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described by its radiance. In general, image
quality depends on the ultimate task of im-
age data evaluation and cannot be deined for

every image likewise. For instance, to meas-
ure star positions the quality of the deep space
image is better if the image is blurred whereas
the image should be sharp if objects are to be
detected or recognized. Because there is not
one best image quality measure here we pro-
pose an image quality criterion which is task-
based and sensor-based.
To solve a deinite task such as object de-

tection or recognition in deinite environment

(e. g. the detection of a car in an agricultur-
al area illuminated by solar radiation) with a
space-borne sensor, that sensor will be opti-
mized to give best performance for solving

1 Introduction

For the characterization of image data or prod-
ucts often the spatial resolution (ground sam-
ple distance) is used which is related to detec-
tor pixel size and focal length. But there are
several other inluences of the imaging sys-
tem that affect image sharpness and need to
be considered. These other parameters are
e. g. the point spread function (PSF) and sig-
nal-to-noise ratio (SNR) of the image product
(Jahn & Reulke 1995). An image quality met-
rics can be established for any imaging sys-
tem, given a characterization of the system in
terms of blur and additive distortion (noise,
non-linearity, compression, artefacts, pre-
processing) when observing a certain scene

Summary: In the past 20 years a large effort has

been made to characterize the image quality of re-

mote sensing systems. The image quality can actu-

ally be measured only by the quality of the inal

product (e. g. object detection, classiication). One

option now is to use the national image interpret-

ability rating scales (NIIRS), because NIIRS is re-

lated to object detection. From an engineering

standpoint a task-based scale, like NIIRS is not

well suited, because it cannot be derived from the

fundamental sensor and scene behaviour. There-

fore, the aim of this paper is to derive an image

quality criterion, based on the physical characteris-

tics of sensor and scene. To assess the image quali-

ty, we compare the output of the real sensor with

the output of an ideal sensor based on a local mean

square error (LMSE). This criterion, we abbreviate

in the following with IQC (image quality criterion).

Zusammenfassung: Ein sensorbasierter Ansatz
zur Bestimmung der Bildqualität. In den letzten
20 Jahren wurde ein großer Aufwand zur Beschrei-

bung der Qualität von Fernerkundungsbildern be-

trieben. Die Bildqualität kann letztlich nur durch

die Beurteilung der Qualität des Endproduktes

(z.B. Objektdetektion, Klassiizierung) einge-

schätzt werden. Eine Möglichkeit ist die Verwen-

dung des NIIRS (national image interpretability

rating scales), da sich NIIRS auf die Objektdetekti-

on bezieht. Vom Standpunkt des Sensorentwicklers

ist NIIRS aber nicht gut geeignet, da es nicht von

den grundlegenden Sensorparametern und den

Szenencharakteristika abgeleitet werden kann.

Deshalb wird in dieser Arbeit ein Bildqualitätskri-

terium vorgeschlagen, das auf diesen Größen be-

ruht. Wir vergleichen hierzu den Output eines re-

alen Sensors mit dem eines auf die entsprechende

Aufgabe zugeschnittenen idealen Sensors mit Hilfe

eines local mean square error (LMSE) Kriteriums.

Dieses Kriterium kürzen wir im Folgenden mit

IQC (image quality criterion) ab.
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(2004). He introduces the 2D latent NIIRS
metric based on the power spectrum of addi-
tive incoherent noise.
In the paper from kim& PaRk (2010) an im-

age quality metric using the phase quantiza-
tion code (PQC) is depiced.Dumic et al. (2010)
present an approach to the objective quality
evaluation that could be computed using the
mean difference between the original and
tested images in different wavelet sub-bands.
Wavelet coeficients are used to compute an

image-quality measure (IQM). IQM is deined

as perceptual weighted difference between
coeficients of original and degraded image.

Image quality affects image processing re-
sults, e. g. automated classiication of images.

In Yan et al. (2009) a database of reference
images was established that could enable au-
tomated, customized image quality modiica-
tion to improve classiication of new images.

They introduced also a task-based deinition

of image quality.
GeRwe et al. (2009) present a new infor-

mation theoretic image quality evaluation
(ITIQUE) for modelling and predicting NIIRS
performance based on the visual information
idelity (VIF) IQ assessment metric. The eval-
uation shows a good agreement with the gen-
eral image quality equation.
Image quality measure (IQM) is calculat-

ed traditionally in the image spatial domain.
In the paper Shih & Fu (2008) they present a
method of transforming an image into a low-
dimensional domain based on random projec-
tion. From the transformed domain, it is pos-
sible to calculate the peak signal-to-noise ratio
(PSNR) and apply fuzzy logic to generate a
low-dimensional quality index (LDQI). The
LDQI can approximate the IQM in the image
spatial domain.
The paper from SchueleR (2008) focuses

on the system engineering trade-off driving
almost all remote sensing design efforts, af-
fecting complexity, cost, performance, sched-
ule, and risk: image quality vs. sensitivity. The
relationship between image quality and sensi-
tivity is introduced based on the concepts of
modulation transfer function (MTF) and sig-
nal-to-noise ratio (SNR) with examples to il-
lustrate the balance to be achieved by the sys-
tem architect to optimize cost, complexity,

that task (and, usually, related tasks). That
means that the sensor parameters such as focal
length, aperture and so on are ixed, and the

illumination (in a certain range) is given too.
Under these conditions an ideal sensor can be
deined which gives best image quality. A real

sensor which deviates more or less from the
ideal one, provides worse image quality. That
task-based and sensor-based approach differs
from older approaches to be discussed in the
following.
The most popular quantity for the descrip-

tion of the image quality is NIIRS. NIIRS has
been developed by the imagery resolution as-
sessments and reporting standards (IRARS)
committee. It consists of different levels from
0–9. Higher values mean a capability to sup-
port a more detailed object analysis.
leachtenaueR et al. (1997) introduce the

general image quality equation (GIQE):

NIIRS a GSD b RER

c G SNR d H

= − ⋅ + ⋅

− ⋅ − ⋅

10 251
10 10

. log log

(1)

GIQE is an apparent image quality (IQ)
metric that measures the quality of object de-
tection in terms of ground sample distance
(GSD) and additional measures namely the
relative edge response (RER), the signal-to-
noise ratio (SNR), and an additional compo-
nent to take care of the image restoration.
GSD is the most important factor and is re-

lated to the Nyquist frequency. Larger GSD
decreases NIIRS. RER is deined as the slope

immediately before and after an edge as a
fraction of the edge height. A larger RER is re-
lated to a sharper point spread function (PSF)
of an image and increase NIIRS. An increas-
ing SNR results also in a decrease of the factor
G/SNR and therefore in an increase of NIIRS.
Often, before delivering the data will be modi-
ied in a preprocessing step. It includes also

image enhancement algorithms. This leads to
an improvement in image sharpness, but at the
same time also an overshoot at the edges and
an increase in noise. The gain G evaluates the
noise after sharpening, and the overshoot term
H measures the magnitude of ringing in the
edge response of the imaging system.
Problems of applying quality metrics in

remote sensing are pointed out in miettinen
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image as a whole or over local regions of the
image. The signal generation process is ex-
plained more in detail in (Jahn & Reulke

1995).

The ideal sensor is characterized by

● given sensor parameters such as focal
length, aperture, pixel size,

● no disturbances from the environment,
● no dark current,
● quantum eficiency η

λ
qu =1 and optical

transmission τ
λ

opt
=1 within the consid-

ered spectral range [λ
min
, λ

max
],

● diffraction limited optical point spread
function (PSF),

● ideal pixel PSF (box shaped function),
● linear and noise free electronic channel
with delta-shaped impulse response,

● analogue digital unit (ADU) with ininite
small quantization step.
By deinitions adopted here, images gener-

ated by that sensor have best quality at giv-
en illumination. The measure Q depends
on certain sensor parameters p

1
,…,p

n
(focal

length, aperture, pixel size,…). Therefore, in
principle, one could minimize the function
Q(p

1
,…,p

n
) in order to optimize the sensor, but

this is not considered here.

The electron number generated in pixel (i,j)
of the ideal sensor is given by

N N N
i j
ideal

i j
ideal

i j
ideal

i j
ideal

i j
ideal

, , , , ,
,= + ( ) =ξ ξ

2

(3)

ξ
i j
ideal
, is the noise of the signal electron

number which cannot be avoided even in the
ideal case. Because of the Poisson distrib-
uted photon or electron noise, the variance

ξ
i j
ideal
,( )

2
is equal to the averaged electron

number N
i j
ideal
,

, which can be calculated as
follows:

N A d L x y

A
f

F t

i j
ideal ideal

i j

pix

,

#

in

,

min

max

= ⋅ ⋅ ⋅ ( )
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⋅
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






1

h c

(4)

with f
#
= f-number of optics, F

pix
= pixel

area, t
int
= illumination (integration) time, h =

performance and risk relative to end-user re-
quirements.
chen et al. (2008) focus on mutual infor-

mation-based quality measure and weighted
averaging image fusion. Based on an image
formation model, they obtain a closed-form
expression for the quality measure and math-
ematically analyze its properties under differ-
ent types of image distortion.
ShnaYDeRman et al. (2006) present a grey-

scale image quality measure that can be used
to predict the inluence of different noise

sources, based on singular value decomposi-
tion. The measure was applied to different test
images using six types of distortion (JPEG,
JPEG 2000, Gaussian blur, Gaussian noise,
sharpening, and DC-shifting).
An objective sensor based image quality

measure has to take into account sensor spe-
ciic characteristics, e. g. PSF & SNR. The ap-
proach is to compare the actual measured data
with simulated image of an ideal sensor.
Therefore, in this paper we propose the us-

age of a new image quality criterion, namely
local mean square error (LMSE), for describ-
ing the mean deviation of gray values gener-
ated by both ideal and real sensors.
This paper is organised as follows. Sec-

tion 2 introduces the image quality measure,
in section 3 we present some results and com-
parison between NIIRS and IQC and section 4
comes up with conclusions.

2 The new Image Quality
Criterion

As mentioned in the introduction, here the
quality of an image or the quality of the im-
age generating sensor is assessed by compar-
ing the output of the sensor with the output of
an ideal sensor, i. e. we consider as a measure
of quality a quantity Q

i,j
which is proportional

to the averaged gray value deviation

Q G G
ij i j i j

ideal~
, ,

−( )2 (2)

Here, G
i,j
is the measured (i. e. noisy and

blurred) gray value at pixel (i,j). The angle
brackets 〈…〉 denote the average of that meas-
ure over all pixels of the sensor to assess the
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ence to the ideal sensor (see eq. 6) non-linear
with an additional noise:

U f N f N
i j i j i j

K
i j i j

el
i j
K

, , , , , ,
= ( ) + = +( ) +ξ ξ ξ

(10)

ξ
i j
K
, with variance σ ξ

K i j
K2

2

= ( ), is the

noise of the read-out channel (which was ne-
glected for the ideal sensor in eq. 6).

Here we consider the case that the conver-
sion characteristic f(N) of the read-out chan-
nel only differs marginally from linearity.
These characteristics include the three noise-
components photon noise, dark current, and
the read- or read-out noise. So, the expression
in eq. 10 can be developed in a Taylor series
and truncated after the irst term:

f N N f N

f N N

i j i j i j

i j i j

, , ,

, ,

,( ) = ⋅ + ( )
( ) << ⋅

α δ

δ α
(11)

Then based on eqs. 10 and 11 it approxi-
mately holds that

f N N f N
i j i j

el
i j i j

el
i j, , , , ,

+( ) ≈ ⋅ +



 + ( )ξ α ξ δ

(12)

and using eq. 10 leads to

U N f N
i j i j i j i j

i j i j
el

i j
K

, , , ,

, , ,
( )

≈ ⋅ + ( ) +
= ⋅ +
α δ ξ

ξ α ξ ξ
(13)

Now we consider the ADU: [0,U
max
] is the

range of the input signal. That range is repre-
sented by M n= 2 gray value steps (n bits). Let
∆ be the quantization step, i. e. ∆ =U M

max
/ .

The non-linearity of analogue to digital con-
version then is described by G g U= ( ) with

g U
U( ) = +





⋅
∆

∆0 5. (14)

Here, [x] is the integer part of the real num-
ber x. We remember that in the ideal case
g U Uideal ( ) = holds.

For each real number z > 0 the inequality

0 1≤ − [ ] <z z is true. Then the ADU error is
conined to − ⋅ < ( ) − < ⋅0 5 0 5. .∆ ∆g u U . We
interpret the error g U U( ) − as ADU noise

Planck’s constant, c = speed of light in vacu-
um.
Furthermore

L x y dxdy H x x y y

L x y

ideal
i j

ideal
i jλ λ

λ

, ,

,

( ) = − −( )
⋅ ′ ( )
∫∫ (5)

Here, ′ ( )L x yλ , is the radiance in front of
the sensor. H ideal

λ
is the point spread func-

tion (PSF) of the whole imaging system. The
quality measure is deined with respect to that

radiance. The generated electrons or charges

N
i j
ideal
,

will be changed at the pn-junction of
the photodiode into an electrical voltage. Let
U
i,j
be the voltage in front of the ADU. Then

we have with eq. 3

U N N
i j
ideal

i j
ideal

i j
ideal

i j
ideal

, , , ,
= ⋅ = ⋅ + ⋅α α α ξ (6)

The multiplier α is given by α =U N
satmax

/

with U
max
the maximal ADU input voltage and

N
sat
the saturation electron number. The gray

values G
i,j
(output of ideal sensor) are given by

G U
i j
ideal

i j
ideal

, ,
= (7)

and we obtain from eqs. 4, 5, 6, and 7

G A d

dxdy H x x y y L x

i j
ideal

ideal
i j

,

min

max

, ,
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⋅ − −( ) ⋅ ′

∫

∫∫

α λ λ
λ

λ

λ λ
yy
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( )
+ ⋅α ξ

,
(8)

Now we consider the real imaging sensor.
As in eq. 3 we obtain the electron numbers

N N
i j i j i j

el
, , ,

= +ξ with

N A d

dxdy H x x y y L x y

N

i j i j
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, ,
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∫
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,

+

= ⋅( ) ( ) =τ τ η ξ
λ λ λ

2

(9)

Here, N
i j
D U
,

+ is the mean electron number
in pixel (i,j) generated by dark current and en-
vironment (e. g. radiation of instrument parts
in infrared). τ

λ , ,i j

opt is the (optical) transmission
and η

λ , ,i j
qu

the quantum eficiency. The conver-
sion of electrons in voltagesU now is in differ-
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Now we discuss the measure Q
i,j
in more

detail: The eq. 18 consists of deterministic and
noise terms. The irst two terms are determin-
istic. The contribution to Q

i,j
is the deviation

F N N
i j i j i j

ideal
, , ,
1( ) = − of mean electron num-

bers.

The following equations until and including
eq. 24 regard the nominators only because the
denominator can in this context be considered
as constant.

According to eqs. 4, 8 and 9 we obtain

F A d
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Introducing the deviation δτ τ
λ λ, , , ,i j i j

= −1

from the ideal case τ =1 (τ τ η= ⋅opt qu ) we
can write
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Here, the irst term characterizes the PSF

error, whereas the second summand is gen-
erated by deviations of optical transmission
and quantum eficiency from ideal values.
N
i j
D U
,

+ describes the contribution from dark
current and non-signal radiation. The PSF-er-
ror

ξ ADU and assume a uniform distribution in

− ⋅ < < ⋅0 5 0 5. .∆ ∆ξ ADU . Then, we get as a re-
sult of a rectangular distribution (Jähne 2005)

ξ ξ σADU ADU
ADU

= ( ) = =0
12

2
2

2

,
∆

(15)

Using eq. 13 and considering that
G g U
i j i j, ,

= ( ) describes the analog-to-digital
conversion of real sensors, the gray values of
the real sensor are given by

G g U g U

g N f N
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i j i j i j
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ADU
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We now consider the quality measure

G G
i j i j

ideal
, ,

−( )2 : According to eqs. 3, 6, 7
and 16, and using an approximation of eqs. 11
and 16 we obtain
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The linear components are removed, be-
cause we assume that the different noise
components are uncorrelated and the aver-
age of noise and signal components (e. g.

N
i j i j

el
, ,

⋅ξ ) vanish.

Using ∆ = ⋅α
N
sat

n2
and the variance of a

rectangular distribution σ
ADU

n2 2
1

12
2= ⋅ − we

can introduce the normalized quality measure
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term. The OTF at Nyquist frequency is also
integrated in S

λ
.

Therefore, the image quality contribution

F F F N
i j i j

PSF
i j i j

D U
, , , ,
1( ) += + +τ can be estimated

easily.

The second contribution to Q
i,j
(eq. 18)

F f N
i j i j

ideal
, ,
2( ) = ( )δ describes the deteriora-

tion of image quality by the non-linearity of
the electronic channel (read out circuit). If the
non-linearity is weak (fulilled for most CCD

devices), the function f (N) (eq. 11) can be ap-
proximated by

f N N N

f N N N

ij ij ij

ij ij sat
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α β
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Using the approximation
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Now, the systematic part of the quality
measure (eq. 18) can be written as
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Now we consider the contribution of noise
to the quality measure (eq. 18):

Using the formulas eqs. 3 and 9
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The formulas eqs. 25 and 26 allow the esti-
mation of the systematic and random contri-
butions to the image quality measure Q

i,j
in

every pixel (i,j). To obtain a more global meas-
ure characterising the whole image, Q

i,j
can be

averaged over all pixels of the image.
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λ
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strongly depends on the radiance ′ ( )L x yλ , of
the observed scene. In particular, it vanishes if
the radiance does not depend on the spatial co-
ordinates x,y (homogeneous scene). Therefore,
there is no signal-independent quality meas-
ure. It must be related to a spatial scene or at
least to a certain class of radiances describing
background and objects.

F
i j
PSF
, also can be expressed in the spatial

frequency domain:
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i k x k yx i y j

λ

π
,

2 (21)

Here, H k k
x yλ ,( ) , ′ ( )L k k

x yλ , are the opti-
cal transfer function (OTF) and the 2D-Fou-
rier transform of the radiance, respectively.

Sometimes quality measures use the OTF
(or MTF) at Nyquist frequency. But gener-
ally the whole OTF function is necessary to
express image quality correctly. Only under
special assumptions concerning the radiance

′ ( )L x yλ , or its Fourier transform ′ ( )L k k
x yλ ,

(eq. 21) can it be approximated to depend only
on H k k

x yλ ,( ) and ′ ( )L k k
x yλ , at the Nyquist

frequency.

The transmission error (second term in
eq. 19)

F A d

dxdy H x x y y

L x y

i j

i j i j

,

, ,

min

max

,

,

τ

λ

λ

λ λ

λ

λ λ

δτ

= − ⋅ ⋅

⋅ ⋅ − −( )
⋅ ′ (

∫

∫∫
))

can be written approximately as

F A r x y d S
i j i j i j, , ,

,

min

max

τ
λ λ

λ

λ

λ λ δτ= − ⋅ ( ) ⋅ ⋅ ⋅ ⋅∫ (22)

For estimation ′ ( )L x yλ , was factorized in
r x y

i j
,( ) a wavelength-independent relec-

tance and S
λ
the spectral dependent radiance
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For comparison the IQC with NIIRS we in-
vestigate an IKONOS image (green channel)
from Dresden. For images in a usual dynam-
ic range the Poisson distributed photon noise
dominates and again dark and read-out noise
will be neglected here. Only the PSF and ad-
ditional components from pre-processing in-
luence the image quality. Fig. 2 (right) shows

the comparison between the image quality
measure and traditional NIIRS. This plot is
a result of changing σ σ

PSF
real

PSF
ideal/ relation as

seen in Tab. 1. The plot shows a linear part for
IQ ≥ 10−4 (image quality, relative measure, no
unit). This is equivalent with the results from
(JoneS 2004). He calculated for IKONOS with
an average GSD = 0.93 m an average NIIRS
4.49 ± 0.19.
The parameter PSF and SNR are evaluat-

ed from the real image data. The PSF or RER
was calculated from image edges (edge spread
function - ESF), the SNR was derived from
homogeneous areas in the images. The SNR

3 Results and Discussion

In order to assess the developed method we
compare simulated image data with param-
eters from real data. We evaluate these data
in the vicinity of an edge. The mean gray
value there is 176. With the standard devia-
tion σ = 1.4 we have a signal-to-noise ratio of
about 125 (green channel). The sensor is char-
acterized by N

sat
= 300,000, U

max
= 1 V. Then,

the mean electron number (without PSF) is
N N ideal

= ≈ 207 000, . The PSF is assumed
as a Gaussian with standard deviation σ

PSF
.

Fig. 1 (left) shows the mean electron numbers
N
PSF
ideal and N

PSF
real for σ σ

PSF
real

PSF
ideal= ⋅5

Here, we study only the inluence of the

PSF to the image quality. Therefore, only the
contribution

Q
N N

N
i
syst i i

ideal

sat

=
−( )











2

is considered.

Q
N N

N
i
noise i i

ideal

sat

=
−

2
shows the same be-

haviour, but is much smaller and therefore is
not investigated here.
Fig. 1 (right) displays the function Q

i
syst for

the case σ σ
PSF
real

PSF
ideal= ⋅5 .

As it must be, Q
i
syst = 0 holds in the ho-

mogeneous image region whereas the qual-
ity near the edge is worse because of the PSF
caused blur. Tab. 1 shows the dependence of

max Q
i
syst{ } from the parameter σ σ

PSF
real

PSF
ideal/ .

Of course, with increasing parameter
σ σ
PSF
real

PSF
ideal/ also the area around the edge

with worse image quality increases which is
not taken into account in Tab. 1.

Fig. 1: Electron number (dashed line: electron number for the ideal case) and resulting function
Q

i
syst (right).

Tab. 1: Quality in dependence of s s
PSF

real

PSF

ideal/ .

real ideal
PSF PSF/σ σ { }syst 4

imax Q 10⋅

1 0.0

2 1.3

3 2.9

4 4.1

5 4.9

…

10 7.2
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in the considered region is 125 with a mean
of 175 (in digital numbers) and a standard de-
viation of 1.4. The RER (σ PSF

real ) is 0.55 (1.25).
The resulting NIIRS corresponds to the re-
sults from JoneS (2004).
Remarkable is the non-linear increase be-

low IQ < 10−4. It shows also the potential for
further improvement of the sensor.

4 Conclusion and Outlook

In this paper a sensor based method for calcu-
lation image quality was proposed. It is based
on the consideration of the deviation of an ide-
al sensor to a real one, using sensor-speciic

parameters.
Experimental results show that the pro-

posed method is consistent with the subjective
quality score such as NIIRS. The key advan-
tage of the new criterion is that it can be de-
rived directly from the sensor parameters. In
addition, artefacts may be detected directly
(from the deviation to the ideal sensor). The
potential for the improvement of the sensor
can be deduced also by comparison with the
ideal sensor.
To conclude, the development of a concept

for image quality will require an in-depth
analysis of the imaging system, as well as a
careful analysis of the deinitions for quality.

It must be checked for further studies, whether
an ideal sensor should be described by a delta
function PSF and without photon noise.

Fig. 2: Test case IKONOS image acquired at 8.7.2007 (left) and comparison with NIIRS.
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