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Summary: In this paper we present an approach
for detailed and precise automatic dense 3D recon-
struction using possibly unordered image sets from
consumer cameras. Opposed to other approaches
we focus on wide baseline image sets. We have
combined and improved several methods for robust
matching and parameter estimation, particularly,
least squares matching, RANSAC, scale-space
maxima and bundle adjustment. Point correspond-
ences and the ive-point algorithm lead to relative
orientation without a need for approximate values.
Due to our robust matching method we can orient
images under much more unfavourable conditions,
for instance concerning illumination changes or
scale differences, than it would be possible based
on commonly used operators such as SIFT. For
dense reconstruction, we use our orientation as in-
put for semiglobal matching (SGM) resulting in
dense depth images. The latter can be fused into a
2.5D model for eliminating the redundancy of
highly overlapping depth images. However, some
applications and acquisition scenarios have a need
for full 3D modelling, for which preliminary results
are presented. Using small unmanned aerial sys-
tems (micro UAS), it is possible to acquire images
which have a similar perspective as terrestrial im-
ages and can thus be combined with them. Such a
combination is useful for almost complete 3D re-
construction of urban scenes. We have applied our
approach to blocks of several hundred aerial and
terrestrial images, generating detailed 2.5D and 3D
models of urban areas.

Zusammenfassung: Orientierung und dichte Re-

konstruktion aus ungeordneten Bildverbänden mit

großer Basis. In diesem Beitrag wird ein Ansatz
für die detaillierte und genaue automatische dichte
3D Rekonstruktion auf Grundlage von möglicher-
weise ungeordneten Bildverbänden, welche mit
Consumer Kameras aufgenommen wurden, vorge-
stellt. Im Gegensatz zu anderen Ansätze zielt der
vorgestellte Ansatz auf Bilddatensätze mit großer
Basis ab. Dafür wurden verschiedene Methoden,
insbesondere Kleinste Quadrate Zuordnung, RAN-
SAC, Maßstabsraum Maxima und Bündelausglei-
chung, für robuste Zuordnung und Parameterschät-
zung kombiniert und verbessert. Punktkorrespon-
denzen und der Fünf-Punkt Algorithmus führen
zur relativen Orientierung ohne Bedarf für Nähe-
rungswerte. Die verwendete robuste Zuordnungs-
methodik ermöglicht es, Bilder unter sehr viel un-
günstigeren Bedingungen, z.B. bezüglich Beleuch-
tungsbedingungen und Maßstabsunterschieden,
zuzuordnen, als häuig verwendete Operatoren,
wie z.B. SIFT. Für die dichte Rekonstruktion wird
die berechnete Orientierung als Eingabe für Semi-
global Matching (SGM) verwendet, mit dessen Hil-
fe dichte Tiefenbilder bestimmt werden. Diese kön-
nen, um die Redundanz in den oft hochgradig über-
lappenden Tiefenbildern zu eliminieren, in 2,5D
Modellen fusioniert werden. Einige Anwendungen
und Aufnahmekonigurationen benötigen aber eine
volle 3DModellierung, wofür erste Ergebnisse vor-
gestellt werden. Mit kleinen Drohnen / Unmanned
Aerial Systems (Micro UAS) wird es möglich, Bil-
der zu erfassen, die eine ähnliche Perspektive auf
die Szene haben wie terrestrische Bilddaten und
daher mit diesen kombiniert werden können. Eine
solche Kombination ist für eine fast vollständige
3D Rekonstruktion von städtischen Szenen sehr
hilfreich. Der entwickelte Ansatz wurde auf Blöcke
mit hunderten von Bildern aus der Luft und vom
Boden angewandt und damit detaillierte 2,5D und
3D Modelle von Siedlungsbereichen erzeugt.
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which are not linked, but could be used to
extend the geometrical coverage or connect
the tourist attractions. They are not consid-
ered, as it would mean a detailed compari-
son of many more images.

Opposed to the above approaches, we aim
at a detailed and more complete modelling by
making use also of wide baseline image sets.
We assume that we know the calibration of the
cameras, e.g. from the Exif (Exchangeable im-
age ile format) tags of the images in combina-
tion with a database about different cameras.
In section 2we present themethods for point

detection, matching and robust parameter es-
timation that we have improved and combined
for orientation of possibly unordered wide
baseline image sets. For dense reconstruction,
the results of our orientation procedure are
used as input for semiglobal matching – SGM
(HiRsCHMülleR 2008), which we are about to
extend to 3D (section 3). We found that due
to our precise relative orientation, very good
depth estimates were possible also for wider
baselines.
Section 4 gives results. We have processed

blocks consisting of hundreds of images ac-
quired from small unmanned aircraft systems
(micro UAS). For a combination of UAS im-
ages with terrestrial images we have generat-
ed a preliminary dense 3D reconstruction of a
building comprising the roof as well as the fa-
cades. In addition, we present preliminary re-
sults for dense 3D surface reconstruction from
terrestrial images only. Finally, section 5 gives
conclusions and discusses future work.

2 Orientation of Unordered
Image Sets

This section is split into two parts: In the irst
part, we describe our orientation procedure.
Contrary to state-of-the-art approaches, it re-
lies on given information on overlap between
images, e.g. in the form of a sequence. Yet, it
is suitable for wide baseline image sets and
it provides very accurate results by conse-
quent propagation of covariance information
through all steps.
In the second part, we present a prelimi-

nary approach for overlap detection for un-

1 Introduction

polleFeYs et al. (2000) have demonstrated
that sets of images from consumer cameras
in combination with dense 3D reconstruction
form a good basis for photo realistic visualiza-
tion. polleFeYs et al. (2002) presented one of
the irst approaches for relative orientation for
a larger number of images in a general con-
iguration, i.e., without known approximate
values such as for aerial images. By employ-
ing uncalibrated images, for which the camera
constant / principal distance etc. is not known,
the approach is very lexible, yet, on the oth-
er hand, reliant on suficient 3D structure in
the scene for the determination of calibration
parameters. More recently, polleFeYs et al.
(2008) have reconstructed 3D structures from
sequences with more than one hundred thou-
sand calibrated images.
For the work above, the overlap of the imag-

es is assumed to be known, either implicitly in
form of the order in a sequence, or explicitly,
e.g. in the form of an aerial light plan. sCHaF-
FalitzkY & zisseRMan (2002) proposed one
of the irst methods which can automatically
determine the overlap of images in unordered
image sets. While HaVlena et al. (2010) have
proposed an approach which works eficiently
for thousands of images based on graph op-
timization. agaRWal et al. (2009) and FRaHM
et al. (2010) have recently presented approach-
es which can deal with hundred thousands
or even millions of unordered images from
Community Photo Collections from the In-
ternet to model urban areas. A major differ-
ence between the two is that the former runs
on a cloud, the latter on just one multi-GPU
(graphics processing unit) PC system. While
both approaches are impressive, one has to
note that they are based on certain character-
istics of the data and several assumptions to
make them tractable:
● At tourist attractions many images are tak-
en from nearly the same spot. Thus, many
similar images can be found even when ex-
tremely downsampling the images.

● The restricted goal is to reconstruct the ob-
vious 3D structure. This leads to impres-
sive 3D reconstructions of highlights, such
as the Colosseum in Rome. Yet, there might
be images, possibly with wider baselines,
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ferent scene parts. To deal with scale differ-
ences, we make use of the work of linDebeRg
(1994) and determine points in the form of
scale space maxima for Differences of Gauss-
ians (DoG). With the information on scale, we
downsample image patches with higher reso-
lution, so that they match to the same scene
part. Potential correspondences are reined by
least squares matching using an afine geo-
metric model (gRün 1985). This results in sub-
pixel relative point positions. Matched points
in two and more images and their covariance
information are employed for relative orienta-
tion of pairs, triplets and image sets.
With the ive-point algorithm (nistéR

2004), one can directly compute the relative
orientation from calibrated image pairs. That
is, no approximate values for the orientation
are needed regardless of the geometric conig-
uration of the two images during acquisition.
We have embedded a version of the ive-point
algorithm into RANdom SAmple Consensus
– RANSAC (FisCHleR & bolles 1981). This
allows us to deal with the large proportion of
outliers of possibly more than 80% typical
when matching wide baseline images. By us-
ing the geometric robust information criterion
(GRIC) (toRR & zisseRMan 1997), we com-
pare models not only based on the number of

ordered image sets. Due to restrictions of the
fast matching approach (WU 2007) it is based
on, it can only deal with short baselines for the
time being.

2.1 Orientation of Wide Baseline
Image Sets

With the scale invariant feature transform
(SIFT) loWe (2004) has presented a power-
ful solution for the estimation of point cor-
respondences mainly for short baselines. Yet,
reliable matching of points for wide baseline
images is much harder and, thus, there is a
need for improved matching methods. Our ap-
proach to wide baselines is based on scale in-
variant point matching, least squares match-
ing and robust bundle adjustment (Fig. 1).
The developed approach for point matching
produces reliable results even in case of ma-
jor scale differences as well as viewpoint and
illumination changes. It is based on normal-
ized cross correlation (NCC), which is rela-
tively invariant against the latter, but only
weak compared to the former two. NCC is
weak against scale changes, because in this
case image patches with the same size in pix-
els around corresponding points contain dif-

Fig. 1: Image orientation based on scale invariant point matching, least squares matching and
robust bundle adjustment.
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of least squares matching leading to n-fold
points, i.e., points that can be seen in n > 3
images. New 3D points from the linked triplet
are added. Finally, robust bundle adjustment
is employed to improve the accuracy, but also
the reliability by eliminating wrong matches
that could not be detected in the triplets due to
the limited redundancy.
Based on the highly reliable relative orien-

tation thus derived, we have shown in (baR-
telsen & MaYeR 2010) how to calculate the
absolute orientation from unreliable and im-
precise GPS data of low cost sensors, e.g. in
a GPS camera, also in areas with strong oc-
clusions, e.g. cities, similarly to stReCHa et al.
(2010). Taking other information for absolute
orientation, such as ground control points,
into account is even easier, as one does not
have to deal with a possibly larger number of
gross errors as for GPS cameras.

2.2 Overlap Determination for
Unordered Image Sets

To deal with unordered image sets, we employ
automatic overlap detection consisting of the
following steps:
● determination of similarity between imag-
es,

● construction of a two-view graph and
● construction of a three-view graph.

A fast GPU implementation (WU 2007) of
SIFT is used for detecting points and corre-
spondences by pair-wise image matching. The
two-view matching graph consists of images
as nodes, whereas its edges connect similar
images. The weight of an edge, i.e., the im-
age similarity, is assumed to be given by the
number of correspondences between connect-
ed images. Images with the number of corre-
spondences below a threshold will be consid-
ered as dissimilar and no edge is inserted in
the matching graph. To reduce the complexity,
available GPS information in the Exif tags of
the images is used to derive the distance be-
tween images and thus to sort out unlikely
pairs.
Once the similarities between the images

have been derived, we determine a connected
image set by constructing the maximum span-

inliers as in standard RANSAC, but we also
take the distance from the ideal solution, i.e.,
the epipolar line for image pairs, as well as the
estimated covariance into account.
As we empirically found that incorrect

models can be evaluated very similarly as cor-
rect models even when using GRIC, we reine
the solution based on a strategy similar to the
expectation maximization (EM) algorithm
(baRtelsen & MaYeR 2010). Partial solutions
which initially stem from RANSAC are ex-
tended by alternating between robust bundle
adjustment with all current inliers (maximi-
zation) and the determination of possibly new
inliers for the adjusted solution (expectation).
This strategy is employed for pairs as well as
triplets, with robust bundle adjustment us-
ing the covariance information from image
matching and reweighting in the form of an
M-estimator (HUbeR 1981) at its core.
For the following reasons, we use triplets as

basic geometric building block for image sets:
● While pairs of points can only be checked
in one dimension by means of their distance
from their respective epipolar lines, triplets
permit an unambiguous geometric check-
ing. This does not only result in much more
reliable points, but also leads to improved,
more reliable information for the cameras.

● Triplets can be directly linked into larg-
er sets by determining their relative pose
(translation, rotation and scale) from two
common images.

When determining matching points for
triplets, we make use of the information de-
rived for image pairs by restricting the match-
ing to a corridor around the epipolar lines. The
relative orientation for triplets is computed by
taking one image of a triplet as reference, two-
fold application of the ive-point algorithm for
the reference image and the other two images,
and inally robust determination of the relative
scale between the two pairs.
The construction of the relatively oriented

image set starts with selecting one triplet. Tri-
plets are linked to the image set based on com-
mon image pairs. One common image allows
the propagation of translation and rotation.
The distance to the second image provides
scale. Matched points are propagated from
the image set to the linked triplet by means
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fast matching method (WU 2007). Therefore,
whereas we can orient wide baseline combina-
tions of images from the air and from ground,
the detection of overlapping images has to
be conducted manually at the moment in this
case. The integration of our capabilities for
wide baseline matching into the overlap deter-
mination for unordered image sets is our most
important goal for the future.

3 Dense Reconstruction

For dense reconstruction semiglobal matching
– SGM (HiRsCHMülleR 2008) is employed. It
is based on
● mutual information (MI) or the census ilter
for cost computation and

● the substitution of a 2D smoothness term
by a combination of 1D constraints (semi-
global).

MI presents the conditional probability dis-
tribution for the intensities in the matching
image given an intensity in the reference im-
age, without resorting to a parametric mod-
el. Thus, MI can compensate a large class of
global radiometric differences. Because the
conditional probability is computed for the
whole image, problems can arise for local ra-
diometric changes, e.g. if materials with very

ning tree (MST) of the two-view matching
graph using the modiied algorithm of pRiM
(1957). Fig. 2 is an example, for which results
are presented further below in Fig. 6.
Finally, triplets are derived from the con-

nected image set by iterating through the MST
using the depth-irst traversal algorithm. We
discard triplets with the images having a num-
ber of correspondences or a normalized over-
lap area below a threshold (Fig. 3). For the de-
termination of the overlap area between the
images of triplets, we calculate the convex
hull of correspondences between all three im-
ages using the algorithm of sklanskY (1982).
The state concerning unordered image sets

is still preliminary and, thus, it is only used for
the example presented in Fig. 6. Many pairs
which can be oriented by our robust matching
method described in section 2.1 are not found
due to the limited capability of the employed

Fig. 2: Minimum spanning tree (MST) for image pairs.

Fig. 3: Number of common points (red – left)
and area (green – right) for overlap determina-
tion between three images.
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lines are employed, which are deformed in the
matching image.
By computing the disparity images D for

exchanged reference and matching image one
can infer occlusions or matching errors by
means of a consistency check. If more than
one pair with the same reference image is
matched, the consistency check is conducted
for all pairs only once (HiRsCHMülleR 2008).
With SGM, very dense disparity maps hav-

ing one disparity per image pixel can be com-
puted. Using the orientation parameters, all
points can be projected into 3D space, lead-
ing to dense 3D point clouds. While the origi-
nal work of HiRsCHMülleR (2008) has shown
how to derive 2.5D surface models, work on
the derivation of 3D surface models by means
of triangulation of the 3D points, dealing also
with outliers, has been started only recently.
Because modelling large-scale scenes ful-

ly 3D can produce billions of points, eficient
processing with regard to the computation-
al and memory costs is a must. We consider
octrees to be very suitable for this purpose.
Hence, we use a triangulation based on bal-
anced octrees for meshing (boDenMülleR
2009). Besides removing redundancy, octrees
are particularly useful for visibility-checks in
multiple-view geometry.
Before mesh generation, normal vectors

are determined from the neighbours of a
point, and points with uncertain normal vec-
tors are eliminated. The triangle mesh is built
incrementally. Iterating through all remain-
ing points, the temporary mesh is projected
on the tangent plane in a neighbourhood of a

different relection characteristics exist in the
scene or lighting conditions change.
In HiRsCHMülleR & sCHaRstein (2009) the

census ilter was found to be the most robust
variant for matching cost computation. It de-
ines a bit string with each bit corresponding
to a pixel in the local neighbourhood of a giv-
en pixel. A bit is set if the intensity is lower
than that of the given pixel. Census thus en-
codes the spatial neighbourhood structure. A
7×9 neighbourhood can be encoded in a 64 bit
integer. Matching is conducted via computing
the Hamming distance between correspond-
ing bit strings.
The smoothness term of SGM punishes

changes of neighbouring disparities (opera-
tor T[] is 1 if its argument is true and 0 oth-
erwise):
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● The irst term consists of matching costs for
all disparities of disparity image D.

● The second term adds a constant penalty P
1

for all pixels q from the neighbourhood N
p

of p for which the disparity changes only
slightly (1 pixel).

● The third term adds a larger constant penal-
ty P

2
for larger disparity changes. Because

it is independent of the size of the disparity
change, it preserves discontinuities.

● As discontinuities in disparity are often
visible as intensity changes, P

2
is calculated

depending on the intensity gradient in the
reference image (with P

2
≥ P

1
).

Global minimization in 2D is NP com-
plete for many discontinuity preserving ener-
gies E(D). Opposed to this, in 1D, minimiza-
tion can be done in polynomial time via dy-
namical programming. The latter is usually
applied within image lines. Because the so-
lutions for neighbouring lines are computed
independently, this typically leads to streak-
ing. For the semiglobal solution, 1D matching
costs are computed in different, (practically
8) directions, which are aggregated without
weighting. In the reference image, straight

Fig. 4: Local update of triangulation by adding
a new vertex to a temporary mesh. Left: New
vertex v (red) and projected neighbourhood.
Right: New candidate edges (dashed lines).
Green lines were accepted and red lines were
removed because of intersection with shorter
edges.
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4 Results and Discussion

We have applied our approach for orientation
and dense 2.5D and 3D reconstruction to sev-
eral image sets. As our focus is on wide base-
line scenarios, we have manually determined
the overlap for all but the results in Fig. 6. For
the latter, we demonstrate the potential of our

new point (Fig. 4). The new point is connected
with all vertices within the neighbourhood. If
a new edge intersects an old edge in the plane,
the longer one is removed.

Fig. 5: 3D points and cameras (red pyramids) for a model generated from more than 600 images
from a micro unmanned aircraft system (micro UAS).

Fig. 6: Top row: 3D points and cameras (pyramids) for a set of 166 images of a large building in
Wessling. Bottom row: Resulting 2.5D models. Left column: Result for Bundler (SnaVelY 2010).
Right column: Result derived by our approach – the more precise relative orientation allows for a
much more detailed scene reconstruction.
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The result in Fig. 6 is based on 166 images,
acquired by a micro UAS. Although the light
was controlled automatically, the obtained im-
age set is not very well structured. Because
of too small overlap, many triplets could not
be matched. For this image set, we have com-
pared our approach with Bundler (snaVelY
2010). In particular, we found that the relative
orientation produced by Bundler is not very
precise and the 3D point cloud contains many
obviously false points. Thus, SGM could only
be applied in a meaningful way after down-
sampling the images to half the original reso-
lution. In contrast, the relative orientation ob-
tained by our approach is much more precise
(Tab. 1) and could be used as basis for SGM on

approach for unordered image sets introduced
in section 2.2 also in comparison with Bun-
dler (snaVelY 2010). In all cases, the census
ilter (section 3) was used for cost computa-
tion for SGM.
Fig. 5 presents 3D points and camera po-

sitions (red pyramids) for more than 600 im-
ages acquired by a micro unmanned aircraft
system (micro UAS) from about 50 m above
the ground. Orientation was possible in spite
of the lack of approximate values for exteri-
or orientation of this highly non-regular light
coniguration. Particularly, for overlapping ar-
eas of the light strips, images with wide base-
lines could be matched, leading to a more sta-
ble geometry.

Fig. 7: Top row: Two images from the aerial and one from the ‘ascending’ sequence which could
be matched and oriented. Middle row left: 3D points and cameras derived from a combination of
images from the air (blue pyramids) and from the ground (green pyramids) of a building near Ham-
melburg. Middle row right: 3D point cloud generated by SGM from the light and the terrestrial
sequence. Bottom row: Preliminary result for dense 3D surface reconstruction – shaded with wire
frame as well as textured.
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of major scale differences in combination
with small overlap and perspective distortion.
Fig. 7 top row shows an example for an im-
age triplet which could be matched. The dense
3D point cloud (Fig. 7, centre right) was gener-
ated from images from the terrestrial and the
light sequences (with the relative orientation
of both sequences determined using the ‘as-
cending’ sequence). It illustrates that roof and
walls exactly it to each other (please note the
roof overhang) and thus, that our relative ori-
entation is very precise. Finally, the bottom
row of Fig. 7 shows our preliminary 3D sur-
face reconstruction as a shaded view and also
as a textured model. The colour variations of
the roof texture are caused by the different
lighting conditions during acquisition of the
ground and the light sequences.
Fig. 8 shows another preliminary result of

our work for full dense 3D surface reconstruc-
tion. We have applied our approach to the
image sets ‘fountain-R25’ and ‘castle-R20’

the original resolution, leading to a more de-
tailed and realistic 2.5D model.
Fig. 7 presents preliminary results for our

new approach for 3D surface reconstruction
based on a combination of images from UAS
and from ground. The set of 205 images con-
tains three different sequences (Fig. 7 centre
row, left):
● The light sequence was taken from about
20 m above ground.

● The terrestrial image-sequence was ac-
quired around one building.

● The ‘ascending’ sequence connects images
from the air and from the ground. The im-
ages change in small steps from the aerial
to the ground perspective. This image con-
iguration is only feasible for micro UAS,
which can be lown very close to facades
and roofs.

The combination of the light and the ‘as-
cending’ sequence is quite dificult, because

Fig. 8: Top: Textured preliminary result for 3D surface reconstruction of the facade of Ettlingen
castle. Bottom left: Dense 3D point cloud. Bottom right: Shaded 3D surface with wire frames. The
results base on the image-sets ‘fountain-R25’ and ‘castle-R20’of (StreCHa et al. 2008).
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5 Conclusions and Future Work

In this paper, we have presented an approach
for automatic orientation and dense 3D recon-
struction from wide baseline image sets. As
key characteristics, it aims at a high preci-
sion in every step from least squares match-
ing to robust bundle adjustment. Currently,
our approach for full 3D reconstruction does
not maintain all the details that are available
in the high resolution depth images of semi-
global matching. We plan to take into account
the uncertainty of the 3D points from differ-
ent pairs as well as smoothness priors. How
this can be effectively and eficiently done is
subject of our current research. Our ability for
very precise relative orientation is of funda-
mental importance for accurate 3D modelling.
Although our point matching approach is

pretty robust against scale and illumination
changes, it is still not robust enough concern-
ing viewpoint changes. Currently, arguably
the best known concept for matching which
is robust concerning viewpoint changes is the
approach of MoRel & YU (2009) simulating
off-image-plane rotations. This concept has
not yet been integrated into an approach for
3D reconstruction, also due to its prohibitive
computational complexity. The improvement
of our approach by a similar, yet more eficient
procedure is also part of our future work.
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of stReCHa et al. (2008). Due to our robust
matching approach, a combination of both sets
was possible.
Finally, Tab. 1 presents the average back

projection errors σ
0
as well as computation

times for all examples. For all experiments
one PC with an Intel Xeon processor with four
cores with 2.3 GHz and a 2GB Nvidia Geforce
GTX 285 graphics card was used. All back
projection errors for our approach are around
or below 0.3 pixels, with the majority in the
range of 0.15 pixels. Although Bundler (sna-
VelY 2010) can produce quite accurate results
too, it had severe problems with our challeng-
ing wide baseline dataset, relected by the
large reprojection error (0.44 pixels for half
resolution) and leading to the inferior 2.5D
model presented in Fig. 6.
The computation times for our approach

for all but the irst experiment are reasonable.
Concerning the irst experiment we note that
it was computed with the sequential version of
our orientation algorithm, where robust bun-
dle adjustment is computed for every linked
image triplet. This is not necessary and we
are, thus, about to replace this by a hierarchi-
cal solution, where image sets are combined,
which is much more eficient for large sets. For
the dataset of Fig. 6, images downsampled to
half resolution (i.e., 2.5 Mpixel instead of 10
Mpixel) were used for Bundler for reducing
the number of SIFT features. Still, Bundler re-
quired longer to inish, because it simply tries
to match each image with every other image.
In contrast, we use the fast matching approach
(WU 2007) for overlap determination and we
only try to orient the rather limited number
of image triplets for which suficient overlap
could be determined.

Tab. 1: Average reprojection error σ
0
, number (#) images and computing times for orientation of

the image sets in the given igures.

σ
0
(pixels) # images Computing time (hours)

Fig. 5 0.12 603 170

Fig. 6: Our approach 0.31 166 5

Fig. 6: Bundler (half resolution) 0.44 166 8

Fig. 7 0.14 205 8

Fig. 8 0.11 47 2
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