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Summary: In this paper, 3D free-form linear fea-
tures are used as ground control information for the
computation of the transformation from 3D object
space to the 2D SAR image space. This is now fea-
sible thanks to the high resolution imaging capa-
bilities of contemporary satellite SAR sensors
which allow the identification of detailed struc-
tures. The computation of the transformation pa-
rameters is based on a newly introduced general it-
erative closest point (ICP) based method for single
free-form linear feature pair matching, extended to
simultaneously match multiple pairs of them. The
proposed method is tested with the georeferencing
of a whole TerraSAR-X image. Linear features are
shown to be a reliable form of ground control infor-
mation.

Zusammenfassung: Matching und Evaluation von
Freiform-Linien als Passinformation zur Georefe-
renzierung von satellitengestiitzten SAR-Bildern.
In diesem Beitrag werden 3D Freiform-Linien als
Passinformation fiir die Berechnung der Parameter
zur Transformation vom 3D-Objektraum in den 2D
SAR-Bildraum verwendet. Dies ist dank hoch auf-
16sender moderner SAR Satellitenradarsensoren
moglich geworden, die eine Identifizierung detail-
lierter Strukturen erlauben. Die Berechnung der
Transformationsparameter basiert auf einer neu
eingefithrten Methode, welche eine Verallgemeine-
rung des Iterative Closest Point-Algorithmus (ICP)
zur Zuordnung von einzelnen Paaren von Freiform-
Linien darstellt und eine gleichzeitige Identifika-
tion und Zuordnung mehrerer solcher Paare erlaubt.
Die vorgeschlagene Methode wird an Hand der
Georeferenzierung eines TerraSAR-X-Bildes ge-
testet. Die Linien erwiesen sich dabei als eine zu-
verlassige Form der Passinformation.

1 Introduction

The fine resolution imaging capability of the
modern, state-of-the-art, spaceborne SAR
sensors makes feasible the identification of
certain details on the Earth’s surface such as
roads and buildings. This was hard or even im-
possible with the previous generation of SAR
images (EINEDER et al. 2009). Modern satellite
SAR sensors such as TerraSAR-X collect im-
ages that are delivered with an absolute geolo-
cation accuracy of 1-2 m (RotH et al. 2004,
BresNnaHAN 2009). However, the identifica-
tion of salient characteristic points such as
road intersections and building corners is still
an ambiguous process, due to the inherently
speckled and fuzzy nature of SAR images, the
severe distortions inherited from the imag-
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ing geometry and the absence of true colour.
This is not necessarily a drawback for the SAR
images; contemporary SAR sensors may not
need control information for orientation pro-
cesses due to accurate orbit data (VASSILAKI
et al. 2011a). It is more a problem of the co-
processing (combined/synergistic use) of slant
range (not geometrically corrected) SAR data
with heterogeneous (multimodal and multi-
temporal) remote sensing and geospatial data,
in the sense of identifying salient points to cor-
relate the other data with SAR. The concept of
co-processing SAR data with other data types
is of growing significance (SORGEL et al. 2008,
WEGNER et al. 2009, Surt & REemartz 2010,
VassiLakt et al. 2011b, WEGNER et al. 2011, REI-
NARTZ et al. 2011). There is a worldwide abun-
dance of readily available geospatial informa-
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tion as other type of data. Moreover, optical
images are of well-established use and of more
descriptive nature as they are closer to the hu-
man eye perception. On the other hand, SAR
is an all-weather, day and night sensor, offer-
ing information about the properties of the
targets, their 3D geometry and their evolution
over time, which complements information
found in other data types.

In order to work around the ambiguous
identification of salient points on the fuzzy and
speckled SAR images, linear features such as
road edges and building outlines are investi-
gated as an alternative way to provide ground
control information (GCI). The concept of us-
ing non salient point GCI for the geometric co-
processing of SAR images with other, hetero-
geneous, remote sensing and geospatial data is
relatively new, as the identification of details
was hard with previous generations of SAR
images; DARE & Dowwman (2001) and Kar-
JALAINEN (2007) used water body boundaries,
which are effectively 2D, for registration prob-
lems and ZaLmaNsoN et al. (2004) attempted
an introductory research on a more general 3D
approach using parametric curves, with no ap-
plications or results. In this paper the georef-
erencing of TerraSAR-X images is done with
a newly introduced ICP-based free-form lin-
ear features (FFLFs) matching method (Vassi-
LAk et al. 2008). FFLFs are 2D or 3D linear
features of arbitrary geometry, such as road
edges and building outlines, defined by nodes
of no regularity which are joined by a func-
tion of arbitrary type (VassiLaki et al. 2012).
In this paper the method is extended to match
networks of FFLFs of different dimensionality
(3D-2D). The method is applied to the georef-
erencing of a whole TerraSAR-X image; a net-
work of 3D FFLFs is used as GCI or ground
control linear features (GCLFs) in order to
compute the parameters of the transformation
from 3D object space to 2D SAR image space.

2 Problem Formulation

A SAR image is a 2D projection (x,y) of the
3D object space (X,Y,Z). The georeferencing
process recovers the imaging geometry of the
sensor at the time of acquisition, by the com-
putation of the parameters of the transforma-

tion. Transformations are generally classified
into empirical models and into physical sensor
models (ToutiN 2004). Examples of empiri-
cal models are polynomial functions (PFs) and
rational polynomial functions (RPFs), while
physical sensor models are sensor dependent
rigorous mathematical functions. In this paper
the georeferencing is computed by using PFs
and RPFs as transformation models, and the
results are compared to those achieved using
the physical model of VassiLaki et al. (2011a).
Although not widely adopted for SAR imag-
es (Toutin 2004, DowMaNN & Dorrorr 2000),
the use of empirical sensor models is still geo-
metrically meaningful as it was recently ex-
plained by ZHANG et al. (2011). Traditionally
the computation of the transformation param-
eters, either empirical or physical, requires sa-
lient points with known 3D object-space and
2D image-space coordinates (ground control
points, GCPs).

In this paper the georeferencing param-
eters are computed using FFLFs with known
3D object-space and 2D image-space coordi-
nates (GCLFs). In contrast to salient points,
the 3D information and the 2D information
are in the form of a pair of two distinct hetero-
geneous FFLFs defined by their nodes (meas-
ured points). These nodes may vary widely as
they are produced using different processes.
Even though a corresponding pair of FFLFs
represents the same physical feature, gener-
ally no two nodes of the FFLFs correspond to
the same physical point (VassiLAKI et al. 2012).
Homologous point pairs have to be comput-
ed (matched). The matching is complicated
by the fact that the two FFLFs are of differ-
ent dimensionality. Furthermore, a single pair
of FFLFs may not represent the entire dataset,
as it may be confined to a small region of the
data. In this case, multiple pairs or a network
of corresponding FFLFs are required. The
network of FFLFs increases the robustness but
it introduces problems such as the FFLFs cor-
respondence and simultaneous matching.

3 Overview of the Method

A novel method based on the iterative closest
point (ICP) algorithm (BesL & McKay 1992,
ZHANG 1994) is used for accurate and robust
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global matching of heterogeneous FFLFs. The
method was initially introduced in VASSILAKI
et al. (2008) in order to match 2D heterogene-
ous FFLFs with a rigid transformation. It was
further expanded in order to match FFLFs of
different dimensionality (2D-3D) with non-
rigid projective transformation and it is fully
documented in VassiLaki et al. (2012). For ef-
ficiency convenience and user friendliness the
method has been incorporated into ThanCAD
(Stamos 2007), an open-source CAD.

The matching of two FFLFs of the same di-
mensionality (2D-2D, 3D-3D) is done by an
iterative process of determining closest point
pairs between the two FFLFs and then us-
ing them to compute the transformation pa-
rameters by least squares adjustment (LSA).
Closest point pairs are computed by splitting
a FFLF to a large set of consecutive interpo-
lated points, each one very close to its previ-
ous and its next point. Then, the distances of
all these points to a node of the other FFLF
are computed; the closest points between the
two FFLFs are the points with the smallest
distances (VassiLakl et al. 2008). This process
may be computationally expensive but it is
doable with modern computers, and it is rela-
tively easy to speed it up with a divide-and-
conquer approach. Further acceleration can
be achieved by parallel computing. In the case
of FFLFs of different dimensionality (3D-2D)
the 3D nodes of the 3D FFLF are projected to
the 2D image space using an initial or previ-
ous approximation of the transformation pa-
rameters, saving the association of each 3D
node and its 2D projection. Closest points are
computed as in the 2D-2D case, they are con-
verted to 3D-2D pairs through the saved asso-
ciation, and they are used to compute the pro-
jection parameters by LSA. Detailed descrip-
tion of the 3D-2D case can be found in Vassi-
LAKI et al. (2009b).

The ICP algorithm needs a good initial ap-
proximation to converge, which means that
the two FFLFs must be close enough to each
other. Automatic pre-alignment is done us-
ing the rigid similarity transformation com-
puted exploiting physical properties of the two
FFLFs, or using the non-rigid first order poly-
nomial (affine) transformation computed ex-
ploiting characteristic statistical properties of
the FFLFs (VassiLaki et al. 2012).

In the case of networks of FFLFs of the
same dimensionality (2D-2D, 3D-3D), the cor-
respondences of FFLFs must be established.
Assuming that the two datasets are initially
pre-aligned, a FFLF of the first dataset cor-
responds to the FFLF of the other dataset
which is “closest” to it. However, the defi-
nition of “closest” is ambiguous for a FFLF
which may span many other FFLFs. Differ-
ent nodes of the same FFLF may be closest
to nodes of different FFLFs. VassiLakI et al.
(2009a) introduced the term “distance” as an
integral measure of how far or how different
two FFLFs are. The pair of FFLFs which have
the smallest “distance” are assumed to corre-
spond to each other. Four candidates for the
“distance” measure were suggested: the Eu-
clidean distance between characteristic ho-
mologous points, namely the first nodes (d1),
the last nodes (dN), or the centroids (d), and
the absolute difference of the FFLFs lengths
(AS). For robustness, the biggest of these four
values can be used as the “distance” of the
FFLFs. In the very unlikely case that the “dis-
tance” is ambiguous (almost the same) for two
or more pairs of FFLFs, application of the full
ICP can be used to determine which FFLFs
correspond. ICP is the best and more robust
approach, but it is very time consuming and
should be avoided if possible. VassiLaki et al.
(2009a) assumes global matching, implying
that the number of FFLFs of each network is
the same (N:N matching). The method, how-
ever, has partial matching capabilities which
can be further exploited in future research. If
the number of FFLFs of the two networks is
different (N:M matching, N>M), the method
finds the “closest” pair of FFLFs, marks these
FFLFs as corresponding pair of FFLFs, and
continues the same process for the remain-
ing FFLFs (N-1:M-1 matching). In the end
N-M single FFLFs are left, which are effec-
tively ignored. The method proceeds with an
ICP step, it brings the FFLFs even closer and
it then re-evaluates the correspondence, as the
“distance” between any pair of FFLFs is ob-
viously changed. Furthermore, ICP automati-
cally rejects two unrelated FFLFs marked to
correspond if they do not overlap (VASSILAKI
et al. 2012).

All the FFLFs of a network share a com-
mon transformation. In order to compute the
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common transformation, LSA is applied to
all the pairs of FFLFs simultaneously. The
equations produced by the homologous points
of all pairs of FFLFs are assembled into the
same LSA matrices. The LSA computes the
transformation which best fits all the pairs of
FFLFs. The computed transformation brings
the FFLFs closer together, and thus the corre-
spondences are re-evaluated, in case that the
previous, poorer, transformation led to a few
false correspondences.

4 Matching 3D-2D Networks of
FFLFs

In this paper, the method is extended to match
networks of FFLFs of different dimensionality
(3D-2D). VassiLaki et al. (2009a) used manu-
ally pre-aligned datasets, which in the case of
3D-2D is rather difficult as the varying Z co-
ordinate of the 3D FFLFs and the geometri-
cal distortions on the SAR image (2D FFLFs)
makes their shapes incompatible. Manual
move, scale and rotate operations, typically
provided by CAD software, are not enough to
cancel the elongated nature of the SAR projec-
tion. Instead, the 3D FFLFs must be projected
to the image space of the 2D FFLFs using a
good approximation of the unknown transfor-
mation parameters. Since all pairs of FFLFs
share the same transformation, a good approx-
imation of the projection of a single pair of
FFLFs, automatically computed (VassiLAKI et
al. 2012), can be used to project the 3D FFLFs
network to the 2D image space, bringing the
datasets close together. The 2D-2D corre-
spondences of FFLFs are then established as
outlined in the previous section (VASSILAKI et
al. 2009a). The correspondence of the single
pair of FFLFs is chosen manually by the user,
so that in this sense the datasets are manual-
ly pre-aligned. However, apart from this, the
procedure is fully automated.

5 Design of Tests, Datasets and
Results

The experiments were designed to test both
the robustness and the accuracy of the meth-
od. In the group “A” tests, the georeferencing

of a TerraSAR-X image is done using GCI ex-
tracted from a 40 years old map. In the group
“B” tests, the georeferencing of the same
TerraSAR-X image is done using recently
captured optical aerial images. Group A is a
“crash test” of the proposed method and it may
be of practical use in urgent situations when
there is no time to collect up-to-date GCI (a
day is enough for a satellite scene under the
current method). Group B, where the datasets
are compatible in terms of time, is a contribu-
tion to the operational georeferencing of Ter-
raSAR-X images and their combined use with
optical images. Each group of experiments
contains tests corresponding to four distinct
projection models:

® first order 3D PFs with 8 unknown para-

meters (3D affine model)

x=aX+aY+a,Z+a,
y=bX+bY +bZ+b, D

® second order 3D PFs (Toutin 2004) with 16
unknown parameters

x=aX+aY+a,Z+a,+a, X +aY’
+a,Z’ +a XY
y=bX+bY+bZ+b,+b X +bY’
+b,7% + b XY
® 3D Direct Linear Transform (DLT) with 11
unknown parameters
= aX+a,Y+a,Z+a,
X+, +c,Z+1
_bX+bY+bZ+b,

(©)
X+, Y +ce,Z+1
® 3D RPFs with 14 unknown parameters
_aX+aY+a,Z+a,
X+, +c,Z+1
_bX+bY+bZ+b, @)

r= dX+d,Y+d,Z+1

where X,Y,Z are the object coordinates and x,y
are the SAR image space coordinates (slant
range and azimuth, respectively).

The study area is a sub-urban area in the
greater north-eastern region of Athens,
Greece. It has steep mountainous terrain with
an average elevation of 270 m and it is gen-
erally covered by sparse vegetation. It also
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includes two small urban regions. The data
used (Fig.1) are a) a TerraSAR-X image, b)
an old medium scale topographic map and
c) a recent medium-scale optical orthoimage
with the corresponding digital terrain model
(DTM) (Fig. 1). The TerraSAR-X image is a
single look slant range (SSC) imaging prod-
uct captured in 2009 with the experimental
300 MHz high resolution spotlight (HS) im-
aging mode. The whole image, which covers
an area of about 50 km? (5 km x 10 km), was
used. The polarisation is HH and the scene
centre incidence angle is 53°. The projected
spacing values for range (psg,) and azimuth
(ps,,) are 0.45m and 0.87 m, respectively.
The medium-scale old topographic map was
in analogue form at a scale of 1:5000 and it
was compiled by stereo-restitution from aerial
photos, captured in 1970. The map was con-
verted to digital form by scanning and digi-
tizing; the contour lines of the map were con-
verted to a DTM. The relative planar accuracy
of the map is estimated at 1.5 m (o). The ver-
tical contour interval is 4 m and the relative
vertical accuracy is estimated at 2 m (o,). The
absolute planar accuracy is estimated at 2.5 m
(o) and the vertical one at 4 m (c,). The map
is part of a series which cover the whole ter-
ritory of Greece. They are readily available
and they cost much less than a GPS survey.
The area under study changed widely during

the 40 years between the two data collection
phases (2009 and 1970). The area used to be
an agricultural area but now exhibits a great
variety of land uses, as it serves as a holiday
resort near Athens. The map and the SAR im-
age share few common features, as is the case
in virtually all multitemporal datasets. Most
of these common features are roads which,
unfortunately, evolve through time. Many
sections of the roads have changed consider-
ably during the 40 years between data acqui-
sitions, as it is shown in the next paragraphs.
The maps are topographic maps (not illustra-
tion or small scale maps) of scale 1:5000 and
thus there are no (significant) generalizations.
Furthermore, most of the used roads are more
than 6 m wide, which means that their width
is over 1 mm in the map, and thus, the roads
are clearly visible. The medium-scale optical
orthoimage and the corresponding DTM were
available with pixel sizes of 0.5 m and 5 m,
respectively. The orthoimage was produced
from aerial images collected in 2008. The or-
thoimage and the corresponding DTM are of
the same nominal accuracy as the paper map,
probably because they were also compiled to
meet the specifications for mapping at a scale
of 1:5000.

The 3D error of the datasets must be ex-
pressed in terms of the 2D SAR image space,
since this paper deals with the projection (in

Fig. 1: Datasets: old map (left), orthoimage (middle), SAR image (right).
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the mathematical sense) of the 3D object space
to the 2D SAR image space. The error propa-
gation of the object space to the SAR image
space is given in Appendix 1. The planar rela-
tive error (6, = 1.5 m) and the vertical relative
error (6, = 2 m) of the 3D object space map
are propagated to 1.4 m in the SAR range di-
rection (GR 1x) and 0.9 m in the SAR azimuth
direction (G Az .)» while the planar absolute er-
ror (G, = 2.5 m) and the absolute vertical er-
ror (6, = 4 m) are propagated to 2.7 m in the

SAR range direction (6, ;) and 1.7.m in the

SAR azimuth direction (o,, ;). These values
are valid for the specific SAR image of this pa-
per and are used later for evaluation purposes.

In all tests, the extraction of 2D road edg-
es was done manually by digitizing the lines
in the map or in the optical image and in the
SAR image. Most of the roads digitized are
paved, as they appear better in the SAR imag-
es. The road centre lines were obtained from
the edges using a skeletonization technique
based on the method proposed in VassiLakI et
al. (2012). The road centre line is preferred to

\
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Fig.2: Matching results of Test AO. 3D GCLFs extracted from the old map (cyan), 2D GCLFs ex-
tracted from the SAR image (magenta), matched projection of the 3D GCLFs (black dashed).
Fig. 3 shows the road sections inside the green ellipses in a magnified version (GCLF = ground

control linear features).
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——
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Fig. 3: Test AO: Road sections with wide temporal changes. 2D GCLFs (magenta), matched pro-

jection of the 3D GCLFs (black dashed).

s fea W

Fig. 4: Matching results of Test A1. GCLFs with
wide temporal changes are excluded.

=

AL

Fig.5: Matching results of Test A2. Only few
GCLFs are used.
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14.5 pixels
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Fig.6: Test A1: Road sections with temporal changes. 2D GCLFs (magenta), matched projection

of the 3D GCLFs (black dashed).

Fig.7: Matching results of Test B1. The 3D
GCLFs are extracted from a recent orthoim-
age.

road edges as control FFLF, because it is more
accurate than the edges and it fully represents
the geometry of the road. For all the tests, a
preliminary georeferencing was computed us-
ing a single pair of corresponding FFLFs that
was identified manually. The computed trans-
formation parameters were used to bring the
network of FFLFs close together.

In tests A, the length of the road centre lines
varies from a few hundred meters to 8.5 km
(Fig.2 and Figs. 4-5). The height profiles of
the road centre line are in general rough, due
to the scale of the map and the fact that the map
does not have elevation information along the
surface of the road. The centre line elevation,
interpolated in the DTM, was determined by
the heights of the surrounding terrain. Three
different cases were tested. In the first case
(A0) the centre lines of 14 roads were used as
ground control linear features (GCLFs). The
whole lengths of the roads were used, regard-
less of the temporal changes that were identi-
fied. In the second case (A1) the same 14 cen-
tre lines as in (AO) were used, but the sections
of the roads which exhibited large temporal
changes were eliminated manually as identi-
fied by (A0). In the third case (A2) the centre
lines of 4 roads, which span the whole scene
of the SAR image, were used as GCLFs. The
matching results are shown in Fig. 2 and Figs.

.

Fig.8: Matching results of Test B2. Only few
GCLFs are used.

4-5. The 3D GCLFs which were extracted
from the map appear in cyan colour, the SAR
2D GCLFs appear in magenta colour, and the
matched projection of the 3D GCLFs using the
proposed method appear with a black dashed
line. It must be noted that the coordinates of
3D GCLFs (cyan) and 2D GCLFs (magenta)
were too different to fit into the same figure
and thus the 3D GCLFS are shown scaled/
translated for illustration purposes. In Fig.3
characteristic sections of the roads with wide
temporal changes are presented for case AO.
In Fig. 6 characteristic sections with temporal
changes are presented for case Al.

In tests B, the length of the road centre lines
varies from 1.5 to 12 km (Figs. 7-8). Two
different cases were tested. In the first case
(B1) the centre lines of 9 roads were used as
GCLFs. In the second case (B2) the centre
lines of 3 roads, which span the whole scene
of the SAR image, were used as GCLFs. The
matching results are shown in Figs. 7-8.

6 Validation, Evaluation and
Discussion of the Results

The accuracy of the computed georeferencing
was checked with independent check points
(CPs). In test A, 16 CPs were extracted from
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the medium scale old map and were also iden-
tified in the SAR image. Fig. 9 shows the distri-
bution of the CPs and Tab. 1 shows the RMSE
(root-mean-square error) (in m) for the four
computed transformation models (1-4). The
RMSE is the root-mean-squared differences
between the image coordinates of the CPs and
the image coordinates of the CPs computed
from their object coordinates using the com-
puted transformation model. It is noticeable
that the RMSE of the CPs is almost the same
regardless of the transformation model used.
The differences (1.1 m at most) are not statisti-
cally significant as they are less than the accu-
racy of the maps (1.4 m in range and 0.9 m in
azimuth directions) and the uncertainty of the
point location on the SAR image is larger than
1 pixel. It is also noticeable that the method
is insensitive to temporal changes, given the
abundance of GCLFs found in all cases (A0,

Al and A2). The method manages to match ro-
bustly and efficiently data which contain sec-
tions with gross temporal changes, producing
low RMSE. In the first case (A0) the GCLFs
contain gross errors in various segments with
temporal changes, but they cancel out. In fact,
the method can also be used to identify the er-
roneous segments and exclude them from the
matching, but this remains a subject of fu-
ture research. The erroneous segments were
removed manually in the second case (Al).
After running tests A0, the distance of some
segments of the matched roads were far larg-
er than the rest. The length of these segments
was small compared to the length of the roads.
If the difference was greater than a threshold
(more than 3 times the average difference of
the rest) and the length of the segment was
greater than 5 times this threshold, the seg-
ment was excluded manually. Case Al tends

Fig.9: The CP distribution used for tests A (yellow) and B (red), shown on the SAR image.

Tab. 1: RMSE of the transformation models using CPs (m). The error is dominated by the a-priori
error of the GCI and/or CPs (GCI = ground control information, GCLF see Fig. 2).

Test GCI: GCLFs GCI: none
1st order PFs 2nd order PFs DLT RPFs Physical model
dRg dAz dRg dAz dRg dAz dRg dAz dRg dAz

A0 1.9 34 24 4.1 2.6 37 2.3 4.5

Al 1.8 3.1 2.2 3.2 1.9 3.2 2.0 33 24 3.5

A2 2.1 39 2.2 4.1 1.8 4.1 2.0 34

Bl 1.3 24 1.1 29 1.3 2.5 1.2 2.7

B2 13 2.6 1.2 3.5 15 2.8 13 2.9 = >0
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to give the best RMSE. In the last case (A2)
the number of GCLFs is only 4, but they cover
adequately the whole scene, and give almost
the same RMSE as (AO0).

In tests B, 108 CPs were extracted from the
optical image and the corresponding DTM
and were also identified on the SAR image.
The abundance of salient points which can be
identified both on the optical and the SAR im-
age offered the opportunity to collect a great
number of CPs in order to improve the relia-
bility. Features such as roads, pools, big build-
ings and field boundaries are identified clearly
on both image types. Metallic objects appear
brightly on the SAR image but it was impos-
sible to identify them on the optical image.
Built-up areas appear clearly in the optical im-
age, but their interpretation in the SAR image
was hard due to the layover and shadow ef-
fects. The elevation of features above the ter-
rain surface could not be determined as only
ground elevation information was available.
Thus, the majority of CPs are corners of pools,
field boundaries, and characteristic points of
roads. Fig. 9 shows the distribution of the CPs,
Fig. 10 shows some of the CPs in detail and
Tab. 1 shows the RMSE (in m) for the four
computed transformation models (1-4). The
conclusions of tests A are verified in tests B:
1) the RMSE of the CPs is almost the same re-
gardless of the transformation model used and
2) the RMSE is not sensitive to the number of
GCLFs, if they cover adequately the scene. It

should also be noted that the RMSE is very
close to the relative accuracy of the orthoim-
age and the corresponding DTM, computed in
Appendix 1 (1.4 m and 0.9 m in the SAR range
and azimuth directions, respectively).

The results computed with the present
method (GCLFs) tend to be of better quality
than those computed by salient point based
approaches. In VassiLaki & Ioannipis (2010)
a terrain dependent approach was applied to
the datasets of tests A using the 3D DLT (11
parameters) and the Ist order 3D RPF (14 pa-
rameters) transformations. The RMSE of in-
dependent CPs was about 3.2 m in range and
about 3.0 m in azimuth direction. About the
same results were later achieved by CRrEspI et
al. (2010), who used a terrain independent ap-
proach to georeference a SpotLight COSMO-
SkyMed image, using 3rd order 3D RPFs (78
parameters, 20 of which proved to be statis-
tically significant). In Nonaka et al. (2008) a
digital map at a scale of 1:2500 was used in
order to evaluate the accuracy of the orthorec-
tified EEC SpotLight TerraSAR-X products.
The accuracy revealed to be better than 5 m in
a flat area while it degraded to more than 10 m
in mountainous areas.

Comparing the RMSE computed with the
present method (GCLFs with empirical mod-
els) to those computed with the SAR physical
model (without GCI), one might erroneously
conclude that the present method is better.
However, in both cases the error of the GCI

Fig. 10: Some of the CPs used for test B, shown on the SAR (left) and optical (right) image.
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and/or the CPs (map, orthoimage, uncertainty
of the point location in the SAR image) domi-
nates the (much smaller) error of the sensor.
Furthermore, the empirical models reflect the
relative accuracy of the GCI, while the physi-
cal model reflects the absolute accuracy of the
GCI which is worse than the relative one. In
VassiLakl et al. (2011a), where the physical
model was used with the datasets of tests A,
the RMSE of the independent CPs is 2.4 m in
range and 3.5 m in the azimuth direction. The
absolute accuracy of the map, computed in
Appendix 1, was 2.7 m and 1.7 m in the SAR
range and azimuth directions, respectively.
The RMSE in range is close to the one to be
expected, but in azimuth it is somewhat larg-
er. The overall 2D errors (geometric mean of
range and azimuth), which are 4.2 mand 3.2 m
for our results and the expected accuracy, re-
spectively, are also relatively close. The rela-
tively large RMSE values in azimuth require
further investigations. In test B the RMSE of
the 108 CPs computed using the physical mod-
el is 2.3 m in range and 2.6 m in the azimuth
direction. This is close to the absolute accu-
racy of the orthoimage and the corresponding
DTM (the same as in test A) in range and also
closer in azimuth than in test A. Again, the
overall 2D error is close to the one expected
(an overall RMSE of 3.4 m vs. an expected ac-
curacy of 3.2 m). Thus, the results computed
with the present method are of the same quali-
ty as the ones computed by the physical model
without GCIL.

7 Conclusions

The pixel location accuracy of TerraSAR-X
images has been validated in the past by its
operator and by independent researchers, with
dedicated projects which demand the instal-
lation of corner reflectors on strategic plac-
es on the Earth’s surface and the acquisition
of datasets appropriate for this purpose. Al-
though the accuracy was proven to be well be-
low 1 m, the use of corner reflectors either as
control or as check points is generally not de-
sirable and/or feasible in everyday operational
cases of research and practice, even more so
in emergency situations. The objective of this
paper was to evaluate the performance of lin-

ear features as GCI for the operational geo-
referencing of TerraSAR-X images. Research
conducted so far, in a sub-urban mountainous
area, shows that contemporary satellite SAR
sensors and the proposed method is promis-
ing with respect to robustness and accuracy:
1) linear features with large temporal changes,
due to the 40 years time interval between the
data acquisitions, are matched robustly and
lead to a reliable recovery of the imaging ge-
ometry of the sensor (RMSE on independent
CPs: 1.9 m in range and 3.2 m in azimuth), 2)
linear features extracted from an optical im-
age and the corresponding DTM are a relia-
ble form of GCI (RMSE on independent CPs:
1.3 m in range and 2.5 m in azimuth).

The RMSE differences between the models
(PFs, DLT, RPFs) are inconclusive as all mod-
els approach the accuracy of the map. The use
of more accurate check points is needed for
further evaluation. Automated extraction of
the linear features is also expected to serve the
goal of further refinement. However the latter
will be not a trivial task because the road sur-
faces may be paved or not, and the material of
the pavement may vary across a road’s surface
due to additional lanes. E.g. the deceleration
lane may be paved, semi-paved or not paved
at all. These facts differentiate the appearance
of a road surfaces in the optical and the SAR
images and make it hard to identify the differ-
ences, even for the human eye.

Two issues revealed in this paper need fur-
ther research: 1) the good performance of sim-
ple transformations such as the first order PFs
when linear features are used as GCI, and 2)
the impact of the absolute and relative error
of the ground information (CPs, GCPs and
GCLFs) on the performance of GCl-based
methods as compared to the physical sensor
model without GCI.

Appendix 1: Error Propagation
from Object Space to
SAR Image Space

A point P(X)Y,Z) measured on a map con-
tains a planar error 6, and a vertical error
o, inherited from the accuracy of the map.
There is no reason to assume that the o, er-
ror is different in any particular direction so
that oy = 0y, =0y, /~/2 . The directions x, y
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are taken as the range and azimuth directions
of the SAR sensor, respectively. The error o,
(m) is also the expected SAR image error in
the azimuth direction of the SAR image. The
G,, Gy errors lead to SAR image error in the
range direction, which is more complicated
due to the slant range geometry of the SAR
sensor. The slant distance (S,) from the sen-
sor (X,,Y,,Z,) to the point (X,Y,Z) is given by
(5) where k = Z/Z,; << 1 and ¢ is the mean in-
cidence angle of all points in the SAR image.
The error of the slant distance is then comput-
ed by (6). As the pixel spacing is different in
the range (png) and azimuth (ps, ) direction
of the SAR image, the error in pixels is com-
puted by (7).
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