε.

● Addmore advanced repair operations to our
repair toolkit, e.g. repair could take place
based on splitting a collection of triangles.

● Extend our work to include the third dimen-
sion to validate and repair 3D city models
using a constrained tetrahedralisation (si
2008). Notice that the tetrahedralisation of
a given polyhedron does not always exist,
and thus extra (Steiner) points might need

gram. One of them was to favour disk space
over computation time, as we wanted to be
able to process large datasets. This is why
we always reconstruct polygons, even if they
were not modiied by the repair process. Al-
though possible, it would require us to keep in
memory the original polygons (which would
signiicantly increase the memory consump-
tion) and to keep track of which labels have
been modiied. And, as Tab. 1 shows, the re-
construction is very eficient as it only takes

around 3–4 % of the total time for the 16tiles
and Mexico datasets.

5 Discussion and Conclusions

We have presented a new method for repair-
ing polygonal area partitions, ensuring that
the output partition is valid, i.e., all individu-
al polygons are conforming to the ISO 19107
(ISO 2003) and Simple Features speciica-
tion (OGC 2006) and neither gaps nor over-
laps are present between any pair of polygons.
The novelty of our method lies in the fact that
repair is performed according to user deined

criteria, but then takes place without any hu-
man intervention. Automatic repair is becom-
ing increasingly an important topic due to data
integration, e.g. data collected for the different
themes of the European INSPIRE Initiative
will inally have to it together and data could

eventually be matched fully automatically by
dedicated web service components (INSPIRE
2009). Our approach could be at the heart of
such a web service.
The proposed approach excels in automat-

ed repair at the cost of increased memory us-

Tab. 4: Timed steps of the planar partition re-
pair procedure, rounded to the nearest second.
The percentage is the triangulation time over
the total time.

E41N27 4tiles 16tiles Mexico

Triangulate 0:17 0:15 4:00 3:02
Label 0:01 0:01 0:27 0:16
Repair 0:00 0:00 0:00 0:00
Reconstruct 0:01 0:01 0:11 0:07
Output 0:00 0:00 0:10 0:06

Total 0:19 0:17 4:47 3:31
triangulate % 89% 88% 83% 86%
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to be added. The main concepts of our ap-
proach, (re)labelling and reconstruction,
extend naturally to 3D. However, appropri-
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ners are not trivial to implement in our cur-
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