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Summary: This paper illustrates the results ob-

tained in the frame of experimental campaigns car-

ried out on winter wheat ields in the North China

Plain fromMarch 2006 to June 2007. Investigations

focused on the methodology of estimating biomass

on a regional scale with hyperspectral (EO-1 Hype-

rion) and microwave data (Envisat ASAR). Special

importance is drawn to the combined analysis of

microwave and optical satellite data for crop moni-

toring. Since hyperspectral and synthetic aperture

radar (SAR) sensors respond to crop characteristics

differently, their complementary information con-

tent can support the estimation of crop conditions.

During the regular ield measurements, satellite

data from jointing to ripening stages were acquired.

Linear regression models between measured sur-

face relection as well as surface backscatter and

wheat’s standing biomass were established. For hy-

perspectral data, the normalized ratio index (NRI)

based on 825 nm and 1225 nm wavebands was cal-

culated from 2006 data as input for the regression

model. In addition, Envisat ASAR VV polarization

data were related to winter wheat crop parameters.

Bivariate correlation results from this study indi-

cate that both multi-temporal EO-1 Hyperion as

well as Envisat ASAR data provide notable rela-

tionships with crop conditions. As expected, linear

correlation of hyperspectral data performed slight-

ly better for biomass estimation (R2 = 0.83) than

microwave data (R2 = 0.75) for the 2006 ield sur-

vey. Based on the results, hyperspectral Hyperion

data seem to be more sensitive to crop conditions.

Improvements for crop parameter estimation were

achieved by combining hyperspectral indices and

microwave backscatter into a multiple regression

analysis as a function of crop parameters. Com-

bined analysis was performed for biomass estima-

tion (R2 = 0.90) with notable improvements in pre-

diction power.

Zusammenfassung: Multi-temporale Hyperspek-

tral- und Radarfernerkundung zur Ableitung von

Biomasse desWinterweizens in der nordchinesischen

Tiefebene. Ziel der vorliegenden Studie ist die Be-

trachtung des Potentials multi-temporaler optischer

undRadarfernerkundung zurAbleitung der Biomas-

se des Winterweizens auf regionaler Ebene. Hierzu

wurden in der nordchinesischen Tiefebene in den

Wachstumsperioden 2006 und 2007 umfangreiche

Feldmessungen von Bestandsparametern während

der Satellitenüberlüge durchgeführt. Die verwen-

deten Satellitendaten sind zum einen Hyperspek­

traldaten (EO­1Hyperion) und zum anderenC­Band

Radardaten (Envisat ASAR). Neben der separaten

Auswertung von Hyperspektral­ und SAR­Daten

wurde weiterhin das Synergiepotential aus beiden

Aufnahmeverfahren betrachtet. Mit Hilfe von line-

aren Regressionsmodellen zwischen Satellitendaten

undBiomassewurde die Sensitivität hyperspektraler

Relexion und Radarrückstreuung im Hinblick auf

das Wachstum des Winterweizens untersucht. Für

die Hyperspektraldaten erwies sich der normalized

ratio Index (NRI) mit den Wellenlängenbereichen

825 nm und 1225 nm als sensitiv für die Ableitung

vonBiomasse.DasModellwurde aufBasis vonDaten

der Wachstumsperiode 2006 entwickelt und auf die

Wachstumsperiode 2007 zur Validierung angewen-

det.Weiterhinwurdedie gemesseneBiomassemit der

gleichpolarisierten (VV) C­Band Rückstreuung des

Envisat ASAR Sensors linear in Beziehung gesetzt.

Als Ergebnis zeigt sich ein deutlicher Zusammen-

hang zwischen Fernerkundungsdaten undBiomasse,

wobei der Regressionskoefizient deutlich höher für

den NRI basierend auf Hyperspektraldaten (R2 =

0.83) ausfällt, als der lineare Zusammenhang mit

der Radarrückstreuung (R2 = 0.75). Umden komple-

mentären Informationsgehalt vonHyperspektral­ und

Radardaten zu nutzen, wurde ein multiples Regres-

sionsmodell erstellt, welches eine Verbesserung der

Biomasseschätzung ermöglicht (R2 = 0.90).
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successfully used for biomass estimation of
winter wheat in the North China Plain (Koppe

et al. 2010), which reduces the saturation ef-
fect. The same was reported by Mutanga &
SKidMore (2004) for pasture biomass estima-
tion. However, darviShzadeh et al. (2008)
and JaMer et al. (2003) demonstrated that bio-
physical parameters could be better estimated
by multivariate methods such as partial least
square regression because 2-channel vegeta-
tion indices make only use of a small subset of

the available spectral information. Beside the
advantages and robustness of vegetation indi-
ces for biomass estimation, a drawback is the

necessity of reference data for model calibra-
tion. Alternative and more complex quantii-
cation approaches are physically based radia-
tive transfer models (Cho et al. 2008). These
models simulate the hyperspectral signature
and remotely sensed data can be used for mod-
el recalibration (riChter et al. 2009).
Nonetheless, methods based on optical re-

mote sensing are limited in monitoring appli-
cations due to cloud cover or daylight depend-
ency. Thus, a monitoring system based only
on optical remote sensing would be rather un-
reliable especially in higher latitudes or in the
wet tropics. SAR overcomes the problems of
daylight dependency and cloudiness by active-
ly illuminating the earth surface in the wave-
length range from a few centimeters to one
meter (BriSCo & Brown 1998). SAR sensors
with their all weather capabilities are good re-
mote sensing sources due to their frequent re-
visits and sensitivity to surface characteristics
(Kugler et al. 2007).
Since the amount of energy backscattered

towards the sensor strongly depends on sur-
face roughness and dielectric properties, it is
reasonable that SAR can be used for crop type
classiication, growth stage mapping and bio-
mass monitoring (MCnairn & BriSCo 2004).
For different applications, knowledge of the

interaction of the surface characteristics with
sensor conigurations such as frequency, reso-
lution, incidence angle and polarization is of
importance (inoue et al. 2002). For C­Band
SAR measurements, many studies dealt suc-
cessfully with prediction of standing biomass
(BriSCo & Brown 1998), but the interpretation
of the SAR backscatter has proven to be com-
plicated.

1 Introduction

China cereal acreage and production is one of

the most important in the world, with a crop
area of about 88 million ha and production es-
timated at 483 million tons in 2009, account-
ing for ca. 22% of total global production
(Fao 2011). The North China Plain is one of
the most important cereal production regions
in China, accounting for almost 50% of Chi-
na’s winter wheat cultivation (national Bu-
reau oF StatiStiCS oF China 2010). In agricul-
tural issues, timely monitoring of crop growth
status at an early stage is important for in-
season site speciic crop management, detec-
tion of plant vitality as well as assessment of
seasonal production at local and regional level
(Miao et al. 2009, laudien & Bareth 2006).
The sensitivity of the visible (VIS) and near

infrared (NIR) relectance to water content,

pigment of the leaves, as well as leaf structure,
permits determining indicators for crop con-
ditions (KuMar et al. 2003). For the linkage
of crop parameters with spectral relectance

measurements, a wide range of vegetation in-
dices were developed (zhao et al. 2007, Broge
& MortenSen 2002). Vegetation indices ob-
tained from spectral relectance measure-
ments are designed to enhance the vegetation
cover signal while minimizing the response of
various background materials (SChowengerdt

2007).
Numerous studies have successfully related

vegetation indices calculated from the visible
and near infrared bands of multispectral scan-
ners with crop parameters such as crop vigour
(Broge & leBlanC 2000), standing biomass
and grain yield (tuCKer 1979, doralSwaMy
et al. 2003). At higher vegetation densities,
standard vegetation indices, such as simple
ratio (SR) or normalized difference vegeta-
tion index (NDVI) are generally less accu-
rate (JongSChaap & SChouten 2005) and tend
to saturate (haBoudane et al. 2004, Mutanga
& SKidMore 2004), which results in a limit-
ed prediction value. To overcome these limi-
tations, hyperspectral vegetation indices for
biomass and grain yield prediction have been
tested, that are calculated based on all wave-
band combinations (Xavier et al. 2006, hanS-
en& SChJoerring 2003). Narrow band vegeta-
tion indices other than standard NDVI were
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approach at the pixel level (Chen et al. 2003,
Chang et al. 2004) and at the feature level
(held et al. 2003).
In the following study, hyperspectral EO-1

Hyperion data and Envisat ASAR data are
combined at the feature level to improve crop
parameter estimation in North China Plain.

The main objectives of this paper are: (1) to
quantitatively describe C­VV SAR backscat-
tering of winter wheat canopy; (2) to investi-
gate the ability to predict crop standing bio-
mass by Envisat ASAR and EO-1 Hyperion
data; (3) to explore the potential of comple-
mentary use of SAR and hyperspectral data
for mapping crop and ield conditions at a re-
gional level.

2 Material and Methods

2.1 Combined Analysis of ASAR and
Hyperion Data

The plant parameter estimation for winter
wheat consists of separate processing chains
for SAR and hyperspectral data in a irst step

and the combined analysis at the feature level
(pohl& van genderen 1998) as a second step.
The generalized processing chain is illustra-
ted in Fig. 1. The processing of ASAR and Hy-
perion data contains sensor speciic pre­pro-
cessing steps of the multi-temporal datasets.
Subsequent to the pre-processing of the raw
data, regression models with the ground truth
data were established to estimate the predict-
ing power of remotely sensed data for wheat’s
plant parameters. Correlation coeficients

were calculated for individual hyperspectral
indices and SAR backscatter to assess the

overall information content of the remotely
sensed time series. A further ield campaign in

2007 with accompanying EO-1 Hyperion data
acquisitions allowed a second validation of
established hyperspectral regression models
for 2006. Finally, the potential of integrating
SAR and hyperspectral data is explored at the
feature level for model improvements. There-
fore, coeficients of multiple correlations were

generated involving hyperspectral indices and
SAR backscatter.

There are also investigations on wheat’s bi-
omass retrieval based on spaceborne C­band

sensors (Mattia et al. 2003). The results from
these studies showed that the backscattering

of crops is a complex combination of acqui-
sition parameters (polarization, incidence an-
gle) as well as crop and cultivation character-
istics (crop geometry, density, canopy and soil
moisture). The combination of these parame-
ters controls the interaction of the incoming
electromagnetic wave with the crop canopy
and the underlying soil layer.
In the past, quite a few experiments have

been performed on wheat ields, either based

on spaceborne SAR sensors or on ground-
based scatterometers. Satalino et al. (2009)
and Brown et al. (2003) acquired C­band
spaceborne and scatterometer data over wheat
ields and found that wheat biomass is strong-
ly related to HH/VV backscatter during the

whole growing season. The good performance
of the HH/VV ratio is due to the differently
attenuated vertically and horizontally polar-
ized waves that propagate through a mainly
vertical medium of wheat (piCard et al. 2003).
MCnairn et al. (2004) differentiated zones of
productivity of wheat ields also using scat-
terometer data. They reasoned that zones of
higher productivity had higher backscatter for

linear polarizations, with the greatest contrast
for HV.
To move towards an operational crop mon-

itoring approach, it is necessary to mitigate
the risk associated with reliance on a single

source. To meet these requirements and to im-
prove crop parameter estimation and discrim-
ination, methodologies that integrate optical
as well as SAR data were developed (BriSCo
& Brown 1995). MCnairn et al. (2009) per-
formed crop inventories based on multitempo-
ral and multisensoral satellite data with clas-
siication improvements of 3 to 18% when

adding SAR data to single optical data. Using
Envisat ASAR and Landsat TM multispectral
images, liu et al. (2006) achieved a signiicant
improvement for yield estimation by combin-
ing both sources in the prediction model.
The synergistic use of different sources

was also successfully performed for the in-
tegration of hyperspectral optical data with
SAR data, mainly for the enhancement of land
cover classiication based on an image fusion
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to 4.5 ha were selected for regression analy-
sis with satellite data. Two of these four ields

were the same in both years. All ields were

managed by the farmers in their customary
manner. Winter wheat cultivars Jimai20, Ji-
mai21 and Weimai8 were sown from mid of
September to beginning of October. Since the
ields belong to different farmers, the amount

of N­fertilization varies from farmer to farm-
er. The winter wheat was planted between
September and October and harvesting took

place between the beginning and mid of June
in the following year.

2.3 Ground Truth Data Acquisition

Spectral relectance and agronomic parame-
ter measurements were taken throughout the

growing period of winter wheat from March
to June in 2006 and 2007. The measurements
were carried out on a regular basis and were
synchronized as far as possible with the satel-
lite overpass of EO-1 and Envisat. Field meas-
urements were carried in four villages, Xili,
Xujia, Dongjie and Shizhang, whereas four

2.2 Study Area

The test site Huimin County is located in Chi-
na in the northeast of the Shandong province
at around 37.3° N latitude and 117.4° E longi-
tude, which is part of the North China Plain.

The area is characterized by a warm tempera-
ture sub-humid continental monsoon climate
with a mean temperature of around 12.5 °C.

The average yearly precipitation sum is ap-
proximately 600mm with a maximum be-
tween June and August. The topography of the
area is rather lat with an average elevation of

around 20m. In the south of the study site the
hills rise up to 400m.
More than two­thirds of the ields in the

study area are cultivated in a crop rotation sys-
tem with two harvests per year, winter wheat
from autumn to June and summer-maize from
June to autumn. The cultivation of winter
wheat is only possible with irrigation in the
dry period of spring.
The investigated crop ields are located

around small villages close to the Yellow Riv-
er in southern Huimin County (Fig. 2). In each

year, four ields with an average of around 2.5

Fig. 1: Area of interest and processing low for SAR- and hyperspectral derived crop condition
estimation.
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Fig. 2: Left: Envisat ASAR VV (10 May 2006) overlaid by EO-1 Hyperion (R: 823 nm, G: 1638 nm,
B: 671 nm, April 19, 2006). Right: Two of the four ields used for ground truth measurements (Back-
ground: Ikonos pan image, June 20, 2006).

Tab. 1: Average soil chemical properties of the four ields.

Chemical property Mean Min Max STD

Total N (g/kg) 0.9 0.6 1.3 0.1

Olsen­P (mg/kg) 32.5 11.3 52.6 11.7

Exchangeable­K (mg/kg) 120.3 65.6 222.0 24.8

Organic matter (g/kg) 13.5 9.5 18.5 1.7

Tab. 2: Crop condition variables mean and standard deviation (STD) measured at different dates
in 2006 and 2007.

Date
Growth

stage
n*

Biomass dry

(kg/sqm)

Plant height

(cm)

PWC

(%)

Mean STD Mean STD Mean STD

25 March 2006 Tillering 65 0.06 0.03 11.4 1.9 73.2 1.5

13 April 2006 Jointing 58 0.21 0.05 36.8 2.8 82.3 0.6

19 April 2006 Jointing 63 0.48 0.05 45.0 4.8 83.9 1.4

29 April 2006 Booting 64 0.74 0.09 54.9 5.6 83.5 1.2

10 May 2006 Heading 59 0.96 0.07 74.5 5.5 76.3 1.7

11 April 2007 Jointing 67 0.43 0.04 41.4 4.8 - -

21 April 2007 Jointing 67 0.62 0.07 64.6 6.0 -

6 May 2007 Booting 62 1.05 0.08 93.4 5.8 - -

* n – measured samples at the different ground truth acquisition days
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vices Inc. (ASD). In 2006, a handheld ield-
spec (range: 325 nm to 1075 nm) was used and
in 2007 a QualitySpec (range: 350 nm to 1800
nm). As a new spectrometer covering a wid-
er spectral range was available in 2007, this
QualitySpec was used for canopy spectral re-
lectance measurements. In­situ spectral re-
lectance measurements were acquired for cal-
ibration of satellite hyperspectral data. Con-
temporaneously with the relectance meas-
urements, agronomic data were collected for
the ields as well. Aboveground biomass was

taken destructively by cutting vegetation at

ground level within an area of 30 cm by 30 cm.
The samples were dried at 70 °C to constant

weight. As a result of regular ground truth col-
lection, mean and standard deviation (STD) of
biomass, plant height and plant water content
(PWC, for 2006) at different growth stages are

shown in Tab. 2. Because of favourable weath-
er conditions in 2007 the winter wheat’s grow-
ing season started earlier.

2.4 Pre-Processing of Hyperspectral
and SAR Data

During the irst ield campaign in 2006, Envi-
sat ASAR data and EO-1 Hyperion data were

large ields in total were selected. The ields

are each about 2.5 to 4.5 ha in size and sub-
divided into smaller plots that were managed
by different farmers. Two of these ields are

shown in Fig. 2 and the average soil chemical
properties of the four ields are listed in Tab. 1.

In average 63 randomly selected points were
sampled at the four ields (around 15 per ield)

at the different ground truth acquisition days
(Tab. 2) to account for spatial variability. At
these points, spectral relection, plant height

and destructive biomass measurements were
performed. To transfer point measurements
to surface data, a continuous surface from the
set of points was created by inverse distance
weighting method. Taking the different image

characteristics of EO-1 Hyperion and Envisat
ASAR into account, the sub-plots were pre-
pared in a different way. For EO-1 Hyperion,
regression analysis was performed on a pix-
el basis. After excluding mixed pixel on the
ield borders, 57 pixel in 2006 and 54 pixel in

2007 remained for further analysis. For Envi-
sat ASAR data, the four ields were separa­

ted into homogenous parcels to overcome the
speckle effect.

The canopy spectral relectance measure-
ments were obtained using high resolution
spectrometers from Analytical Spectral De-

Tab. 3: Envisat ASAR and EO-1 Hyperion image acquisition dates and associated crop growth
stages.

Satellite
Date of

acquisition

Growth

stage
Mode Path direction

Rel.

Orbit

Local inc.

angle (°)

Envisat

ASAR

25 Mar 2006 Tillering IS5 Ascending 168 39

13 April 2006 Jointing IS6 Ascending 440 42

29 April 2006 Booting IS6 Ascending 168 39

10 May 2006 Heading IS6 Descending 318 40

3 June 2006 Ripening IS6 Ascending 168 39

EO-1

Hyperion

19 April 2006 Jointing

6 May 2006 Heading

31 May 2006 Ripening

11 April 2007 Jointing

21 April 2007 Booting

6 May 2007 Heading
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data from portable spectrometers. At sen-
sor radiance of EO-1 Hyperion data are con-
ditioned by (a) surface relectance and (b) by

atmospheric scatters, caused by water vapour
and aerosols (CairnS 2003). The correction of
atmospheric effects was carried out with the
MODTRAN­based radiative transfer algo-
rithm (BerK et al. 2000), which converts the
at­sensor radiance to surface relectance using

ENVI’s FLAASH module (itt viSual inFor-

Mation SolutionS 2011). As the standard at-
mosphere used in the radiative transfer algo-
rithm does not exactly relect conditions at the

time of acquisition, it was necessary to cali-
brate initial relectance with in­situ spectrom-
eter measurements.
Geometric correction of satellite images is

necessary for spatially related problems and
for overlaying data from different sources.
Good orthorectiication results were achieved

by using the sensor model, ground control
points (GCPs) and a digital elevation model

(SRTM). In the present work 25 GCPs, which

were evenly distributed over the area of inter-
est, were used for the orthorectiication. A cu-
bic convolution interpolation with a ilter ker-
nel of 3x3 was applied during resampling. The
results were validated using 20 independent
GCPs, and an overall RMSE of ~ 0.5 pixels

(15m) for the location accuracy after ortho-
rectiication was achieved. For subsequent re-
gression analysis with ground truth data, the
spectral proile for each pixel of the test ields

of 2006 and 2007 was extracted.

Envisat ASAR Data

Prior to data analysis, Envisat ASAR images
were pre-processed in a four step approach.
At irst, the image DN were converted to av-
eraged backscattering intensity (dB, squared

amplitude) expressed in sigma nought. The
normalization of the ASAR images facilitated
the multitemporal backscatter analysis of the

winter wheat. Based on the header ile infor-
mation and an elevation model, the ASAR im-
ages can be converted to sigma nought as fol-
lows (roSiCh &MeadowS 2004):

2

0

1010*log sin( )
ij

ij ij

DN
dB

K
σ α

 
=      

 
(1)

acquired for the test area. For this study, Envi-
sat ASAR IMP VV intensity precision images
with a pixel spacing of 12.5m and a nominal
spatial resolution of 30m were selected. The
imaging modes of the ASAR data were ac-
quired in IS5 and IS6 mode with an incidence
angle range between 39° to 42°. To get a larger
area covered and to shorten time between ac-
quisitions, different relative orbits were cho-
sen. The four test ields for the recent study

are located in the overlapping area of all ac-
quisitions.
The Envisat and Hyperion data were ac-

quired at approximately the same time for
the area of interest during the 2006 ield cam-
paign. The Envisat and Hyperion acquisitions
of the multi­temporal stacks overlap at mid of

April (jointing stage) and beginning of May
(booting to heading stage). Hyperion data
provided 242 bands within the spectral range
from 0.4 to 2.5µm. In addition to the growing
season of 2006, three EO-1 Hyperion images
were acquired during the growing season of
2007 to validate Hyperion image results from
the previous year. The list of acquired Envisat
ASAR and EO-1 Hyperion images is present-
ed in Tab. 3.

EO-1 Hyperion Data

The Hyperion sensor is mounted on the Earth
Observing One (EO-1) Satellite platform
that follows the World Reference System-2
(WRS-2) with a 16 day repeat cycle for nadir
mode. It acquires data in a 4.5 km by 100 km

footprint with 30m resolution. Pre-processing
of the satellite images from Hyperion is neces-
sary to improve the quality for multi-temporal
data analysis. The processing includes the cor-
rection of artifacts introduced by the sensor,
atmospheric correction and geometric correc-
tion (KhurShid et al. 2006).
For Hyperion, a Flag­Mask indicating sen-

sor and processing artifacts was delivered
with the data product. During correction of
sensor artifacts, 101 of the 242 hyperspectral
bands were excluded using ENVI software

(itt viSual inForMation SolutionS 2011).
Atmospheric correction is an important

step when using satellite data for multi-tem-
poral analysis and for relating satellite im-
agery to ground truth data, for instance with
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3 Results and Discussion

The synergetic use of hyperspectral and radar
data for crop monitoring is useful because of
its complementary information content. Hy-
perspectral data provide a high spectral reso-
lution to enhance monitoring of plant biophys-
ical characteristics (KuMar et al. 2003) and
SAR data contribute surface texture and di-
electric information (woodhouSe 2006) to the
combined analysis.

3.1 Temporal Backscatter Behaviour
of Winter Wheat

Averaged backscatter values of Envisat ASAR

VV were extracted over crop ields in the test

area. Fig. 3 shows the temporal variation of
winter wheat and bare ield backscattering co-
eficient σ0 of ASAR VV expressed in deci-
bel. In the box plot, the centre horizontal line
marks the median of the sample and the length

of each box shows the range of the central 50%
of the sample. In general, as the crop grows
the number of leaves and the stem height in-
creases, resulting in a corresponding increase
in ground cover. This causes an increase in
volume backscattering due to the increase of

canopy constituents of wheat.
At the beginning of the growing season in

March, when stem height of wheat was about
9 to 13 cm, the VV backscatter of wheat ields

is close to the backscatter from bare soil. The

backscatter from ploughed ields is still high-
er, since soil surface roughness is higher than
for the sowed ields. Similar observations

were described by MCnairn et al. (2009) dur-
ing the beginning of the growing season. At
this growing stage, the backscatter is mainly

driven by soil moisture and roughness param-
eters. When the crop is in the jointing stage on
April 13 (stem height between 30 and 40 cm),
the backscatter is signiicantly lower than at

the tillering stage (decrease of about 4.5 dB),
indicating a strong attenuation of the soil’s
backscatter by the wheat plants. As the wheat

continued to grow through the stages jointing
to ripening, the observed backscatter gradu-
ally increased by about 3 dB. This suggests
a change in the dominant scattering mecha-
nism from soil and roughness backscattering

Where DN is the pixel intensity of the i, j

pixel, K the absolute calibration constant and
α the incidence angle of the i, j pixel. Finally,

sigma nought values were transformed to log-
arithmic scale. After normalization, the im-
ages were co­registered. The irst acquisition

was deined as the master and subsequent im-
ages were treated as slaves and were co-regis-
tered to the master image. Next, speckle noise

caused by interference of different elementary
scatterers was iltered by a 3x3 gamma adap-
tive ilter which showed acceptable results for

the tradeoff between edge preservation and
speckle reduction. The reduction of the noise

level was evaluated by visual inspection and
statistical measurement of effective number of
looks (ENL) as suggested by oliver & Que-
gan (2004):

2

2
ENL

µ

σ
= (2)

Where μ is mean value and σ the standard

deviation of the measured area. ENL is ob-
tained by calculating the mean and variance
intensity over a homogenous area. The higher
the value of the quotient the lower the speckle

noise in the area. The gamma map ilter with a

3x3 kernel yielded an ENL of 29 compared to

around 15 of the noisy images.
In a last step, the co-registered and calibra-

ted image stack was georeferenced using well

distributed GCPs. The residual error was 0.6

pixel in range and 0.9 pixel in azimuth direc-
tion. The test parcels, for which ground truth
measurement was performed, were buffered
by a one-pixel zone in order to exclude pixels
near the boundaries since they could contain
information from neighbouring ields.

In order to investigate the temporal back-
scatter behaviour of wheat as well as for re-
gression analysis, the four ields were separa­

ted into six parcels depending on management
practice. The ields were the same as for EO­1

Hyperion data analysis in 2006. To overcome
random noise (speckle), pixel values of each

parcel (around 60 pixel per parcel) were av-
eraged and the multi-temporal SAR signature
was generated. Pre-processing procedure was
used to prepare ASAR data for multitemporal
regression analysis.
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The results of ield data and backscatter

analysis show that the peak of volumetric

moisture within the canopy (jointing) did not
necessarily coincide with the peak in back-
scatter (Tab. 2 and Fig. 3). Besides volume
scattering, the interactions between ground
and stem for fully developed wheat seem to
have an important contribution to the cumu-
lative backscatter value, as also mentioned by

piCard et al. (2003).
Considering the whole vegetation period,

the range of backscatter of about 3 dB is lower

than measured by KarJalainen et al. (2008),
but comprehensible if indings byMCnairn et
al. (2004) are taken into account. They detec­

ted a higher sensitivity of HV polarization to
crop condition than for VV polarization.
During the growing season, the volumetric

soil moisture was relatively constant (between
15 and 30%), thus the change in backscatter

of about 3 dB on average of the test parcels
was most likely caused by the accumulation

of aboveground biomass. Despite the usage
of different orbits with slightly different local
incidence angles, a dependence of the back-
scattered signal on incidence angle could not
be observed. A strong impact on radar back-
scatter based on incidence angle differences of

to canopy volume scattering, which is in co-
incidence with the indings of Mattia et al.
(2003), who mentioned a change in scatter-
ing mechanism from soil to volume scatter-
ing for incidence angles greater than 40° of
fully developed wheat. Also an integral equa-
tion method (IEM) simulation carried out by
StileS et al. (2000) veriied a lower sensitivity

of higher incidence angles of VV polarization
to soil properties.
In comparison to our observation of an in-

crease in backscatter that begins at a stem

height of 35 cm for VV polarization, Kar-
Jalainen et al. (2008) reported a gradual in-
crease in backscatter for cross­polarization

images that does not begin until a stem height
of 50 cm is reached.
At the end of the growing season, the water

content of plants decreases, while the contri-
bution of soil and surface roughness upon the
SAR backscatter increases. As the last Envisat

data acquisition was in the ripening stage of
the plant, the increase in backscatter from mid

of May (heading) to beginning of June (rip-
ening) is also inluenced by the soil compo-
nent. Looking at the backscatter curve of bare

ields, a similar increase as for the crop canopy

is visible.

Fig. 3: Temporal C-VV backscatter characteristics of bare soil (green) and winter wheat (blue).
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the fast development of plants structural com-
ponents (thenKaBail et al. 2000). The 2006
EO-1 Hyperion data is in good consistence
with in­situ ield spectrometer measurements

(Koppe et al. 2010) due to good atmospheric
conditions during the satellite overpass. Fig. 4
shows the spectral average of all ields deter-
mined by QualitySpec (red line) and EO-1 Hy-
perion (blue line) data for 2007. Based on the
overlay it can be stated that atmospheric cor-
rection performed well; the course of both re-
lectance curves at a given date are similar in a

certain range. Differences can be observed on
April 11 and April 21 in the visible and near
infrared parts of the spectrum. For these dates
hazy conditions with different spatial inten-
sities affected the acquisitions. As a conse-
quence the high absorption (VIS) and maxi-
mum relection (NIR) parts of the spectra are

more damped. Especially in the VIS the spec-
tra differ signiicantly. This part of the elec-
tromagnetic spectrum is particulary affected
by hazy atmospheric conditions (KuMar et
al. 2003), and atmospheric correction of the

about 5–6° was reported by Ban & howarth
(1998).

3.2 Temporal Relection Behaviour of
Winter Wheat

By using the results from regular in-situ spec-
tral relectance measurements with Quality-
Spec (ASD) in 2007, the relectance character-
istic of winter wheat during the growing sea-
son was compared to spectral measurements
of EO­Hyperion. The energy relected by

plants is correlated with crop conditions such
as growth stage and nutrient supply. Through-
out the measurements from jointing to ripen-
ing stage, the relectance behaviour alters due

to structural changes as well as changes in fo-
liar pigments (KuMar et al. 2003). Up to head-
ing stage the relectance in the red spectrum

(0.65 to 0.7µm) decreases, which is due to in-
creasing absorption by foliar pigments in the
red spectrum. Compared to this, relectance in

the near infrared (NIR) increases caused by

Fig. 4: Averaged relection behaviour of winter wheat recorded by QualitySpec (blue) and EO-1
Hyperion (red) in the growing season of 2007.
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Relating Crop Condition to Envisat
ASAR

The sensitivity of Envisat ASAR signals was
analyzed as a function of wheat ield charac-
teristics. Based on the averaged backscatter

values per parcel and the corresponding meas-
ured biomass (dry matter) values, a linear re-
gression equation was derived. The bivari-
ate correlation based on linear regression be-
tween SAR backscatter and standing biomass

resulted in R2 = 0.75 and RMSE = 0.24 kg/m²
(Fig. 5 and Tab. 4). The equation of the regres-
sion is:

2006 20061.36( ) 16.3BIOM VV= − (3)

The coeficient of determination suggests

that Envisat ASAR multitemporal imagery is
sensitive to crop condition during the growing
season of winter wheat.
In an agricultural environment, the moni-

toring and prediction of biomass and grain
yield is one of the most important objectives.
Fig. 5 shows that biomass is signiicantly posi-
tively correlated with C­VV backscatter over

the growing season with a dynamic range of
around 3 dB. At the different dates, the meas-
ured sub-plots vary between three and sev-
en, caused by missing measurements at day
of ground truth acquisition. For the relation-
ship of C­VV backscatter to biomass, Mattia

et al. (2003) also found an increase in back-

scenes phased problems. For the last satellite
acquisition at the beginning of May the meas-
ured spectra its to the in­situ measurements.

The maximum relectance difference be-
tween red and NIR is reached at the end of

April (booting). With the beginning of May,
the divergence of red and NIR relectance de-
creases again. A slightly different behaviour
of spectral relectance is recorded between

NIR (875 nm) and SWIR (1225 nm). The di-
vergent trend between the two wavelengths
continues up to the heading stage (beginning
of May) which delays the saturation effect of
crop parameter estimation at full canopy cov-
er (Mutanga& SKidMore 2004). At the mid of
May the relection in NIR is strongly decreas-
ing due to senescence (Fig. 4, lower right). The
linear relationship of normalized ratio index
(NRI) with biomass is lost at this time.

3.3 Relating Plant Parameters to
ASAR and Hyperion Images

Tab. 4 shows the used input data and the re-
lationships between the hyperspectral index
(NRI) and ASAR backscatter (C­VV) with

standing biomass. Furthermore, the root-
mean-square error (RMSE) and relative error
(RE) for the regression models are listed. The
results of bivariate and multiple correlation
analysis will be explained below.

Tab. 4: Input data for model calculation and correlation coeficients between standing biomass
and satellite data (2006), for 2007 correlation coeficient between predicted biomass and meas-
ured biomass.

Year
Input data

typ
Input acquisitions (date) n*

Correlation

coeficients (R2)

RMSE

(kg/sqm)

RE

(%)

2006 hyperspectral Apr 19, May 6 114 0.83 0.11 16.1

2006 SAR Apr 13, Apr 29, 10 May, Jun 3 23 0.75 0.24 25.5

2006
hyperspectral /

SAR

19 April, 6 May /

Apr 13, Apr 29, May 10, Jun 3
92 0.9 0.81 12.2

2007 hyperspectral

Apr 11, Apr 21, May 6 113 0.84 0.12 17.2

Apr 11 41 0.19 0.18 45.5

Apr 21 33 0.58 0.18 29.8

May 6 39 0.42 0.22 18.2

* n – number of used samples
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were calculated according to (4). The last ac-
quisition of Hyperion (May 30) was excluded
from the analysis, because senesence has al-
ready started. The aim was to determine the
best two NRI wavebands for wheat biomass

estimaton in the North China Plain.

1 2
( 1, 2)

1 2

( )

( )

band band
band band

band band

NRI
ρ ρ

ρ ρ

−
=

+

band1 ≥ band2 (4)

For the total number of 9870 calculated
NRIs, a correlation matrix between standing

biomass and two-band vegetation indices was
established. In this correlation matrix, wave-
lengths with high sensitivity to crop condition
were detected. For estimation of standing bio-
mass the waveband of 875 nm combined with
1225 nm proved to be most suitable (Koppe
et al. 2010). Similar approaches for different
types of vegetation cover showed that band
combinations of the red edge (zhao et al.
2007) as well as NIR or SWIR (Mutanga &
SKidMore 2004,Xavier et al. 2006) provided a
close relationship with LAI and aboveground
biomass. These approaches performed much
better than spectral bands used in standard
vegetation indices. Based on the best wave-
band combination, a model for biomass esti-

scatter following the increase in biomass, but
only until the heading stage. After the head-
ing stage, backscatter again decreases which

was explained by a change in canopy geom-
etry during heading and booting stage (MC-

nairn et al. 2004). At the same phenological
stages, liu et al. (2006) reported a negative
correlation of backscatter with biomass and

explained this phenomenon also with chang-
es in crop canopy. However, observations of
KarJalainen et al. (2008) also show a conge-
nerous increase of backscatter with an accu-
mulation of wheat biomass until the heading
stage as observed in this study. Beside the pos-
itive multi-temporal relationship between bio-
mass and VV backscatter, it is also obviously

that in this case microwave is not suitable for
prediction of biomass at a given date (mono-
temporal). This may be due to less sub-plots
which reduces the random sample and dynam-
ic biomass range.

Relating Crop Conditions to EO-1
Hyperion

Based on the studies of SChowengerdt (2007)
and thenKaBail et al. (2000), all possible two-
band combinations from the multi-temporal
Hyperion data of 2006 (April 19 and May 6)

Fig. 5: C-VV backscatter related to aboveground biomass.
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in comparison to the last acquisition of May
6. This could be due to atmospheric distor-
tions (haze) that affect the relection from the

surface. The difference between the used Hy-
perion wavebands (875 nm and 1225 nm) for
the April scenes is lower than the four ield

measurements (Fig. 4). This lower waveband
difference results in a lesser NRI that leads to

an underestimation of the standing biomass in
Fig. 6.
In spite of haze inluence during the acqui-

sition of EO-1 Hyperion data in April, the sta-
bility of the model established for 2006 and
applied to 2007, can be regarded as applica-
ble for winter wheat on regional scales in the
North China Plain. Changing the scale from

regional to local scale, a successful inter-year
validation of the developed regression model
using ield spectrometer data from two years

and different cultural conditions was per-
formed by (li et al. 2008). These observations
suggest an across scale validity of hyperspec-
tral crop parameter estimation models in the
North China Plain.

Synergy SAR – Hyperspectral

The correlation results based on a linear re-
gression of wheat crop parameters against

mation was established which resulted in a co-
eficient of determination (R2) of 0.83 and a
RMSE of 0.11 kg/m2:

2006 20060.25( ) 0.01BIOM NRI= − (5)

In order to prove the stability of the estab-
lished hyperspectral model for EO-1 Hyperion
data during the 2006 growing season (5) a val-
idation analysis using EO-Hyperion data for
the 2007 growing season was performed. For
this, NRI was calculated based on the same

waveband combination (875 nm and 1225 nm)
that were used in 2006. The resulting NRI val-
ues of acquired hyperspectral images in 2007
(April 11, April 21 and May 6) were used to
predict biomass at the acquisition dates. The
applied equation is the one developed based
on the 2006 data.
The validation result of the model is shown

in the 1:1 plot in Fig. 6. The model developed
for 2006 is able to predict also accumulated
biomass in 2007, which is conirmed by a high

coeficient of regression of the 1:1 plot (R2 =
0.84). Furthermore, the result is clustered into
three separate point clouds that correspond to
the different acquisitions of Hyperion data.
The acquisitions from April 11 and April 21
show a slight underestimation of the biomass

Fig. 6: Measured versus predicted aboveground biomass in 2007 using the regression model
developed in (5).
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analysis of SAR and optical data, it is im-
portant to select suitable dates for satel-
lite data acquisition. Based on the satellite
multitemporal and multisource data analy-
sis as well as on analysis of ield spectrom-
eter data (li et al. 2008), certain acquisi-
tion periods of SAR and hyperspectral data
for winter wheat in the North China Plain

seem to be convenient. For the acquisition
of Hyperion data, the optimized acquisition
window is from the beginning of April after
tillering to the heading stage before satura-
tion effect of relectance occurs and lower-
ing begins. In comparison to multispectral
imagery, hyperspectral data can improve
the performance early and late in the sea-
son (Xavier et al. 2006), which enlarges the
acquisition window (StraChan et al. 2002).
The use of hyperspectral narrow band veg-
etation indices can reduce saturation effects
at the end of the growing season, which was
conirmed for winter wheat by Koppe et al.
(2010). For SAR data, observations suggest
that a relationship between backscatter and

crop parameters can be established between
jointing and heading/lowering. Almost

similar optimal temporal range from tiller-
ing to heading stage for crop parameter es-
timation is reported byMattia et al. (2003)
and piCard et al. (2003).

2. Multitemporal Envisat ASAR VV data at
an incidence angle range from 39° to 42°
were analyzed as a function of wheat phe-
nological stage. The results show a signii-
cant sensitivity to canopy developing stage
and a general increasing trend in backscat-
tering with winter wheat growth. However,
it is worth mentioning, that there are un-
solved problems limiting the value of the re-
sults achieved by Envisat ASAR data. First,
the resolution of Envisat ASAR is very low
compared to the ield size, thus only large

ields can be included in the analysis. Sec-
ondly, the analysis was performed with a
small number of ields in a relatively ho-
mogenous agricultural environment. With-
in ield and inter­ield variation of crop pa-
rameters of a speciic acquisition date was

too low. During the vegetation period, soil
moisture remained relatively constant (at
least from one acquisition to another), con-
sequently changes in backscatter are due to

ASAR VV backscatter and NRI calcula­

ted from Hyperion data in 2006 show, that
crop parameters can be predicted by remote-
ly sensed data from the different acquisition
systems. Similar close relationships between
crop parameters and satellite data has already
been established by thenKaBail et al. (2004)
andXavier et al. (2006) for hyperspectral data
and furthermore by MCnairn et al. (2004) for
SAR data.
Best results for bivariate correlation were

achieved with narrow band vegetation indi-
ces derived from EO-1 Hyperion data (R2 =
0.83). Lower coeficients of determination

were achieved by using Envisat ASAR back-
scatter for correlation with crop parameters
for the 2006 SAR campaign (R2 = 0.75). If the
models derived from SAR and hyperspectral
data are combined based on multiplication, the
biomass prediction could be improved to R2 =
0.90. The applied equation is:

BIOM
(Hyp/ASAR)

= 2.73 (NRI) + 0.16 (VV) + 2.68
(kg m−2 R2 = 0.90) (6)

where BIOM
(Hyp/ASAR)

is the combined biomass
estimate from optical and SAR image analy-
ses, NRI is the normalized ratio index derived

from (4) and VV is the ASAR C­VV back-
scatter. Beside the multiple analysis based on
multiplication, there are other types of combi-
nation that were not addressed. In this study,
the multiple analysis should only demonstrate
the improvement of prediction power based on
multiple data sources. Similar improvements
for yield prediction were achieved by com-
bining time series from SAR and optical data
(liu et al. 2006).

4 Conclusion

This paper describes multitemporal hyper-
spectral and C­band radar data processing for

monitoring winter wheat growth in the North

China Plain. Addressing the objectives of this

paper stated in the introduction, the following
conclusions may be drawn from the research:
1. To achieve high prediction accuracy of
wheat’s crop parameters based on a single
source (ASAR or Hyperion) and combined
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ces by means of a multiple regression mod-
el. For the relationship with biomass and
plant height, regression models with coefi-
cients of determination of 0.90 for biomass
were established. This is an improvement
of around 9% for aboveground biomass in
comparison to single source hyperspectral
regression model. While performance im-
provement is not that much of a combined
model, the synergism of using complemen-
tary systems in monitoring winter wheat is
obvious. Improvements are more likely to

be found in terms of illing acquisition gaps

of optical data due to cloud cover and pro-
viding additional information by SAR.
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