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systems makes area-wide traffic monitoring
difficult, since detailed traffic models are nec-
essary to interpolate between the measure-
ment positions. An alternative approach is to
collect traffic data by means of vehicles
equipped with mobile measurement units,
which flow with the traffic. These so called
floating car data, FCD (Schaefer et al. 2002,
BuSch et al. 2004), is often obtained from tax-
icabs and delivers very useful traffic informa-
tion along specific routes within cities. Yet
such systems are currently only available for a
few big cities. Furthermore, the traffic infor-
mation available from this source depends in-
herently on the routes taxicabs are taking. Taxi
drivers tend to avoid busy roads during rush
hours, leading to only few or even no data be-
ing available for roads burdened with com-
muter traffic.

1 Introduction

The analysis and interpretation of image se-
quences for the detection of moving objects is
an important research topic. An early over-
view is given, for instance, in (cedraS & Shah

1995) and more recent advances with focus on
air- and spaceborne traffic data collection can
be viewed in the compendium in (hinz et al.
2006). In general, traffic monitoring is mainly
based on data from conventional stationary
ground measurement systems such as induc-
tion loops, radar sensors or terrestrial camer-
as. All ground measurement systems embed-
ded in road infrastructure deliver precise traf-
fic data with high temporal resolution, but
their spatial distribution is still limited to se-
lected positions along motorways and main
roads. The sparse spatial sampling of these

Summary: This paper focuses on the detection and
tracking of vehicles from airborne image sequences
to monitor moving traffic. Two different systems
are described: the first one is a near real-time track-
ing algorithm based on normalized cross correla-
tion. The second approach includes model knowl-
edge about driver behavior, traffic dynamics and
context to exploit svelocity and trajectory evalua-
tion. The shown results and derived quality meas-
ures demonstrate the performance of the proposed
systems, in particular the contribution of the traffic
model knowledge enhances the correctness of the
tracking results. Finally, concluding remarks are
given to point out further research.

Zusammenfassung: Analyse von Bildsequenzen
zur Detektion und Überwachung von fließendem
Verkehr. Dieser Artikel zielt auf das Erkennen und
Verfolgen von Fahrzeugen aus luftgetragenen Bild-
sequenzen zur Überwachung von fließendem Ver-
kehr. Zwei unterschiedliche Systeme werden be-
schrieben: Das Erste ist ein echtzeitnahes Tracking-
Verfahren, welches auf der normalisierten Kreuz-
korrelation basiert. Das zweite Verfahren bindet
Modellwissen über Fahrerverhalten, Verkehrsdy-
namiken und Kontext ein, um Geschwindigkeits-
und Trajektorienbewertungen auszunutzen. Die
Ergebnisse und die abgeleiteten Qualitätsmaße zei-
gen die Leistungsfähigkeit der Systeme, insbeson-
dere der Beitrag des Verkehrsmodellwissens erhöht
die Korrektheit der Trackingergebnisse. Abschlie-
ßend wird ein Ausblick auf zukünftige Forschun-
gen gegeben.
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proach that can deal with these characteristics
is presented in (Lenhart & hinz 2006, Len-
hart et al. 2008). Further advances of this
work are introduced in this paper.

Most of the mentioned approaches utilize
data from a road database as a priori informa-
tion for the automatic detection of road area
and vehicles. For less complex roads a geo-
metrical refinement is possible as a preceding
step, e. g., using network snakes (Butenuth

2007, Butenuth 2008). From the database, nu-
merous attributes can be assigned to each road
polygon, including the driving direction on
motorways, which reduces the search space
during automated tracking.

In the following, we present our research
activities on airborne traffic monitoring with
special emphasis on vehicle tracking. The sys-
tem is designed in such a way that it fulfills
following requirements:

The camera system must support a large●
coverage comparable to photogrammetric
aerial photographs, it must deliver a spatial
resolution sufficient for vehicle detection
and tracking (< 25 cm), and its frame rate
must enable image acquisition in such in-
tervals that also fast cars traveling anti-par-
allel to the aircraft are imaged at least
twice.
The algorithms for traffic analysis must●
provide the results in near real-time so that
traffic management can immediately react
on the current situation.

The paper thus focuses on the characteristics
of the camera system first (cf. Section 2), and
then outlines two approaches for the detection
and tracking of vehicles to monitor moving
traffic. The goal is to point out the usability of
image sequences analysis with different ap-
proaches (cf. Section 3) and to compare the
derived results with each other (cf. Section 4).
Finally, concluding remarks are given to high-
light further investigations and research op-
portunities.

2 3K Camera System

In this section the newly developed 3K camera
system of DLR is presented to provide the im-
age sequences for the aimed analysis. The

The big advantage of the remote sensing
techniques presented in this paper is that they
complement the aforementioned techniques.
The measurements can be acquired nearly
everywhere except of tunnels and roads oc-
cluded by trees. The entire traffic dynamics
for a given area can be recorded and analyzed,
e. g., vehicle density, velocities, overtaking
maneuvers, merge and exit behavior, and traf-
fic congestions for a certain time span. Such
results are highly relevant input data for traffic
modeling and simulation programs, for testing
the efficacy of traffic control measures and for
the input into GIS systems for traffic monitor-
ing. In addition, there are no dependencies on
any third party infrastructure.

The usefulness of airborne video data from
both the visible and thermal spectrum has
been studied using many different approaches
(ernSt et al. 2003, StiLLa et al. 2004, toth &
Greijner-BrzezinSka 2004, Yao et al. 2008a),
and also first attempts with airborne LIDAR
data have been published (toth & Greijner-
BrzezinSka 2006, Yao et al. 2008b). Tests with
several camera systems and various airborne
platforms as well as the prototype develop-
ment of an airborne traffic monitoring system
and thematic image processing software for
traffic parameters were done in the projects
“LUMOS” and “Eye in the Sky” (ernSt et al.
2003, Börner et al. 2004). Both systems are
based on video cameras mounted on aerial
platforms. They meet the requirements of rap-
id airborne traffic data acquisition, however,
the field of view is limited.

To overcome this limitation of video cam-
eras, we develop a system for automatic deri-
vation of traffic flow data which is based on
using for commercial medium format frame
cameras. These cameras enable the coverage
of large areas at a reasonable ground sampling
distance. Yet the frame rate is quite low (and
occasionally variable) as more time is neces-
sary for reading-out the data. These peculiari-
ties need to be considered in the design of an
airborne traffic monitoring system. There are
not many investigations on optical airborne
image sequences with a large field of view
(toth et al. 2004). The general suitability of
image sequences taken with airborne cameras
for traffic monitoring was shown in (reinartz

et al. 2006, roSenBaum et al. 2009). An ap-
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and all control points were measured in 281
images from all three cameras. These tie
points, control points and GPS positions were
introduced into a self calibrating bundle ad-
justment. Altogether, a redundancy of about
105 was reached and five interior parameters
were estimated for each camera.

3 Detection and Monitoring of
Moving Traffic

In this section, the methodical aspects of traf-
fic monitoring are described. In order to detect
also non-moving vehicles, we conceptually
separate the tasks of vehicle detection and ve-
hicle tracking, thereby focusing on tracking in
the following. Detection of vehicles in single
images can for instance be done with the ap-
proach of (hinz 2004) for high resolution im-
ages and (LeitLoff et al. 2009) for moderately
sampled images.

In the following sub-sections two different
systems for vehicle tracking are outlined. The
first one is simpler from a methodological
point of view but works in near real-time. The
second includes more knowledge about driver
behavior, traffic dynamics and context, but
needs more parameters to initialize and a
longer execution time. Both approaches are
independently from each other, but an integra-
tion in terms of an adaptive system is a possi-
ble future advancement. The first tracking al-
gorithm may be used in distinct scenarios like
motorways providing traffic data with a high
actuality, whereas the second one can be ap-

camera system consists of three non-metric
off-the-shelf cameras (Canon EOS 1Ds Mark
II, 16 megapixels each). The cameras are
aligned in an array with one camera looking in
nadir direction and two in oblique direction,
which leads to an increased FOV of max
110°/31° in across track/flight direction (cf.
Fig. 1). The ground pixel size and swath width
are depending on the flight altitude and range
between 15 cm to 50 cm and 2.5 km to 8 km
respectively. This camera system is operated
on board the DLR research planes Dornier 228
and Cessna 208B, but an extension to other
platforms may be possible in future.

The 3K camera can be used in different
mapping or traffic acquisition modes and,
thus, a high resolution and wide-area monitor-
ing task even at low flight altitudes, e. g., be-
low the clouds, is feasible. Within two minutes
an area of approximately 10 km × 8 km can be
monitored. The frame sensor system is cou-
pled with a real-time GPS/IMU navigation
system (IGI), which enables the direct georef-
erencing. The ability to acquire image se-
quences with up to 3 Hz allows the application
to monitor moving traffic. Prerequisite is a
high precision orthorectification of the data
using an underlying SRTM DEM. The sequen-
tial images have to match each other (for
ground pixels) with sub-pixel accuracy, which
can be reached by direct georeferencing in-
cluding calibration and boresight values.

Two calibrations of the 3K camera system
were performed: one on a ground test field in
2006 (kurz et al. 2007) and one in-flight in
2008. For the latter, tie points were matched

Fig. 1: Left: Illustration of the image acquisition geometry. The tilt angle of the sideward looking
cameras is approx. 35°; right: DLR 3K camera system, integrated in a ZEISS aerial camera mount
including the IMU of the IGI georeferencing system (orange) for attitude measurements.
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image; Fig. 2 shows an example for a correctly
tracked car.

The derived score [0.0 ... 1.0] needs to exceed a
certain value for keeping it as a match. A maxi-
mum correctness is reached with an acceptable
completeness in tracking by setting this score
threshold to a value of 0.9. The tracking is re-
started within the second and third image (and
with further consecutive pairs of the exposure
burst in succession) in order to track the vehicles
through a whole image sequence. For vehicles
that disappear at image borders or below bridges
during an exposure of the sequence (but have
been detected or tracked in the image before) the
tracking algorithm does not find a match. This
means that disappeared vehicles are normally
not confused with other vehicles or objects, be-
cause of the high matching threshold of 0.9. Ve-
hicles occluded by bridges or other objects may
be detected again after reappearance by a new
vehicle detection performed on a further expo-
sure sequence. However, they appear as new de-
tections and loose their identification relation.
In order to increase correctness, cross correla-
tion is performed as matching band by band in
RGB color space to exploit the varicolored object
information.

For vehicle tracking on motorways, rota-
tions of the template vehicle image are ne-
glected, because the lane change angles at
typical velocities obtained on motorway is
quite low. However, for city regions, rotation
of the template during correlation can be
turned on, but this will result in increased
computing time linearly with the number of
rotation steps during correlation. In order to
save computation time, matching is not per-
formed with sub pixel accuracy. Integral im-
ages are not calculated since it is not cost effi-
cient on small templates. We further acceler-
ate normalized cross correlation by an estima-

plied in difficult environments like urbanmain
and side roads.

3.1 Near Real-Time Vehicle Tracking
with Normalized Cross Correlation

An easy to use and robust technique for vehicle
tracking is based on matching image patches by
normalized cross correlation (LewiS 1995). For
traffic data acquisition the camera system oper-
ates in a so-called burst mode with four or five
consecutive images at a high repetition rate of up
to 3 fps followed by a break of several seconds.
During this break the plane moves significantly
over ground until the next image sequence is
started. Thereby a configurable overlap of 10%
to 20% between two consecutive image sequenc-
es (bursts) is obtained. This reduced the data
amount produced by the camera system signifi-
cantly compared to a mode where images are
taken continuously with a frame rate of 3 fps.
The vehicle detection is done on the first image
of the burst, vehicle tracking starts with the im-
age pair consisting of the first and second image
of a sequence. For each vehicle detected in the
first image, a template image is generated at the
position of the vehicle detection in the first im-
age. In the second image, a rectangular search
window is opened at the vehicle position ob-
tained from the detection in the first window.
Thereby, the rectangle is aligned to the driving
direction, which is obtained from the road data-
base. The length of the search window depends
on the maximum expected velocity for the road
and the time difference between the two images.
The normalized cross correlation is calculated
between the template image and second image.
The obtained values give the probability of find-
ing the vehicle from the first image at a certain
position within the search window in the second

Fig. 2: Matching with normalized cross-correlation (two sequential images are superimposed).
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3.2 Advanced Vehicle Tracking Using
Velocity and Trajectory Evaluation

In this section, the approach complementing
the aforementioned system uses image triplets
and track evaluation is presented. Again, ve-
hicles are assumed to be detected beforehand.
The tracking of the cars is accomplished in the
consecutive two images. Since time gaps be-
tween frames may get large tracking is done
by matching the cars of the first image (i. e.,
car patches as reference patches) over the next
two images. To this end, an adaptive shape-
based matching algorithm is employed includ-
ing internal evaluation and consistency checks
(SteGer 2001, uLrich 2003). The similarity
measure is invariant against noise and illumi-
nation changes but not against rotations and
scale. Thus, for each image the reference patch
is updated to adapt illumination and aspect
variations. Fig. 3 illustrates the multiple hy-
potheses matching over image triplets.

The matching process delivers a number of
matched positions for each vehicle where the
best match is not always the correct one. In
our algorithm, we use a maximum number of
the six best matches for each run. Thus, we
may receive up to six match positions in Im-
age 2 (3) and 36 match positions in Image 3 (4)

tion of the normalization since calculating the
full norm at each position in the search win-
dow takes quite a lot of calculation time. As-
suming that the illumination situation does
not change a lot between two images, an upper
limit of the correlation score is estimated for
each correlation position in the search win-
dow. Only if this upper limit exceeds the score
threshold the exact normalized cross correla-
tion is calculated at that position. For the esti-
mation of the score only the first (blue) chan-
nel of the color image is used. We choose the
first channel for the estimate, since it provides
faster memory access then the second or third
channels due to the definition of the program
internal image data structure. These arrange-
ments decrease computation time by a factor
of at least four. These arrangements lead to
computation times of less than 10 s per image
burst tested on a scene containing about 100
cars using standard hardware based on Quad-
Core CPU.
At high resolutions (GSD ~ 15 cm) on motor-

way scenarios this tracking algorithm reaches a
correctness of better than 95% at a completeness
of more than 90%. This high sufficiency might
be due to the fact, that at such resolutions car de-
tails like car body types, the presence or absence
of sunroofs and similar features can be re-
solved. While vehicle tracking based on nor-
malized cross correlation in RGB color space
itself works fine at high resolutions, it is sensi-
tive to false alarms obtained in vehicle detec-
tion. As mentioned before vehicle tracking is
based on vehicle detection performed in the
first image of each burst. Although the vehicle
detection algorithms used for this may be
highly sufficient they deliver a certain per-
centage of false detections. Although several
false vehicle detections can be eliminated dur-
ing tracking as outliers in direction or velocity
space, other false alarms still remain in track-
ing. Especially objects from the dashed lane
markings that were detected as vehicles errone-
ously may still remain in tracking. This is due to
the fact, that the object shape of the dashed mark-
ings reappears periodically within a search win-
dow and the fact that all of these markings have
almost exactly the same shape and intensity.

Fig. 3: Matching concept with image triplets
using sequential matching between image
pairs and direct matching between 1st and 3rd
image.
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With zero velocity● if objects belong to the
background (e. g., road bank, shadows of
trees).

A first step to eliminate false detections is to re-
move redundant objects from the set of detec-
tions. These are the kind of objects that belong to
vehicles, such as shadows or trailers. For each
pair of detections, the spatial distance is calcu-
lated. A search for very small distances deliv-
ers candidates for redundant objects, which
are analyzed in terms of their trajectories. The
analysis includes the speed and direction of
the determined trajectories and the relative di-
rection between the candidates. Identical tra-
jectories and constant relative direction indi-
cates redundant candidates while passing ve-
hicles will have at least a slight difference in
their speed or relative orientation.

For velocity analysis, we use fuzzy sets for
knowledge representation (zadeh 1965) which
allows an intuitive way of describing vehicle
behavior as a function of the state of traffic
and the location with respect to intersections
or traffic lights. For each road segment, the
density is determined. In dependence of the
density D and the distance d to road node
points, possibilities for the range of velocities
are defined (cf. Fig. 4). By linear interpolation
along the axes of density D and distance d, a
cubic membership function can be derived (cf.
Fig. 5).

According to the fuzzy membership func-
tion, a weight μA is assigned to each of the de-
tections. The weight contributes to the calcu-
lation of a weighted mean velocity ν per road
section:

for each vehicle detection. Also having six
match positions for direct matching from Im-
age 1 to Image 3 (2, left branch), we need to
evaluate 216 possible tracking combinations
for one car. At a first glance, this seems quite
cost intensive. Yet, many incorrect matches
can be rejected through simple thresholds and
consistency criteria controlling the computa-
tional load easily.

For the evaluation of the tracks, a Bayesian
maximum a posteriori probability decision
rule based on a simple motion model is applied
(Lenhart & hinz 2006). The model focuses on
smooth tracks and smooth velocity profiles,
yet with braking and standing cars allowed.
During the evaluation, a variety of intermedi-
ate weights are employed which include
matching score, motion consistency and spa-
tial identity of the results from direct and indi-
rect matching. Finally, these weights are ag-
gregated to an overall tracking score and the
best match combination is chosen as the cor-
rect vehicle track.
In order to refine the detection and tracking

results, a velocity and trajectory analysis is
carried out which is independent of the pre-
ceding detection and tracking algorithms. The
goal of this analysis is to eliminate false alarms
from the set of detections. This allows a more
precise velocity estimation for road segments
since false alarms significantly influence ve-
locity accuracy. There are mainly two ways
how false alarms may be tracked:

Collinear motion for redundant objects/fea-●
tures belonging to vehicles (e. g., trailer, car
shadow).
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Fig. 4: 1D membership functions given a traffic density D = 0 and D = 180, respectively, and dis-
tance d = 150 with support points (black dots).
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Applying a minimum threshold on the summed
up weights of a section, we meet the circum-
stance that there are only false alarms in a free
flow section. If the sum of the weights of a sec-
tion is below the threshold, all detections of
this section are removed. Finally, objects with
a velocity ni < ν – 2 · σn are regarded as out-
liers and eliminated. A refined and unweight-
ed average velocity is determined from the
remaining detections. The resulting distribu-
tion is unbiased under the assumption that all
false alarms have been eliminated.

4 Results and Analysis

4.1 Results of Vehicle Tracking with
Normalized Cross Correlation

Vehicle tracking was tested on data obtained
at a flight height of 1000m (15 cm GSD) and at
a flight height of 2000m (30 cm GSD). Fig. 6
shows a typical result on tracking vehicles
from the first image of an image sequence to
the next image. On images with a resolution of
15 cm GSD, vehicle tracking on motorways
performs pretty well with a correctness of bet-
ter than 90% and a completeness of almost
90% on each image pair. On images obtained
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Fig. 5: 3D membership function with slices at
v = 10, v = 70, D = 80, d = 0 and d = 100.

Fig. 6: Car tracking by normalized cross correlation of a group of cars detected in the first image
of a sequence (left) to the second image (right).

Fig. 7: Resulting velocities of vehicles measured by car tracking.
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ering a reasonable detection characteristic and
quality. Overall, 50 objects have been selected
containing of 33 vehicles and 17 false alarms
(see Fig. 8). Therefore, a detection complete-
ness of 100% and a correctness of 66% is
given.

The results of the tracking are depicted in
Fig. 9. Only one object has been tracked incor-
rectly, however, the tracking failed for seven ob-
jects including three vehicles. This results in a
tracking completeness of 86% and a correctness
of 98%. Tests on other data delivered similar
tracking quality measures. Note that we do not
distinguish between false alarms and correct de-
tections but only consider the mere outcome of
the tracking procedure.

Using the analysis of velocities, eleven false
alarms could be eliminated (cf. Fig. 10) while
two false alarms could not be found. In addition,
no vehicle has been falsely removed from the
tracking results. This leads to a final complete-

from higher flight levels (30 cm GSD) tracking
still works fine with a completeness of 90%
while having a correctness of 75%. We at-
tribute the good tracking performance on low
flight heights to the fact that with a resolution
of 15 cm GSD vehicle details like sunroof,
windscreen and backlight, and body type go
into the correlation which simplifies finding
the correct match. However, these details are
not anymore seen at higher flight levels. In
Fig. 7 the resulting velocities of the tracked
cars are shown.

4.2 Results of Vehicle Tracking Using
Velocity and Trajectory Evaluation

The tracking with image triplets has been tested
on an image sequence consisting of four images
with a GSD of 30 cm. In this example, the detec-
tion has been carried out manually with consid-

Fig. 8: Detected vehicles with color coded assignments to road polygons of the database.

Fig. 9: Results of tracking using image triplets with trajectories of tracked objects. Red crosses
indicate detections where the tracking failed.
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step to the tracking algorithm presented at
first.

An interesting point of further investiga-
tions could be the utilization of the traffic
model in an enhanced way. Up to now, the ex-
tracted and tracked vehicles are used to enrich
the traffic models and traffic simulations.
Here, the focus is on reliable and robust results
to guarantee for stable numeric models con-
cerning the traffic monitoring. A further step
could be an iteration in terms of introducing
the updated traffic model again in the extrac-
tion and tracking process. For example, the
enriched traffic model could allow for input
information enabling less strong extraction
parameters for the detection and tracking of
the vehicles. Obviously, the enhanced tracking
results will improve the traffic model once
again.
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