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Using the sensor calibration, radiometric

and geometric correction of the image data is

possible. At the same time, the relationship be-
tween gray values and radiance is established.

1 Introduction

Calibration, veriication and validation of re-
mote sensing systems are the most challeng-
ing procedures after completion of the sensor.

Summary: After launch and during continuous ra-

diation exposure, space-borne cameras are con-

stantly changing. Therefore, permanent technical

determination and evaluation of the sensor in space

plays an important role in the remote sensing com-

munity. There are a variety of evaluation criteria,

which are all based on the essential camera param-

eters – the spatial resolution, point spread function

(PSF) and noise.

Noise estimation is a challenging task for charac-

terization of remote sensing systems in space. The

in-light measurement of noise will often be done

with artiicial test sites. If these test sites are not

suficiently available, homogeneous image regions

(desert, snow, water surfaces) are often used. The

albedo of these regions, however, lies normally out-

side the speciied albedo range of remote sensing

systems focused on agriculture and forestry areas.

The only possibility to determine the noise after the

satellite launch within the speciied operational al-

bedo range is to use very small image areas with the

required albedo within the acquired imagery. As

these objects have to be homogeneous, one needs

methods that can detect the smallest homogeneous

areas in the image to evaluate noise.

In this paper an approach for determining the

signal-to-noise ratio (SNR) with data from natural

targets is presented. In experiments, the results

demonstrate that the described method performs

quite satisfactorily and results are comparable to

the standard methods used to determine SNR.

Zusammenfassung: SNR Bestimmung der

RapidEye Weltraumkameras. Durch den Start und

die kontinuierliche Strahlenbelastung verändern

sich Weltraumkameras laufend. Deshalb ist die

ständige Speziizierung und Bewertung solcher

Sensoren von eminenter Bedeutung in der Ferner-

kundung. Es gibt eine Vielzahl von Bewertungskri-

terien, die auf den wesentlichen Parametern einer

Kamera basieren – die räumliche Aulösung, die

Punktbildverwaschungsfunktion (PSF) und das

Rauschen.

Die quantitative Bestimmung des Rauschens aus

Daten von Weltraumkameras ist eine anspruchs-

volle Aufgabe. In-light Messungen des Rauschens

werden oft anhand künstlicher Testlächen durch-

geführt. Wenn diese nicht ausreichend zur Verfü-

gung stehen, verwendet man normalerweise homo-

gene Bildbereiche (Wüste, Schnee, Wasseroberlä-

chen). Diese sind jedoch außerhalb des Albedobe-

reichs von interessanten Gebieten, die üblicherwei-

se mittels Fernerkundungssystemen untersucht

werden. Für das Fernerkundungssystem RapidEye

sind das zum Beispiel landwirtschaftliche Gebiete

und Forsten. Um das Rauschen nach dem Satelli-

tenstart im speziizierten operationellen Albedobe-

reich zu bestimmen, ist es erforderlich, die Aus-

wertung in diesen Bildregionen durchzuführen.

Deshalb braucht manMethoden, die kleinste homo-

gene Bereiche im Bild erkennen und bezüglich des

Rauschens auswerten können.

In diesem Artikel wird ein Konzept für die Be-

stimmung des Signal-Rausch-Verhältnisses (SNR)

aus Daten natürlicher Szenen vorgeschlagen. Un-

tersuchungen zeigen, dass das Verfahren zufrie-

denstellend arbeitet und die Ergebnisse mit den

konventionellen Verfahren vergleichbar sind.
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12-bit, with A/D conversion of 14-bit. The ra-
diometric calibration for the deined operating

point of the cameras is slightly different for

the different spectral bands; the correspond-
ing spectral radiance values are between 41

and 88 W/m2/sr/µm. The cameras were built
by Jena Optronic in Thuringia. Fig. 1 shows

a schematic drawing of the camera structure.

Section 2 presents a short summary of pre-
vious papers on the topic of sensor characteri-
zation, while in section 3 we explain and dis-
cuss our approach. Our results are presented

in section 4. In the last section we draw some

conclusions.

2 Noise Measurement over
Homogeneous and Non-
Homogeneous Targets

Let us start by assuming a linear imaging sys-
tem with a zero-mean white Gaussian random

noise that is additive and uncorrelated to the

signal. Consider the 2D-problem

The same data set is also used for determining

the quality of the data products and the sensor.

The determination and evaluation of the

performance of optical remote sensing sys-
tems is usually done on the basis of fundamen-
tal camera parameters. Some of these param-
eters can change over the lifetime of the sensor

and therefore should be checked regularly at

speciied time intervals after the launch.

In recent years, there have been a variety
of activities and publications focused on the

geometric and radiometric validation of air-
borne cameras by EuroSDR (Cramer 2008)
and DIN-standards (reulke et al. 2007).
This paper discusses the characterization

of signal-to-noise ratio (SNR) values based on

real image data from the RapidEye cameras.

The RapidEye camera is a digital pushbroom

scanner with 5 spectral bands in the visible

and near infrared range. The focal plane was

designed by the DLR Institute of Robotics and

Mechatronics in Berlin-Adlershof. Each of the

5 detector lines contains 12,000 pixels and

sensor elements, respectively. The radiomet-
ric dynamic depth of the camera is nominally

Fig. 1: RapidEye camera architecture and layout (FEE – front end electronic, FPM – focal plane
module, +X tower – sensor suspension).
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The scene can also be supposed to be a sta-
tionary random process.

In this paper three different noise compo-
nents will be taken into account: Dark noise,

read noise and shot noise. For an overview

about different noise sources in CCD-detec-
tors see e. g. JanesiCk (2001). The Poisson dis-
tributed dark current noise is a parasitic pho-
tocurrent in the absence of any illumination on

the device, under speciied operating condi-
tions (temperature, integration time and bias).

Read noise is deined as the temporal system

noise of the focal plane assembly (FPA) in

darkness. The Poisson distributed shot noise

refers to the inherent natural variation of the

incident photon lux. Because of the Poisson

behaviour, this noise is signal dependent.

An overview about methods for noise esti-
mation is given in luo & Zhong (2009). The
homogeneous area (HA) method estimates the

SNR of the image by the ratio of the mean to

the standard deviation of manually selected

homogeneous areas. The local means and lo-
cal standard deviations (LMLSD) method au-
tomatically estimates the noise by dividing

the image into many homogeneous blocks.

Other methods for determining the SNR are

the residual-scaled local standard deviations

(RLSD) method and spectral as well as spatial

decorrelation (SSDC) method (luo & Zhong

2009). For the purposes of our discussion the

HA and the LMLSD should be explained more

in detail.
The noise determination by the HA method

requires an image containing a uniform and

homogeneous surface such as a snow ield

of Greenland or a large homogeneous desert

area.
As noise is signal dependent, it has to be de-

termined separately for different signal levels.

Unfortunately, most of the homogeneous sur-
faces mentioned above are very bright and are

almost outside the radiometric range for nor-
mal operations of the sensor. In addition, sys-
tematic noise sources are superimposed to the

random noise. Such systematic noise sources

could be for instance micro-textures from the

observed surface and a not suficiently cor-
rected PRNU (photo response non-uniformi-
ty) in CCD-line direction.

The radiometric characteristics of the sen-
sor have to be determined from periodic

measurements over test sites. Both the ground

relectance and the atmosphere are character-
ized simultaneously and in coincidence with

the satellite overpass to estimate the observed

at-aperture radiance. An ideal test site for

that task should have several critical features

(sCott et al. 1996). These include the impact
of atmospheric errors (high-relectance area)

and the use of a surface relectance that should

have spatial uniformity (with near-Lamber-
tian relectance).

In the south-western part of the United

States several calibration sites with the above

required features exist and have been used for

many years. Calibration using these test sites

where explained in Pagnutti et al. (2002) and
Pagnutti et al. (2011).
The crucial problem with the HA method

are the remaining inhomogeneities of the sur-
face. Different approaches have been suggest-
ed to overcome this problem of a non-uniform

texture of the target.

In the irst approach the landscape is con-
sidered to be suficiently uniform to contrib-
ute to the low frequency signal. Statistic cal-
culations separate the low frequency contribu-
tion to the signal’s standard deviation (land-
scape contribution) from the high frequency

contribution to the signal’s standard deviation

(instrument contribution).

Another method to estimate the SNR con-
sists of selecting homogeneous snowy areas as

described in Delvit et al. (2002). As the snow-
covered parts of the landscape are nearly uni-
form, a correct estimation of the noise can be

done by calculating the standard deviation of
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is based on a standard method to determine

mean and variance of the noise. The second

method, used for analyzing inhomogeneous

surfaces, searches for homogeneous micro re-
gions (consist of only few pixels) with a homo-
geneity criterion and clusters the results from

these micro regions for NER analysis.

The NER determination with homogeneous

targets is based on the evaluation of SNR in

manually selected homogeneous areas. Larg-
er homogeneous areas can be found in almost

all very bright regions, i. e.. regions with high

albedo values. As already mentioned earlier

these noise values cannot be compared direct-
ly with the system-required values, as those

were deined for the lower signal levels of the

“normal” operating range, and therefore they

are also much lower. To ind a way for com-
paring the measured noise values from bright

targets with the system noise requirement, a

noise requirement function was derived for

each band on the basis of the laboratory cal-
ibration. This was done by applying the de-
pendency between the noise value and the sig-
nal level to the system noise requirement val-
ues determined during the laboratory meas-
urements. If the NER of the measured radi-
ance is lower than the NER derived from the

noise requirement function, the requirement

is fulilled. For the interpolation within the

range of signal levels used for the calibration

this method works quite well. An extrapola-

the signal. As there is little correlation be-
tween the noise and the signal from the land-
scape, images can be decomposed into an im-
age corresponding to the ‘pure’ landscape and

an image of noise.

A completely different approach is the

noise-adjusted principal components (NAPC)

transform, or maximum noise fraction (MNF)

transform (Du & raksuntorn 2006). The
basic idea is to reorganize the data in a way

that the principal components are ordered in

terms of the SNR, instead of variance as used

in the ordinary principal components analysis

(PCA). The NAPC transform is very useful in

multi-dimensional image analysis. As a result,

object information can be better compacted

into the irst few principal components. A cor-
relation method using bit planes gives reason-
able results for decomposition of noise and im-
age texture.

3 Determination of the Noise
Equivalent Radiance (NER)
from Real Imagery

In this study, the SNR is investigated on the

radiance level NER (noise equivalent radi-
ance). Two different methods were investi-
gated. They are based on image data of natu-
ral homogeneous and non-homogeneous test

areas. The analysis of homogeneous regions

Fig. 2: The Greenland image: Example for systematic noise texture in the left and no systematic
noise in the right image.
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be superimposed to the random noise coming

from the sensor. As an example an image part

containing some remaining systematic noise

is shown in Fig. 2 (left side). Images with this

kind of noise are excluded for further inves-
tigation.

The image shown in Fig. 2 is not a typical

example for the type of images we tried to an-
alyse here, but we will use it later on for tests

and comparison purposes. A more adequate

image example is shown in Fig. 3.

For this more realistic type of images an au-
tomated procedure was developed to extract

small homogeneous areas from the general-
ly inhomogeneous image parts. Within these

small areas it was assumed that the surface

texture is negligible. The mean and standard

deviation of the signal can be computed for

these small areas. An advantage of this meth-
od is that it automatically measures noise val-
ues at different signal levels because of the

different relectance of the extracted small ho-
mogeneous image areas.

The procedure is formally based on the “ho-
mogeneous area” method used by gao (1993)
which was extended by gao et al. (2008). For

each image pixel texture information was de-
rived in blocks around the pixel, with block

sizes of 3 × 3, 5 × 5, …, 11 × 11 pixels. The ho-

tion outside of the calibration range with only

little uncertainty requires the availability of

an accurate photon transfer curve (JanesiCk

2001).
For the noise determination homogeneous

regions in the images were preselected man-
ually. Subsets of 1024 × 1024 pixels were cut

out in the central image part. These homoge-
neous image patches where extracted based on

predeined criteria (related to the texture) and

were used to evaluated the NER.

The selection procedure for homogeneous

areas can be described as follows. In most

cases, objects with a relectivity of about 5%

to 20% are investigated. In this relectivity

range areas with a homogeneous surface are

normally very small and randomly distributed

over the image. Therefore, splitting the image

into many homogeneous blocks seems insuf-
icient and additional procedures are required

to recognize and analyse smaller homogene-
ous areas.

As already mentioned, the signal noise de-
pends on the signal level. Moreover, for each

image, random and systematic noise compo-
nents are superimposed and sum up to a com-
bined noise level. Systematic noise sources

(e. g. micro-texture from the observed sur-
face, not suficiently corrected PRNU) can

Fig. 3: Original image and homogeneity measure (right) for this image part. The image is from
Railroad Valley Playa in Nevada. The left image seems homogenous except for the roads. The
calculated homogeneity is seen in the right part, where bright regions stand for high homogeneity.
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gions or small areas with the greatest homo-
geneity were used for the further evaluation.

Considering the LMLSD method only pix-
els with suficiently high homogeneity (close

to 1) are involved in a data clustering process.

For each cluster, which is related to a mean

measured radiance, the variance-histogram is

analyzed. It is assumed that the variance rela-
tive to the maximum of the histogram is repre-
sentative for the measured radiance.

In a irst test this approach is applied to the

Greenland scene (Fig. 2, right) and the HA and

LMLSD method are compared. Here a homo-
geneous area with almost only random noise

will be assumed. The approach described

above can therefore be directly compared to

the SNR determination from the whole image

part. The idea behind this is to check whether

the results, i. e.. the calculated noise, accord-
ing to the new method are comparable to the

noise determined in the “classical” HA meth-
od. Fig. 4 shows the variance distribution and

the overall result. The calculated mean is equal

for both methods; the local variance deviation

is related to the maximum for this data set (see

Fig. 4, left) but is about 5% - 10% lower then

the variance derived from the entire image.

To apply this procedure to an image with

a complex surface texture (Fig. 3) some addi-
tional effort is required for the interpretation

of the results. Fig. 5 shows the local variance

with respect to the local mean for parts with

maximum homogeneity. The threshold for the

homogeneity value was set to 0.98.

Obviously this procedure generates a large

number of small image segments with ho-
mogeneous radiometric behaviour. Regions

where the image brightness changes strongly

mogeneity texture measures were applied to

the data in these blocks. In addition the mean

and the standard deviation of the gray values

were computed. The irst step is to extract

blocks with a suficient homogeneity. It turned

out that the parameter “homogeneity” derived

from the Gray-Tone Spatial-Dependence Ma-

trix or Gray Level Co-Occurrence Matrix

(GLCM) (haraliCk et al. 1973) is suitable for

the determination of the homogeneity level h
i, j

(inverse difference moment) at pixel (i,j):
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In eq. 3, c
d
(k,l) is the GLCM, a statistical

measure that contains information about the

positions of pixels having similar gray level

values, but does not provide any information

about the repeating nature of texture. Further-
more, d = (m · ∆, ·n · ∆) is a displacement vec-
tor. The GLCM counts all pairs of pixels sepa-
rated by (m, n) pixels having the gray levels k
and l. The matrix c

d
has the size (N,N); N is the

number of quantized gray levels. In a homo-
geneous image patch the range of gray levels

is small and c
d
will be clustered near the main

diagonal. The denominator l + (k–l)2 enhances
this trend. A heterogeneous image patch will

be more spread. The GLCM can be calculated

in different direction s (with respect to neigh-
bouring pixel) and distances d (in pixels).

The image shown in Fig. 3 (left) is taken

from Railroad Valley Playa in Nevada. The

local homogeneity (right) is a measure for lo-
cal similarity in the image. To achieve a sepa-
ration between noise and texture, only the re-

Fig 4: Variance distribution derived from LMLSD method with a maximum near the variance of the
whole data set (left) for the Greenland image. Variance over mean dependence for all bands
(black) with conidence interval (right) and variance derived with HA method (blue).
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with equal width (bins) are combined. In other

words, the histogram is coarsened.

Furthermore the inluence of the image

block size was investigated. Four different

block sizes (5 × 5, 7 × 7, 9 × 9, 11 × 11) where

used for this investigation. The results show

a signiicant inluence of the block size. With

increasing block size the segmentation be-
tween clusters becomes better. At the same

time the number of blocks which fulil the ho-
mogeneity criteria becomes smaller. As an op-
timal trade-off between these two parameters

a block size of 7 × 7 was used in the following

investigations.

are excluded automatically in this procedure.

As seen in Fig. 5 (left), for the extracted image

parts with maximum homogeneity a data clus-
tering with respect to the local mean seems

to be possible. This was done here with his-
togram analysis (see Fig. 5 (right)). This pro-
cedure is equivalent to a classiication based

on texture parameters. The clustering howev-
er is only possible if the segmentation leads to

patches that are homogeneously better than a

predeined threshold value.

Fig. 6 presents the histogram of the local

variance for a certain cluster. Between the

minimum and the maximum of the local vari-
ance (lv), a ixed number of variance values

Fig 5: Selected groups in the local mean – variance plot (left). Local mean histogram (right) is
derived from data in the left plot and shows the selection of different clusters (related to the num-
bers).

Fig. 6: Histogram of the local variance (example).
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ric range for normal camera operations could

be covered although it was impossible to get

data of the full radiometric range compared to

the laboratory calibration measurements.

It is also obvious that the results of the in-

light noise measurements are in good agree-
ment with the pre-light calibration values for

the camera noise. This is a strong indication

that the camera systems are still working ac-
cording to the RapidEye system speciications.

No signiicant change of the camera character-
istics regarding sensor noise after the launch

and during normal operational work could be

observed up to now. The measured values are

clearly below the system noise requirements

for the RapidEye sensors.

5 Conclusions and Outlook

The procedure described in this paper allows

the evaluation of image noise directly from

operational image data after the launch of a

satellite sensor. This method is very important

for the after-launch monitoring of the sensor

quality and health status of the sensor by com-
paring periodic noise measurement results

with the initial values deined by the system

requirements.
The major problem for noise determination

was to eliminate the impact of remaining sur-

4 Results and Discussion

Fig. 7 shows the result for the NER in relation

to the radiance for Band 1. For the deined sys-
tem reference radiance the measured NER can

be derived from the blue itting line. Due to

the Poisson distributed photon noise, the NER

increases with the measured radiance.
Based on this method an in-light determi-

nation of the radiometric image noise is possi-
ble. By comparison of the in-light noise deter-
mination results with the NER values deined

as system requirements it is possible to check

whether the system is still within the specii-
cations.

As an example, Fig. 8 shows the results

for the Blue- and the Red-Edge bands of the

RapidEye camera. The black diamonds in the

Fig. 8 represent the in-light calibration noise

values, whereas the dotted colour lines show

the pre-light laboratory noise measurements

for all ive RapidEye sensors. The vertical

black lines through the diamonds indicate the

conidence intervals derived from the in-light

calibration measurements. The single blue star

represents the system noise requirement for

the RapidEye cameras, which e. g. for the Blue

Band was deined at a radiance level of 72 W/

m2/sr/µm. The two examples show clearly that

using the presented in-light noise determina-
tion method, a signiicant part of the radiomet-

Fig. 7: Radiance vs. noise equivalent radiance (Band 1).
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