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Summary: Peatland was subject to heavy drainage
and degradation throughout the world and thus is
now the focus of large scale restoration attempts.
The monitoring of both vegetation development
and balance of matter after restoration has started is
indispensable, since an important objective of peat-
lands rewetting is the rehabilitation of their sink
function. Against this background, we investigated
rewetted fens in NE Germany in order to qualita-
tively and quantitatively evaluate the vegetation
development after restoration measures. The aim of
this study was to analyse the vegetation composi-
tion with multispectral and very high spatial resolu-
tion satellite imagery. We investigated two sites
with different rewetting dates and also took bio-
mass and carbon content samples for the main plant
species in order to estimate nutrient storage. We
tested the applicability of various satellite sensors
(QuickBird, WorldView I and SPOT) and an itera-
tive classification scheme based on decision trees
for mapping several wetland plant species (e. g.
Phragmites australis, Typha spp. and Carex spp.)
and vegetation types. We chose three different
widely used decision tree classifiers for this study:
AdaBoost, See5 and RandomForest. Evaluation
criteria were overall accuracy and mean class ac-
curacy. Multispectral and very high spatial resolu-
tion satellite data and the developed method allow
for the identification of the most important vegeta-
tion types in rewetted fens. All applied sensors
yielded good results with overall accuracies of 85%
and 92%. Some classes reached lower accuracies
due to different reasons (capture date, size of train-
ing set or spatial resolution of the sensor).

We found remote sensing a very valuable tool not
only for the observation of the restoration success
in rewetted peatland but also for the analysis of the
peat accumulation potential as well as biomass and
nutrient storage.

Zusammenfassung: Monitoring der Vegetations-
zusammensetzung in wiedervernässten Nieder-
mooren anhand einer iterativen decision tree Klas-
sifikation von Satellitendaten. Niedermoore in der
ganzen Welt sind von starker Entwässerung und
Degradation betroffen und stehen nunmehr im Fo-
kus von großflächigen Renaturierungsprojekten.
Das Monitoring der Vegetationsentwicklung und
des Stoffhaushaltes dieser Flächen ist dabei uner-
lässlich, da ein wichtiges Ziel der Renaturierung
die Wiederherstellung ihrer Senkenfunktion ist.
Vor diesem Hintergrund haben wir wiedervernäs-
ste Niedermoorflächen im Nordosten Deutschlands
untersucht. Das Ziel der Studie war es, mit Hilfe
von multispektralen und räumlich höchstauflösen-
den Satellitendaten, qualitative und quantitative
Aussagen zur Vegetationsentwicklung nach der
Renaturierung zu treffen. In zwei Gebieten mit un-
terschiedlichen Vernässungszeitpunkten wurden
Proben zu Biomasse und Kohlenstoffgehalt der do-
minanten Pflanzenarten genommen. Verschiedene
Satellitensensoren (QuickBird, WorldView I and
SPOT) wurden verwendet sowie ein iterativer
Klassifikationsansatz basierend auf decision trees
entwickelt, um dominante Arten (z. B. Phragmites
australis, Typha spp. und Carex spp.) und Vegetati-
onstypen zu klassifizieren. Drei weit verbreitete
decision tree Algorithmen kamen zum Einsatz:
AdaBoost, See5 und RandomForest. Die Validie-
rung der Ergebnisse erfolgte sowohl mit Hilfe der
Gesamtgenauigkeit als auch der mittleren Klassen-
genauigkeit. Alle verwendeten Sensoren erzielten
gute Ergebnisse zwischen 85% und 92% Gesamt-
genauigkeit. Einige Klassen erreichten jedoch nur
geringere Werte. Dies hatte verschiedene Ursachen
(Aufnahmedatum, Anzahl der Trainingsgebiete,
räumliche Auflösung des Sensors). Als Fazit kann
festgestellt werden, dass mit Hilfe von Satelliten-
fernerkundung der Renaturierungserfolg von wie-
dervernässten Niedermooren anhand der Vegetati-
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Several studies have successfully applied
hyperspectral imagery to classify wetland
vegetation (e. g. Becker et al. 2007, Pengra et
al. 2007). However for operational use hyper-
spectral data is often not available. Since many
of the wetland plant species and vegetation
forms have very similar spectral characteris-
tics the mapping with only multispectral infor-
mation is difficult.Becker et al. (2007) found a
minimum of seven spectral bands and a spatial
resolution of 1 m necessary to obtain a good
classification result. With only limited spectral
information at hand (e. g. 4 bands with Quick-
Bird or 3 bands with SPOT) classification ac-
curacy can be improved by taking texture
measures into account (e. g. ruiz et al. 2004).

In this study, we tested the applicability of
various satellite sensors (QuickBird, World-
View I and SPOT) and decision tree classifiers
for mapping several plant species and vegeta-
tion types. Decision tree classifiers gain more
and more in importance for remote sensing
applications and often perform faster and with
better results than traditional classification al-
gorithms. Many applications regarding quali-
tative and quantitative environmental issues
like land-cover mapping (Friedl & Brodley

1997, HütticH et al. 2009, otukei & BlascHke

2010), ecotope mapping (cHan & Paelinckx

2008), the monitoring of invasive plants (law-
rence et al. 2006), or the estimation of surface
sealing or forest canopy (Herold et al. 2003)
have successfully implemented tree-based
classifiers such as RandomForest (Breiman

2001) or See5 (Quinlan 1993). The possibility
to easily integrate nominal data in the classifi-
cation process is a very important asset in
times of ever growing thematic geo-informa-
tion and a-priori knowledge. Furthermore the
non-parametric approach of tree-based classi-
fiers can be regarded as big advantage com-
pared to the normal distribution constraints of
parametric methods.

The aim of this study was to analyse the
vegetation composition of rewetted peatlands

1 Introduction

The restoration of degraded and damaged eco-
systems has become a major task throughout
the world (Perrow & davy 2002, temPerton

et al. 2004, van andel & aronson 2006, zer-
Be & wiegleB 2009). Particularly peatland was
subject to heavy degradation and is now the
focus of large scale restoration attempts. One
of the crucial preconditions of successful eco-
system restoration is the monitoring of both
vegetation development and balance of matter,
since an important objective of peatland re-
wetting is the restoration of their sink func-
tion.

In NE Germany, peatland originally cov-
ered more than 10% of the total landscape
(kowatscH 2007). Due to drainage and the in-
tensification of land use since the 1950’s, most
fens were strongly altered and lost their func-
tions and services for nutrient and water reten-
tion, water purification, and habitats for plants
and animals (succow & Joosten 2001, tim-
mermann et al. 2009). In order to restore these
ecosystems, the federal state of Mecklenburg-
Western Pomerania initiated a ‘Peatland con-
servation programme’ in 2000 (lenscHow

1997). Consequently up to now, more than
10,000 hectares of fens have been rewetted.
Despite investigations of such rewetted peat-
land on the local level (timmermann et al.
2006, gelBrecHt et al. 2008), vegetation mon-
itoring on the regional level has not yet been
carried out. However, for the federal state gov-
ernment and scientists it is essential to control
the progress of rewetted fens, particularly the
re-initialised peat accumulation under restored
conditions. We tried to fill this gap by devel-
oping a method for the monitoring of rewetted
peatland with the help of satellite images. As
access to the fen sites is often difficult due to
flooding, remote sensing is presumably a help-
ful means to observe the status of vegetation
cover and its change due to the altered water
regime.

onszusammensetzung sehr gut überwacht werden
kann. Auch eine weitergehende Analyse von Torf-
bildungspotenzial und Biomasse- /Nährstoffspei-
cherung ist damit möglich.
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NE Germany (Fig. 1). The whole landscape
was formed during the Weichsel glaciation,
creating moraines, sandures, river systems,
and large wetland areas. The climate has a
slight continental character indicated by a rel-
atively low mean annual precipitation of
540−590 mm, a mean annual air temperature
of around 8.0 °C, and a temperature range of
about 18 °C.

Since the Middle Ages, these peatlands
have been used as meadows and pastures (Fis-
cHer 2005, Jansen et al. 2009). The change to
an increasingly intensive agricultural land use
since the middle of the 20th century created
species-poor fen grasslands with tremendous
peat losses, and a subsequent sinking of the
soil surface below the water level of adjacent
rivers and lakes (succow & Joosten 2001). Af-
ter rewetting since the 1990’s, the site condi-
tions strongly changed. Depending on the de-
gree of inundation, the mesophytic grassland
has changed to a vegetation mosaic of differ-
ent helophytes and hydrophytes. Thus, species
like Carex spp., Glyceria maxima, Phalaris
arundinacea, Phragmites australis, and Typha
latifolia, accompanied by submersed macro-
phytes form a rich vegetation mosaic as is de-
picted in Fig. 2 (timmermann et al. 2006, rotH

with multispectral and very high spatial reso-
lution satellite imagery. We investigated two
sites with different rewetting dates and also
took biomass and carbon content samples for
the main plant species in order to estimate nu-
trient storage.

Since ground truth training samples are
scarce for some ecologically very important
classes we constructed an iterative tree-based
classification scheme. We used three different
decision tree classifiers and combined the
classification results to create new training
samples for a second classification run (Sec-
tion 3.3). The intention of this study was not to
directly compare the performance of the dif-
ferent algorithms but to benefit from their
varying strengths and to establish an opera-
tional method for the monitoring of rewetted
peatland.

2 Study Area and Data

2.1 Study Areas

We studied the middle and lower reaches of
the Peene river and the lower reaches of the
Trebel river, two large river valley systems in

Fig. 1: Study area 1 in the lower Peene river valley and study area 2 in the lower Trebel river valley
in Mecklenburg-Western Pomerania (NE Germany). The white asterisks show the location of pol-
der Jargelin in study area 1 and polder Beestland in study area 2.
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tagini majoris-Lolietum perennis Beger 1932
nom. invers. propos. plant community (LUNG
1994–1997, Pätzolt & Jansen 2004). Polder
Jargelin (33 ha) was heavily drained and
served for decades as high intensity grassland.
The dominating species in 1995, the year of
rewetting, was Phalaris arundinacea. Polder
Beestland (165 ha) was also drained and used
as high intensity grassland with the dominat-
ing species Phalaris arundinacea and Festuca
arundinacea. It was rewetted in 2002. By now,
the grassland in both polders has changed to a
mosaic of different helophytes and hydro-
phytes.

2.2 Remote Sensing Data Source

Our remote sensing database for study area 1
with polder Jargelin was QuickBird satellite
imagery (Tab. 1). The order was tasked, unfor-
tunately, clouds cover more than 10% of this
study area and another 6% is strongly influ-
enced by cloud shadow. Consequently, the ra-
diometric characteristics of the data are quite
impaired. For study area 2 with polder Beest-
land, we used as remote sensing database an
archived SPOT scene and three archived
WorldView I scenes (Tab. 1) since QuickBird
tasking was not successful. Unfortunately, no
WorldView summer scenes were available,
thus we had to use images captured in April.
Water level was very high at that time and
large areas were still covered by water.

2000, succow 2001, steFFenHagen et al. 2008).
The water level depends on seasonal changes
as well as on weather conditions. The highest
water level is reached in winter and spring.
Due to evapotranspiration processes it is low-
est in summer. Nevertheless the vegetation
mosaic is recognisable in the field throughout
the whole year, but it is best differentiated in
remote sensing data between early summer
and autumn, when the water level is on its
lowest.

Results from two different polders within
those larger study areas will be presented in
greater detail in this paper: polder Jargelin
from study area 1 and polder Beestland from
study area 2. The vegetation of both polders
was mapped in 1995 and classified as Plan-

Fig. 2: View of Polder Beestland.

Tab. 1: Remote sensing data source and bands used for this study.

Study Area Sensor Date of capture Geometric resolution Spectral resolution Radiometric
resolution

1 QuickBird 04.09.2007 0.6 m PAN
2.4 m MS

450 – 900 nm
450 – 520 nm
520 – 600 nm
630 – 690 nm
760 – 900 nm

11 Bit

2 WorldView I 20.04.2008
23.04.2008
05.06.2008

0.5 m PAN 445 – 900 nm 11 Bit

SPOT 2 25.07.2008 20 m MS 500 – 590 nm
610 – 680 nm
780 – 890 nm

7 Bit
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3 Methods

3.1 Pre-processing

The processing level of all data was standard
imagery (system corrected), which was then
georeferenced on the basis of topographic
maps, followed by a conversion to top of the
atmosphere radiance. Clouds and cloud shad-
ows were masked out. QuickBird has a very
high geometric resolution of 2.4 m/0.6 m (mul-
tispectral/ panchromatic) pixel size at nadir,
WorldView I even has a 0.5 m pixel size at na-
dir. This results in a large amount of data to be
processed by the data mining tools we used for
the decision tree classification. In order to sub-
stantially reduce the file size, we clustered the
panchromatic masked QuickBird and World-
View I images with a number of 30 classes
into spectrally homogeneous areas with the
Isodata approach (tou & gonzalez 1974). File
size was that way cut in half. This was fol-
lowed by the computation of single channel
means of the multispectral data (study area 1:
QuickBird, study area 2: SPOT), different tex-

2.3 Field Data

Field data for classes 1 to 12 (Tab. 2) were col-
lected by biologists in summer 2007 for both
areas. At the same time, biomass and carbon
content samples were taken in mono-dominant
stands from randomly chosen sites (0.25 m2)
(Section 3.4). The vegetation patches were
mapped in the field with help of GPS and aer-
ial photographs. They had a minimum size of
5 m2 and were afterwards geolocated by the
biologists on-screen with help of the very high
resolution satellite data. Training and valida-
tion samples for the other classes (13 to 16)
were digitised directly from the satellite im-
ages. Ground truth for all wetland classes were
then split randomly into training and valida-
tion samples (Tab. 2). Since all sites and class-
es were pooled for the selection process, the
random selection yielded varying proportions
of training and validation pixels.

Tab. 2: Classes and number of training and validation sites. Pixel size 0.6 x 0.6 m for study area 1
and 1.0 x 1.0 m for study area 2.

Class ID Class name # of training
pixels area 1

# of training
pixels area 2

# of validation
pixels area 1

# of validation
pixels area 2

1 Open water 190 51527 33 12409
2 Floating leaved macrophytes 1942 - 177 -
3 Submersed macrophytes 108 - 21 -
4 Duckweed (Lemna spp.) 481 38 31 0
5 Common reed (Phragmites

australis)
20787 25133 1935 6888

6 Cattail (Typha spp.) 11008 21018 1012 4907
7 Sedges (Carex spp.) 1308 45585 145 15466
8 Reed canary grass (Phalaris

arundinacea)
20787 839478 483 230983

9 Seasonal flooded grassland 46 151695 5 42460
10 Mannagrass (Glyceria

maxima)
511 2955 73 655

11 Spike rush (Eleocharis spp.) 219 - 27 -
12 Soft rush (Juncus spp.) - 40034 - 9476
13 Woods and shrubs 91851 263576 2375 77624
14 Other classes 5643 8271 271 2585
15 Clouds 1809 - 127 -
16 Shadow 221 - 10 -



114 Photogrammetrie • Fernerkundung • Geoinformation 3/2011

(e. g. cHan & Paelinckx 2008). Ensemble clas-
sification methods can be used to overcome
this problem. Two common strategies are
boosting and bagging (Freund & scHaPire

1996, Breiman 1996). In both methods several
trees or several weak classifiers are combined
into a new strong classifier, only the way of
selecting training samples differs.

Boosting uses a special set of weights for all
training samples, increasing the weight after
each run for the misclassified samples and de-
creasing it for the correct samples. It concen-
trates more and more on the difficult cases and
thus optimises the classifier. The final class is
assigned by a weighted majority vote of all
single trees. A widely used algorithm imple-
menting boosting is AdaBoost (Freund &
scHaPire 1996). More information on boost-
ing can be found in scHaPire (1999) or BüHl-
mann & HotHorn (2007).
Bagging means that for every classification

run only a subset of the whole training set is
selected randomly (Breiman 1996). For each
new tree a new subset is selected, while always
considering the whole set of training samples.
This so-called replacement can lead to some
training samples being present in all the dif-
ferent subsets whereas some training samples
are never considered at all. The final class is
assigned by a simple majority vote of all single
trees.

We chose three different widely used deci-
sion tree classifiers for this study: AdaBoost,
See5 and RandomForest. The first two incor-
porate boosting and the last one uses bagging.
See5 employs the information gain ratio as a
split criterion (Quinlan 1993). In order to bal-
ance computation time and model accuracy
we used after several trials with different set-
tings the following thresholds: boosting with
10 trees, 25% global pruning and at least 2
cases had to be at an end node.

Firstly, all attributes that were calculated
for every single cluster (ratios, indices and
texture measures) were used to build a model
with the ‘winnowing’ option of See5 in order
to assess their importance and predictive in-
formation. See5 estimates the increase in the
models true error rate if one attribute was left
out and then orders the attributes accordingly.
Seven attributes were thus selected for all fol-
lowing classification runs for study area 1 and

tural measures including grey level co-occur-
rence GLCM (Haralick et al. 1973) and sev-
eral ratios as well as indices for every single
cluster. Ratios, indices and texture measures
are very helpful for classification since they
can emphasise small differences between
classes, as has been shown in many studies,
e. g. for landcover classification with IKONOS
data (tassetti et al. 2010) or for tree species
classification with airborne data (li et al.
2010). Finally, more than 30 different attri-
butes per cluster were calculated and then used
as model attributes in the decision tree classi-
fication. Since not all of these might provide
valuable predictive information and thus
would add to computation burden we pre-se-
lected only the most important ones using a
leave-one-out approach (see following sec-
tion).

3.2 Decision Tree Algorithms

For a detailed discussion of decision trees, see
Breiman et al. (1984). Only a short introduc-
tion of the most important principles shall be
given here. Decision trees can be used as pre-
dictive models and consist of different levels
of nodes. The root node or whole data set is
divided (split) into more homogeneous groups.
This is achieved by a statistical measure (e. g.
entropy) which tries to find the attribute with
the most discriminatory power and then sets a
threshold. Split nodes subsequently contain
only part of the data and can further be divid-
ed until an end node (leaf) is reached where no
further split is possible or desired. Different
split criteria like information gain ratio or en-
tropy can be used to find the thresholds. Since
the tree can be grown until every single train-
ing sample is correctly classified, erroneous
data may lead to a bad performance when us-
ing the tree on other samples not used for the
training. To avoid this so-called overfitting,
the tree can be reduced by pruning. With the
help of different statistical measures the tree is
cut back and thus generalised. For a detailed
description see e. g. kearns & mansour

(1998) or Quinlan (1993).
Nevertheless decision trees are considered

as rather ‘weak’ learners compared to para-
metric classifiers like maximum likelihood
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3.3 Iterative Classification

A certain increase in training set size was
shown to improve classification quality with
decision tree algorithms (maHesH & matHer

2003) and also the joint application of multiple
algorithms can increase classification accura-
cy (xi et al. 2008). Since for some vegetation
classes, sufficient and homogeneous ground
truth data is not easy to collect, a new ap-
proach of an iterative classification was ap-
plied. We assumed that after a first classifica-
tion run, based on ground truth training data
with different classification algorithms, those
results can be combined to extract new train-
ing information. Pixels where all algorithms
decide for the same class are likely to be cor-
rectly classified. In this study, new training
samples are generated from the intersection of
the three classifiers. With the newly obtained
training set a second classification run is com-
pleted. Through this approach the training set
is increased (approx. five times the size of the
initial set) and also pixels that were wrong in
the initial set can thus be identified and delet-

thirteen attributes were selected for study
area 2 (Tab. 3). Several texture measures were
among the attributes with high importance.
The selected attributes vary for both areas be-
cause the remote sensing data sources are very
different (QuickBird versus SPOT and World-
View I).
As a second decision tree classifier we used

the multi-class implementation of AdaBoost
(Freund & scHaPire 1996). To balance com-
putation time and model accuracy we finally
used 30 trees after several trials with different
numbers of trees. Since AdaBoost is a meta-
algorithm, capable of using all different kinds
of weak classifiers, we selected a simple deci-
sion tree stump, where the split criterion uses
information gain. Again at least 2 cases had to
be at an end node. The third decision tree clas-
sifier was RandomForest (Breiman 2001). It
employs the gini index (a measure of inequal-
ity) as a split criterion. Because the computa-
tion burden is quite high for RandomForest we
were not able to use more than 10 trees.

Tab. 3: Attributes used for all classification runs, sorted by importance. All attributes were calcu-
lated for every ISODATA-segment (for study area 1: based on QuickBird segments, for study
area 2: based on WorldView I segments).

Study area Attribute name Description

1 ms3glcm1 Mean Red (GLCM) QuickBird
ms4glcm1 Mean NIR (GLCM) QuickBird
4min2 Difference NIR minus Green QuickBird
2min1 Difference Green minus Blue QuickBird
3min2 Difference Red minus Green QuickBird
r31 Ratio Red/Blue QuickBird
ms4glcm2 Variance NIR (GLCM) QuickBird

2 ndvi
2min1
3min2
3min1
spot1
spot2
spot3
wvmean
r31
r21
glcm1
glcm4
glcm8

NDVI SPOT
Difference Red minus Green SPOT
Difference NIR minus Green SPOT
Difference NIR minus Red SPOT
Mean Green SPOT
Mean Red SPOT
Mean NIR SPOT
Mean WorldView
Ratio NIR/Red SPOT
Ratio Red/Green SPOT
Mean WorldView (GLCM)
Contrast WorldView (GLCM)
Correlation WorldView (GLCM)
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Since the classification results have a very
high spatial and thematic resolution, biomass
and carbon storage can be calculated with a
simple upscaling approach. We summarised
the coverage of the investigated helophytes in
the study areas and multiplied the area values
with the specific biomass values [t DM = dry
matter/ha] and carbon stock [t/ha].

4 Results

4.1 Classification Accuracy

The overall accuracy is not sufficient for the
assessment of the total classifier performance,
as some classes with large areas (and thus a
large number of validation samples) influence
the overall accuracy strongly, whereas classes
with small occurrence but very high ecologi-
cal importance are underrepresented. The
mean class accuracy (mean of all single class
accuracies) was thus used as an additional
separability measure. For example the overall
accuracy for study area 1 and the AdaBoost
classification amounts to 92% whereas the
mean class accuracy is only 80% since some
small occurrence classes have a lower accura-

ed. For example, many water pixels were in-
cluded in the classes floating leaved macro-
phytes and also in the different reed classes,
those were eliminated in the second run from
the training set.

3.4 Biomass and Carbon Stock
Assessment

The aboveground biomass of the most com-
mon helophytes was harvested in 2007 in
mono-dominate stands from randomly chosen
sites (0.25 m2) at the beginning of their flower-
ing time when shoot biomass approaches net
primary production (dykyJová & kvét 1978,
odonk & kvét 1978) and contains the peak of
nutrients (BernHard & Hankinson 1979).
Overall, we analysed the aboveground bio-
mass and carbon stock of Phragmites austra-
lis (40 sites), Typha latifolia (48 sites), Glycer-
ia maxima (32 sites), Carex riparia (24 sites),
Carex acutiformis (40 sites) and Phalaris ar-
undinacea (40 sites). The samples were dried
for 48 h at 85 °C, weighted to determine dry
mass, grinded and homogenised. Carbon con-
tent of dry mass was measured with a CHN-
Analyser “Vario EL III”.

Tab. 4: Accurracies for the different classification algorithms trained with the intersected training
sample set (second run).

Study area 1 Study area 2
Class ID Ada30_2 RF10_2 See5_2 Ada30_2 RF10_2 See5_2
Open water 98,45 98,41 98,43 87,19 86,92 87,07
Floating leaved macrophytes 80,76 79,16 78,83 – – –
Submersed macrophytes 56,00 55,32 54,41 – – –
Duckweed (Lemna spp.) 98,19 95,76 90,58 96,05 96,05 96,05
Common reed (Phragmites australis) 83,69 83,49 82,74 60,87 60,66 60,72
Cattail (Typha spp.) 78,30 77,86 77,49 91,46 90,56 91,62
Sedges (Carex spp.) 70,38 67,23 66,35 89,25 88,85 89,08
Reed canary grass (Phalaris arundinacea) 82,10 80,62 79,24 89,43 89,38 89,36
Seasonal flooded grassland 55,47 55,69 52,51 88,06 87,62 87,82
Mannagrass (Glyceria maxima) 60,16 59,46 58,29 91,46 90,93 91,24
Spike rush (Eleocharis spp.) 79,61 79,14 80,16 – – –
Soft rush (Juncus spp.) – – – 69,61 68,79 70,49
Woods and shrubs 92,41 91,97 91,01 74,50 74,54 74,51
Other classes 99,87 99,70 99,52 98,37 98,82 98,83
Clouds 98,71 98,54 98,52 – – –
Shadow 66,42 60,48 69,43 – – –
Mean class acc. 80,03 78,85 78,50 85,11 84,83 85,16
Overall acc. 91,58 91,20 90,78 84,95 84,81 84,89
Change in overall acc. compared to the
first run

+8,13 +12,19 +1,51 –2,51 +0,23 +0,18
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es remain in study area 2 with lower accura-
cies than 80: woods and shrubs, common reed
and soft rush. Common reed and woods and
shrubs in this area occurs in very thin stripes
along water channels, the coarser resolution
(20 m) of the SPOT multispectral data is thus
certainly not adequate and the WorldView I
texture was not sufficient to overcome this
problem. This might be due to the different ac-
quisition dates of the WorldView I and SPOT
scenes. In April (WorldView I) phenology is
only at the starting phase whereas in late July
(SPOT) vegetation is at its peak. Another issue
was that in April large areas were still flooded
(thus providing no texture) whereas in late
July the water level was at a very low point.

4.2. Monitoring Results for Polder
Jargelin and Polder Beestland

The initial vegetation cover of dominant
Phalaris arundinacea grassland in polder

cy. All single class accuracies are listed in
Tab. 4. The classifier with the highest accuracy
(AdaBoost) was used as the final classification
result. Still four problematic classes remain in
study area 1 with lower accuracies than 80:
submersed macrophytes, seasonal flooded
grassland, sedges and mannagrass. For all
these classes we had only very few training
samples and also the iterative classification
did not lead to a major improvement. Sub-
mersed macrophytes will always remain dif-
ficult, since they can only be detected by mul-
tispectral remote sensing if the water level is
not too high above the plants. Seasonal flood-
ed grassland can sometimes contain different
reed species e. g. reed canary grass and thus
leads to false misclassification. For sedges and
mannagrass, a larger initial training sample
would be desirable. Furthermore, the selected
feature set might not be optimal for those two
classes.

In study area 2, both overall and mean ac-
curacy reached 85%. Three problematic class-

Fig. 3 a): Final classification result for the polder Jargelin in study area 1 (SteFFenhAgen et al.
2008). b): Carbon stock in net aboveground biomass of helophytes in Polder Jargelin (SteFFenhA-
gen et al. 2008).
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4.3 Biomass and Carbon Stock
Assessment for Polder Jargelin
and Polder Beestland

The aboveground biomass and carbon stock of
helophytic vegetation during the growing sea-
son 2007 and 2008 showed a wide difference
between polder Jargelin and polder Beestland
(Fig. 3b and 4b). Although polder Beestland
(165 ha) is nearly 5 times bigger than polder
Jargelin (32 ha) the aboveground biomass and
carbon stock was only twice as high as for pol-
der Jargelin. We calculated for polder Beest-
land an aboveground biomass of 709 t and car-
bon stock of 328 t. For polder Jargelin overall
aboveground biomass amounted to 318 t and
carbon stock to 147 t. These differences are
caused by the different dates of rewetting and
also by the large areas still covered with open
water in polder Beestland.

Jargelin has changed substantially after 12
years of rewetting as is illustrated by the clas-
sification results in Fig. 3a. Mainly reeds and
sedges cover the area now. 39% of the polder
are overgrown by Phragmites australis and
sedges. This is of great importance since these
species have the potential to accumulate peat,
which can be interpreted as a first success in
the restoration of this particular fen. Also bio-
mass and carbon storage are highest for Phrag-
mites australis.

For polder Beestland, the initial vegetation
cover of dominant Phalaris arundinacea and
Festuca arundinacea grassland has also
changed substantially after only six years of
rewetting. The classification results (Fig. 4a)
indicate that the initial high intensity grass-
land vegetation has already changed to a helo-
phyte dominated mosaic. Especially Phrag-
mites australis could spread further starting
from the dyke edges. A large part of the area is
still covered with open water.

Fig. 4 a): Final classification result for the polder Beestland in study area 2. b): Carbon stock in net
aboveground biomass of helophytes in Polder Beestland.
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very important for the separation of certain
classes and thus at least a panchromatic very
high resolution sensor should be used. Multi-
spectral information can have a lower spatial
resolution, though the use of 20 m SPOT im-
agery leads to a significant decrease in accu-
racy for some classes compared to 2.4 m
QuickBird imagery. Particularly classes that
cover only small areas or thin stripes like
common reed and single trees and shrubs are
better classified with QuickBird data. Further-
more and not surprisingly it can be concluded
that accuracy is mostly higher for classes with
larger training samples. The time of capture is
also an important factor for the classification
success. Images taken in April are not advis-
able for rewetted peatland since large areas are
still covered by water.

Our intention was not to compare the differ-
ent decision tree classifiers and ensemble clas-
sification methods but it can be said that all
performed with similar good results for both
sensors and all classes.
The suggested classification approach is

straightforward and easy to implement – only
computation time and the volume of data
might be a problem. The developed method
was applied to both complete study areas
(more than 8000 ha) and yielded a valuable in-
put not only to the observation of restoration
success by rewetting but also to biomass and
nutrient storage estimation. With qualified
laboratory data regarding the nutrient storage
and biomass production of single wetland
plant species and vegetation forms the pre-
sented classification results can be a very help-
ful input to the further assessment of restora-
tion results. Peatland can function as carbon
sink and may influence the global climate reg-
ulation. Thus, the carbon storage and biomass
production of rewetted fens are of great inter-
est and can be estimated in high detail for
large areas if adequate vegetation maps are
available (Fig. 3b and 4b).

6 Conclusion

We analysed the vegetation composition of re-
wetted peatlands with multispectral and very
high spatial resolution satellite imagery. We
developed an iterative classification approach

5 Discussion

5.1 Vegetation Development

After several years of rewetting degraded
peatland, the now present vegetation still dis-
plays, according to the former land use, the
grade of peatland degradation (timmermann

et al. 2009), and the present hydrological con-
ditions (timmermann et al. 2006). Common
reed (Phragmites australis) is either already
most abundant as in polder Jargelin or begin-
ning to spread as in polder Beestland. Repre-
senting a cosmopolitan plant species with a
broad ecological range with regard to nutrient
supply, water level depth and land-use prac-
tice (ostendorP 1988, küHl & koHl 1992,
tHevs et al. 2007) this plant is one of the key
species of nutrient rich lowland fens and river
banks throughout Central Europe. Addition-
ally, it is one of the target species in fen resto-
ration (wilcox & wHillans 1999, timmer-
mann et al. 2009). As common reed has the
potential of peat accumulation it has a consid-
erable value with regard to ecosystem services
like carbon sequestration (grosse-Brauck-
mann 1990, Brix et al. 2001, mander et al.
2008).

After rewetting, only never or rarely inun-
dated sites were covered by canary grass
(Phalaris arundinacea). Permanently inun-
dated sites were replaced by reeds of Phrag-
mites australis, Typha latifolia, and Carex
spp.. Open water, which occured on sites with
high soil shrinkage, was often dominated by
submersed and floating leaved macrophytes
and duckweed.

Both polders cannot be compared directly
since rewetting date and initial situation dif-
fer. It can be said, that the vegetation develop-
ment on both study sites is successful with re-
gards to biomass and carbon storage and also
to potential peat accumulation.

5.2 Methodological Approach

We developed an iterative decision tree based
classification approach for the analysis of
peatland vegetation that can be applied to op-
erational optical satellite sensors with differ-
ent spectral and spatial resolution. Texture is
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thankful for the helpful comments given by
the two anonymous reviewers. Furthermore
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