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Summary: The modelling and management of to-
pology plays an increasing role in Photogrammet-
ry, Remote Sensing and GIS. In new application
fields such as 3D city models, 3D navigation sys-
tems and early warning of geological events,
multi-scale topological data models are needed.
In this article a unified model for topology is pro-
posed, based on oriented d-Generalised Maps
(2 < d < 3) to represent topology in Multi-Rep-
resentation Databases (MRDB). Topological
data structures and operations are presented in
detail. The model can be used as a data integra-
tion platform for 2D and 3D topology, as well
as for the representation and management of to-
pology in a multi-resolution GIS. An application
example, management of topology in a multi-
scale land-use map based on aggregation, shows
the feasibility of the new approach.

Zusammenfassung: Auf dem Weg zu einem G-Map-
basierten Werkzeug zur einheitlichen Modellierung
und Verwaltung der Topologie in Multiple Repre-
sentation Databases. Die Modellierung und Ver-
waltung der Topologie spielt eine groBer werden-
de Rollein der Photogrammetrie, Fernerkundung
und in GIS. In neuen Anwendungsfeldern wie 3D
Stadtmodellen, 3D Navigationssystemen und
Frithwarnung geologischer Ereignisse werden
multiskalige topologische Datenmodelle bend-
tigt. In diesem Artikel wird ein einheitliches Mo-
dell fiir die Topologie vorgeschlagen, das auf ori-
entierten d-Generalisierten Karten (2 <d < 3)
basiert, um die Topologie in Multi-Representa-
tion Databases (MRDB) zu verwalten. Topologi-
sche Datenstrukturen und Operationen werden
im Detail vorgestellt. Das Modell kann als Da-
tenintegrationsplattform fiir 2D und 3D Topolo-
gie genutzt werden. Ein Anwendungsbeispiel, die
Verwaltung der Topologie in einer multiskaligen
durch Aggregation entstandenen Bodennut-
zungskarte, zeigt die Realisierbarkeit des neuen
Ansatzes.

1 Introduction and Related Work

Multiple representation databases are
needed in many applications of Photogram-
metry, Remote Sensing and GIS (Hoppe
1996, FrRADIN et al. 2002, HAUNERT & SEs-
TER 2005 and MEINE & KOTHE 2005), to
model geo-objects in different scales. In new
3D applications, besides geometry the im-
portance of topology is growing, but hither-
to this aspect has played a minor role in re-
search and applications.

Exhaustive work on the modeling of
topology in GIS has been published (EGEN-
HOFER 1989, EGENHOFER et al. 1989, PiGoT
1992, CLEMENTINI & DI FELICE 1994 and
GROGER & PLUMER 2005). General ap-
proaches for representing topology in the
context of 3D modeling have been examined
by different authors. Cellular complexes,
and in particular cellular partitions of d-di-
mensional manifolds (d-CPM) have been
described to represent the topology of an
extensive class of spatial objects (BRISSON
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1993). Based on algebraic topology, they
provide a general, less rigid framework than
more specific topological representations
such as simplicial complexes. The topology
of d-CPM can be represented by d-dimen-
sional Cell-Tuple Structures (BRISSON 1993)
respectively  d-dimensional  Generalized
Maps (d-G-Maps — LIENHARDT 1994). LEvy
(1999) has shown that 3D-G-Maps have
comparable space and time behavior as the
well-known Doubly-Connected Edge List
(DCEL) and Radial Edge structures, but
can be used for a much wider range of ap-
plications, allowing for a more concise code.
LEvy (1999) also introduces hierarchical G-
Maps (HG-Maps) for the representation of
nested structures. G-Maps have been used
to represent the topology of land-use
changes (Raza & Kainz 1999) for 3-dimen-
sional spatial data (MESGARI 2000), and are
applied, e.g., in the geoscientific 3D-
Modelling software GOCAD (MALLET
2002). FrRADIN et al. (2002) use G-Maps to
model and visualize architectural complexes
in a hierarchy of multi-partitions, and an
interactive graphical G-Map-based 3D-
modeller (Moka 2006) has been made avail-
able by the group of graphical informatics
(SIC) at Poitiers university. Own first ap-
proaches to the management of topology in
Multiple Representation Databases have
been shown in (SHUMILOV et al. 2002, THOM-
SEN & BREUNIG 2007, ButwiLowsKI 2007,
and THOMSEN et al. 2008).

In the remainder of this paper, we inves-
tigate how the realisation of oriented Gen-
eralized Maps and Cell-Tuple Structures
based on an ORDBMS can be used to
handle the topology of a digital spatial
model in a generic way, supporting 2D
manifolds and 3D volume models (Sections
2 and 3). In Section 4, the comparison of
the G-Map with other topological models,
especially with ISO 19107, is discussed. Sec-
tion 5 describes some aspects of the imple-
mentation based on a object-oriented
RDBMS, and Section 6 discusses different
methods to handle multi-representation G-
Maps and Cell-Tuple Structures. As an on-
going application example, in Section 7 we
present the management of topology for a

multi-scale land use map. We conclude with
an outlook on our future research.

2 Explicit Modelling of
d-dimensional Topology

Topological relationships between and with-
in complex spatial objects can be described
implicitly, e.g., by attaching some refer-
ences to neighbours to the items of a ge-
ometry model. However, it seems more ap-
propriate to use an explicit mathematical
framework for the description and analysis
of the transformation of topology during
the passage between different representa-
tions in a multi-representation database.
For this purpose, we use a topological model
that consists of the following conceptual
layers (MALLET 2002):

e the continuous d-dimensional manifold,

e its cellular partition which results in a fi-
nite d-dimensional cellular complex,

e the representation by a d-Generalized Map
and its realisation by a d-Cell-Tuple struc-
ture, and

e the persistent implementation by means of
tables, relationships and problem-specific
functionality in an object-relational
database.

Continuous d-manifold. A d-dimensional
manifold M in 3D, can be roughly described
as a continuous part of a space which is /o-
cally homeomorphic to a d-dimensional ball
in R*. This means that for any point pe M,
there exists a neighbourhood U(p) = M,
a point geR’, a d-dimensional ball
B(¢g) < R® and a bijection ¢,: U< B, ¢,(p)
= ¢, continuous in both directions, that
maps any point of U to a point of B. Special
conditions apply to bounded manifolds,
which are locally homeomorphic to a half-
space. By this definition, certain singular
configurations (‘‘non-manifold situations”),
e. g., “T-shaped” branchings of in 2D-mani-
folds, are excluded (LEvy 1999).

Cellular partition. Whereas the manifold is
a continuous object comprising an infinity
of points in space, for a digital representa-
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tion, a discrete structure is required. This is
achieved by the introduction of cellular par-
titions of continuous d-manifolds: the mani-
fold M is decomposed into a number of cells
c* of dimension k ranging from 0 to d, the
dimension of the manifold. Each cell ¢* is
homeomorphic to a k-dimensional ball
B* = R*. Such a d-dimensional cellular par-
tition of a d-dimensional manifold M is a
cellular complex consisting of a finite num-
ber of cells ¢* of positive dimension k < d,
and verifying the following conditions:

e For each cell ¢, its boundary dc* is com-
posed of cells ¢* of lesser dimension
k' < k.

e For each pair of different cells of dimen-
sion k, ¢*,, ¢*;, the open interiors ¢*, ¢; do
not intersect.

e For each pair ¢*, ¢; of different cells of
dimension k, the intersection of the
boundaries is either void or consists of
cells ¢’ of dimension /< k: ¢c*nev =

In a d-dimensional cellular complex,
multiply connected objects cannot be repre-
sented as single d-cells: e. g., a 2D ring, a
3D ring (a “‘doughnut™), or its surface, a
torus. This is different, e. g., from the spatial
models provided by Oracle Spatial 11G
(KAzAR et al. 2008), and 1ISO19107, which
allow, e.g., faces and solids with holes as
basic elements. By using partitions of d-di-
mensional manifolds as discrete model of
topology, we ensure that each (d-1)-cell is
either part of the common boundary cell of
a pair of d-cells, or is part of the outer
boundary of the cellular complex. We ex-

clude “‘non-manifold” configurations like,
e.g., T-shaped contacts of d-cells (LEvy
1999). MESGARTI (2000) proposes a solution
for the modelling of some of these singular-
ities.

Spatial objects in a cellular partition. As il-
lustrated by the above counter-examples,
certain spatial objects that occur in practical
applications cannot be modelled by single
d-cells, but must be represented as sets of
d-cells (cf. Fig. 1), consisting of one or more
connected components.

D-G-Maps and Cell-Tuple Structures. Cellu-
lar Complexes can be interpreted as a gen-
eralisation of simplicial complexes, but they
lack the geometric and algebraic properties
of the latter. However, the d-dimensional
Generalized Map (LIENHARDT 1994) and the
d-dimensional Cell-tuple Structure (BRISSON
1993) provide the cellular partition with the
structure of an abstract simplicial complex.
From a practical point of view, the two
models can be regarded as roughly equiva-
lent (LIENHARDT 1991). Whereas the d-G-
Map focuses on the algebraic structure de-
fined by the transitions between the abstract
darts, the Cell-Tuple Structure yields a
realisation by cell-tuples and the symmetric
“switch” relationships between them.

3 Generalized Maps and Cell-Tuple
Structures

Following LIENHARDT (1994), a d-dimen-
sional Generalized Map (d-G-Map) consists
of a finite set of objects called darts and a

a)

b)

Fig. 1: Representation of 2D spatial objects as sets of 2-cells in a 2-G-Map — Objects that are not
simply connected require more than one 2-cell for representation (left); Representation by a minimal

number of cells (right).
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set of bijections o, i = 0, ..., d linking pairs
of darts, that are involutions, 1. e., that verify
the conditions:

2 (o(x)) = x (1
and forall L0 <i<i+2<j<d, 2)

o; o; is an involution, i.e., o;(o;(e; (2,(x))))
= x, which implies o;(¢;(x)) = o,(e;(x)). (3)

The G-Maps are embedded in 2D or 3D
space by a mapping that to each dart asso-
ciates a unique combination of a node, an
edge, a face, and in 3D a solid.

In BrissoN’s (1993) terminology, Cell-
tuple Structures consist of a set of cell-tuples
(node, edge, face[, solid]) attached to the
corresponding spatial objects. The cell-
tuples are pairwise linked by “switches’ de-
fined by the exchange of exactly one com-
ponent, and corresponding to LIENHARDT’S
involutions:

%: (n,e.f.8) (' e.f.s),
“1: (Vl, ezfa S) < (l’l, e/xfa S):
o, (n,e,f,s) = (n,ef,s),
% (n,e,f,5) = (n,e.f.s) “)

A d-G-Map can be represented as a graph
with cell-tuples as nodes, and edges defined
by the involution operations (cf. Fig. 2).

Orientation. We require all d-manifolds to
be orientable, and the corresponding G-
Maps and Cell-Tuple Structures to be
oriented: the set of darts / cell-tuples can be
divided into two parts of equal size carrying
opposite sign, and each «; transition links a

pair of items of opposite sign. Whereas
LIENHARDT’s definition permits darts at the
boundary of a G-Map, that do not have a
counterpart for the o, transition, such a situ-
ation is excluded in our model (P1GoT 1992).
The G-Maps here are formally considered
as unbounded, by introducing an outside
“universe” that is not a standard cell.

Navigation on G-Maps. The use of the G-
Map structure for topological queries and
operations, is supported by methods for the
navigation on the G-Map graph, and for the
retrieval of solids, faces, edges and nodes,
represented by volume cells, surface
patches, curves and points.

a) All navigation on a G-Map relies on the
o, transitions, 1. e., the passage from one
cell-tuple to its neighbour by the ex-
change of one cell of dimension i.

b) A sequence of cell-tuples starting with
ct,, finishing with cz, and linked by o,
transitions with varying index i defines
a path on the G-Map graph, or a loop,
if it is closed.

Paths and loops are determined by the se-
quence of transitions ; . ..o, or shorter by
the indices i7,...iy, and can be noted
Path;;  (cty) and Loop;;  y(cty).

¢) The subset of all cell-tuples that can be
reached from a given cell-tuple ¢z, by any
combination of transitions o; ...o; is
called an orbit and is noted
Orbit;;  ;y(cty). To avoid ambiguities,
sometimes the dimension of the G-Map
is also noted: Orbit?, . (ct0).

A
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v
<-- (no,eq,fo,s1,-) e N
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Fig. 2: Graph representation of an oriented 3-G-Map G (D, o, . ..

o; transitions.

v

,0,) with cell-tuples as darts and
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Certain orbits describe loops of fixed or vari-
able length, certain loops are defined by or-
bits, but in some cases the cell-tuples of an
orbit may not be arranged in a continuuos
loop (LEvY 1999).

Transformations of d-G-Maps. There are
two classes of operations: the Euler oper-
ations (MANTYLA 1988) that preserve the
overall topological properties of the cellular
complex described by the Euler characteris-
tic X = no. of nodes — no. of edges + no.
of faces [— no. of solids], and the non-Euler
operations. The basic topological oper-
ations consist in the division of k-dimen-
sional cells (k > 0) by the insertion of k — 1-
dimensional boundary cells, the dual oper-
ations — duplication of k-dimensional cells
(k < d) by insertion of k + 1-dimensional
coboundary cells, and the inverse merging
(resp. collapsing) operations by the deletion
of a boundary (coboundary) cell (cf. Fig. 3)
(THOMSEN & BREUNIG 2007). Note that if the
boundary or coboundary cell to be removed
is part of the outer boundary of a cellular
complex, the deletion operation is not al-
ways admissible.

Basic non-Euler Operations like the cre-
ation or destruction of an isolated cell or of
a connected component, or the ““sewing’ of
two hitherto disconnected components into
one, and the inverse operation, affect the
overall topological properties of the model.
Both the Euler and non-Euler operations
are implemented using relational database
operations comprised in a transaction. In
some of these procedures, paths, loops or
orbits are used to identify a sequence of cell-
tuples to be updated, e. g., for the splitting
of a solid by the introduction of a new face
along a closed loop on the inside of the
boundary of the solid (cf. Fig. 3).

4 Comparison with Other
Topological Models

Ordered topological models. LIENHARDT
(1991) compares G-Maps with different “or-
dered topological models’: e. g., the winged-
edge (BAuMGArT 1975), the radial-edge
(WEILER 1988), the quad-edge (GuiBas &
StoLF1 1985) and the cell-tuple structures.
He concludes that “order models are based
on the same ideas, and ... it is possible to
show that these models are equivalent (with
respect to dimension and orientability)”.
Cell-tuple structures are equivalent to G-
Maps without boundaries. However, some
of the other models permit non-manifold
configurations, which must be explicitly ex-
cluded.

ISO 19107 and GML 3. QUAK & DE VRIES
(2005) compare the winged-edge structure
to the ISO 19107 model (OPEN GEO-
SPATIAL CONSORTIUM 2007) and con-
clude that ““it is possible to losslessly map
to the ISO19107 model and back™, but pro-
pose to extend the ISO model to reduce cost.

A detailed comparison of the proposed
approach to the modelling of topology and
the ISO 19107 and GML 3 model is beyond
the scope of this article, therefore we only
make some preliminary observations: The
ISO 19107 and GML 3 model support
oriented 2D and 3D topological models,
specifying topological complexes consisting
of nodes, edges, faces and topological solids
as primitives, and the corresponding di-
rected primitives as building elements for
1D, 2D, and 3D topological complexes, as
well as for boundaries, coboundaries, and
for “‘topological collections™, i. e., topologi-
cal curves, surfaces, volumes. In accordance
with the object-oriented approach, relation-

Fig.3: A 3D Euler operation: splitting a solid s into solids s, and s, by the insertion of a 2D face
f, and the inverse merge operation. The location of the contact between the face f and the boundary

of the solid s is defined by the loop c.



180 Photogrammetrie « Fernerkundung « Geoinformation 3/2008

ships between topological, geometrical and
other entities are encoded with the topologi-
cal objects, whereas the G-Map and the
Cell-Tuple Structure use a separate system
of entities and 1:1 relationships, namely
darts/cell-tuples and involutions/switches to
represent the topological structure. Thus the
incidence, adjacency and order relationships
in ISO 19107 have to be translated into sets
of darts/cell-tuples, involution transitions
and orbits.

The ISO 19107 model is less restrictive
than G-Maps and Cell-Tuple Structures,
and in consequence, the range of topological
configurations that can be represented is lar-
ger, admitting, e. g., dangling edges, inner
loops, curves that meet the interior of a face
etc, which are precluded in G-Maps. On the
other hand, topological operations on the
ISO 19107 model may be more complicated,
as numerous special cases have to be han-
dled or excluded. Provided that the strict re-
quirements of the G-Map are met, we expect
no fundamental problems when translating
the topological primitives from GML 3 to
the corresponding cells in the G-Map
model, and of topological complexes into
cellular complexes represented by G-Maps
and vice versa.

5 Object-relational Database
Implementation

Implementation in transient storage. The in-
memory-implementation of the graph-re-
presentation of a d-G-Map is straightfor-
ward (LEvy 1999): for each dart object, the
o; transitions are implemented by d+1 ref-
erences to other darts, additional references
to geometric objects and to thematic prop-

erties realise the geometric representation,
and a set of flags is used to mark darts that
have been traversed, the next o, transition
to take etc. The o; references may be ext-
ended into objects as well, with methods to
check the symmetry of the reference, and
for permitting/barring the use of a given
transition (FRADIN et al. 2002). In order to
support the navigation on the G-Map, for
each cell of dimension from 0 to d a reference
to a starting dart may serve as an ‘‘entry
point” into an orbit describing the topologi-
cal relationships within the cell and outside.

Object-Relational database implementation.
For a persistent implementation based on
an object- relational DBMS, the cell-tuple
structure is more appropriate (cf. Fig. 4). In-
stead of references to locations, the transi-
tions between cell-tuples are controlled by
keyed access using one of three search pat-
terns (cf. Fig.5). In a G-Map without
boundary, there is always exactly one cor-
responding cell-tuple to be retrieved.

Here the tuple (node, edge, face, cell, solid)
acts as a key, which is augmented by the
sign, if positive and negative cell-tuples are
stored in the same table. For example, the
following SQL query, for the cell-tuple
ct(c0,cl,c2,c3,0,...) retrieves the cell-
tuple c¢t'(c0,cl,¢2',¢3,—a,...) corres-
ponding to ¢t by an a,-transition, i.e., by
an exchange of faces:

SELECT * FROM celltuples WHERE node
= c0 AND edge = c1 AND solid =
AND sign != o;

Using hierarchical indexing of the cell-tuple
relation, we expect the access time for a
single transition to grow like O (log N),

Key sign Data

(n1, €o, fo., So) | - |

(no.e2.f2,50) ... |

Key  sign Data

(o, €1, fo, So) |

(n3,eo,f3,83) ... |

| (o, €q, fo, S0) | + | (n1,e1,f1,81) ...

(no, €, f1, So) |

(no, €9, fo, $1) |

|
| (ns,e4,f0,84) ... |
|

(ns.es,fs.80) ... |

Fig.4: An oriented 3-G-Map as a pair of relations (¢y,..., ¢, ...Cq, +) < (Cpy ..., €/, .. Cqy,— ).
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starting cell-tuple search pattern retrieved cell-tuple
ct, a(cty)
D) “coponn ™o 0y —sign”
(Copvvs€svesCyySign,...) — S (2) “cop vy —Cjy ey’ > (Cppenr € e,y —SIgN, ...
(3) “coporentfs.ney’

Fig. 5: Search patterns for o, transitions. The symbols “—" and “*”’ denote “not” and “any”.

where N is the total number of cell-tuples.
Using hash indexes, even better behaviour
can be achieved. This access method, at the
cost of some overhead, makes the transition
between cell-tuples independent from any
particular storage or object identifier details
and thus can be used transparently both
with persistent storage in a client-server con-
figuration, and in transient storage and eas-
ily cope with update operations.

Orbits and loops vs. ordered subsets. In a cel-
lular partition of a d-dimensional manifold,
spatial objects are represented by collections
of cells, i.e., subsets of the underlying sets
of k-cells,k = 0, ..., d. Therefore, we can al-
ways deduce corresponding queries on the
associated cell-tuples. Information on the
connectivity of the resulting subsets of cell-
tuples, however, requires methods that sys-
tematically explore the adjacency and inci-
dence relationships between cells, represent-

ed by the o -transitions, in particular orbits
and loops.

Whereas the implementation of involu-
tions and orbits in transient storage is
simple, it is more intricate in the context of
the relational model. In an RDBMS, the re-
trieval of subsets by conditions imposed on
attribute values is well supported, as are
basic sorting operations on resulting sub-
sets. Using appropriate indexing, also a
small finite number of links between rela-
tions by foreign keys or by joins poses no
particular problem, even if some overhead
is involved. Orbits, paths, and loops, how-
ever, may involve an undetermined and po-
tentially large number of links between cell-
tuples, possibly defined by a recursive for-
mula. Although recursion is supported by
ANSI SQL, it is not yet implemented in all
widespread relational DBMS (PostgreSQL
.org 2006) — or is not implemented in the
same way. Without SQL recursion, the use

Fig. 6: Controlling the navigation on a 2-G-Map using orbits, loops and switch/stop flags — a) Tra-
versing the boundary of face f by an orbit? (). b) Separate traversal of the outer boundaries of
the two parts of f, stopping at nodes n,, n,. c) (FRADIN et al. 2002) By blocking or opening u, transitions
through the edge e, the same structure is used to describe both the common boundary by a loop
Lo, 0,04 0. .. at nodes nyand n,, and the boundaries of the two parts f; and f, by two Orbit?),( )

loops.
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of a programming language is required for
coding the loop or the recursive procedure,
which in turn issues an SQL command for
each step. Even if we reduce the overhead
incurred using optimisation methods like
prepared statements, this remains a clumsy
way to solve a simple task. In order to
handle this problem, we first have to find
out which topological operations can be im-
plemented using simple (ordered) subset re-
trievals, and for which operations paths,
loops or orbits are essential.

Loops and orbits are also necessary for
the implementation of division and merge
operations (cf. Fig.6). In order to ensure
that the result f of a merging operation on
two d-cells £, and f; is a d-cell, we must en-
sure that the boundary e = f, N f] is connect-
ed — otherwise situations like (cf. Fig. 7 ¢, d)
may occur. If e is simply connected, we may
first merge it into a single edge ¢’, which then
in turn is removed. The inverse procedure,
namely the division of a d-cell, also involves
the use of an orbit. Within a transaction,
we proceed as follows:

1. Mark the two nodes n, and n, where the
dividing edge joins the boundary of c.

2. Insert the dividing edge e into the table
of edges.

3. Insert two new faces f, and f, into the face
table.

4. Insert four cell-tuples (n,,e,fy, —s),
(ny, e,f, +5), (n,e,f,—s), (n,e,fo,+s).
The sign s being chosen to match the
signs of the existing cell-tuples.

5. Update the existing cell-tuples (n, ¢, £, 5),
(”0» eirf; _S)a (l’l1,€2,f; S), (7[1,6‘3,](; _S)

using two new face identifiers, resulting

in (n09 e()xﬁ)a S): (n()a ehfi’ - S), (nia erfb s)a

(711, 63,f0, - S).

Note that from step 4 onward until step 7
below, the model is temporarily inconsis-
tent!

6. Update all remaining cell-tuples on the
boundary of f; such that fis replaced by f;.
7. Update all remaining cell-tuples on the
boundary of f; such that fis replaced by f;.

Steps 6. and 7. require that we determine
the two sides of the former boundary of face
fbefore they are explicitly marked by f, and
f1- This is not possible by a subset query,
but it can be done using two orbits starting,
e.g., at cell-tuples cty(ny,e,fy, —s) and
ct(ny, e, f, +5), if the alpha-transitions are
stored explicitly, or by using two paths start-
ing at ct, and ct,, and stopping, as soon as
ct,(ny, e, fo, +5) and cty(n, e, f;, —s) are en-
countered.

Considering the division of a solid s by a
newly introduced face f in a 3-GMap (cf.
Fig. 3), we note that a closed loop is required
to define the seam ¢ where the dividing face
fmeets the boundary of 5. For the merging
of two neighbouring solids s, and s,, we re-
quire their common boundary b to be 2-di-
mensional and simply connected.

The given examples show that some que-
ries and operations require loops or orbits.
Therefore we propose the following 2-step
approach to the implementation of topolo-
gical queries on a RDBMS-based d-GMap:
first, retrieve an appropriate subset of the
cell-tuples by standard RDBMS methods,
and second, generate orbits, loops or paths
in transient memory whenever necessary.

Fig.7: Problems encountered during aggregation. (a) A face b of class B is completely surrounded
by faces a; of a different class A. (b) Stepwise merging all cells of class A results in a bridge

configuration (c) and finally in a ring (d).
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6 Aggregation Methods for G-Maps
and Cell-Tuple Structures

Hierarchical G-Maps. LEvy (1999) proposes
to use hierarchical structures for the con-
struction of complex geological subsurface
models, both in volume and in boundary re-
presentation. These hierarchical G-Maps are
obtained in the following way: We start with
a coarse 3D G-Map. By subdividing its 3D
cells (solids), a structure is obtained that
consists of frames — the coarse cells, and finer
G-Maps that fit into the frames. Whereas
the darts of the subdivisions possess a geo-
metrical representation in 3D space, the
darts of the coarse frame G-Map have no
separate embedding. Instead, embedding by
delegation is used: its darts are associated
with a subset of the darts of the fine G-
Maps, and use the geometric representation
of the subdivision as embedding. Applying
a similar approach to the 2D faces of the
coarse model, a boundary representation of
the coarse model is obtained. Whereas the
construction of the topological hierarchy by
subdivision proceeds top-down, the del-
egated geometrical representation is
propagated bottom up.

Multiple grouping. For the topological
modelling of buildings, FRADIN et al. (2002)
use multiple groupings: for each grouping of
cells, d+ 1 flags are associated with the re-
ferences representing o,-transitions, that in-
dicate whether the given cell boundary may
be ignored during navigation on the G-Map
(cf. Fig. 6¢c). This approach is economic in
memory space, as the same fine G-Map,
augmented by the space required for the ad-
ditional flags, is used for several groupings

at the same time, and higher-level G-Maps
do not require a separate representation. On
the other hand, the possibility of reducing
processing time for coarser and hence small-
er representations is lost. Note that both
methods support lower resolution models
obtained by aggregation of cells, but not by
simplification of boundaries or by displace-
ment.

Classification tables. It is possible to trans-
late hierarchical G-Maps into Cell-Tuple
Structures by representing references using
foreign keys. Multiple grouping however, is
tightly associated with the in-memory im-
plementation of «; -transitions, orbits and
loops using references. The explicit repre-
sentation of the cells within the cell-tuples
leads to a different approach: starting from
a high resolution model, successive lower
levels of detail are obtained by aggregation
as follows. A classification of the d-dimen-
sional cells at high resolution is represented
by a N:1-relation that to each cell a associ-
ates its class 4. In a copy of the original
cell-tuples, the d-cells are replaced by their
class identifiers. Then all pairs of cell-tuples
(cpCpp-o s A, +), (cpocpy...,A,—) — the
fixed points of the o,-transitions — are re-
moved, while all pairs (¢j¢p...,4,+),
(¢ppCpp--.» B,—) with B # A are kept.

Separate embeddings at different levels of de-
tail. If generalisation is restricted to aggre-
gation, we can apply embedding by delega-
tion, representing each aggregated cell by a
collection of finer cells. As the new Cell-
Tuple structure comprises a copy of the old
one, however, it is also possible to create a
different geometrical embedding, and apply

| Topological Model < » Geometrical representation

\

| Topology at scale s |

v

N

| Geometry at scale s |

v

Topology at scale s ¢ > Geometry at scale s' ‘

Fig. 8: Topological and geometrical changes must stay consistent during generalisation.
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Fig.9: Application example: a section of ca. 2% of a digital map on land-use at three different
scales (by courtesy of J. HAUNERT, IKG Hannover University).

simplification and displacement to it. While
this approach is more expensive in storage
space, it is more flexible than the previous
ones, and navigation on the smaller ag-
gregated representations may be consider-
ably faster. Here, however, a consistency
problem arises: if we apply generalisation
methods separately to the topological model
and its geometrical embedding, then we
must take care, that the resulting generalised
models are consistent with each other (cf.
Fig.8). This can of course be achieved by
having either geometrical operations con-
trol the changes in topology or vice versa.
However, this depends on the particular ap-
plication.

7 Applications of the Approach

Topology of a multi-resolution map of land-
use. In an ongoing study, the methods pres-
ented here are applied to model the topology
of a land-use map at three different scales,
namely 1:50.000, 1:250.000, and
1:1.000.000. The land use maps were pro-
vided by JAN HAUNERT and MONIKA SESTER,
IKG, Leibniz University Hannover as Arc
GIS shape files. The smaller scale maps were
produced by aggregation starting from scale
1:50.000, according to tables defining
classes of similar land use. We first construct
the topology for the largest scale map and
then use the class tables to control the pro-
cess of aggregation of cells for the 1:250.000
and 1:1.000.000 maps. During this process,
the construction of inconsistent cells with
holes, or of disconnected entities has to be
avoided. Because no displacements occur-
red during the geometrical generalisation,

we can apply the classification table method
outlined above, to generate a distinct 2-G-
Map at each Level of Detail, and provide
links between corresponding cells and cell-
tuples using the classification table and the
vertex locations.

In another ongoing study, we use the Cell-
Tuple structure to study the integration of
a 3D city model and building plans with a
digital 2D cadastral map (THOMSEN et al.
2008).

8 Conclusions and Outlook

The oriented d-G-Map and the d-Cell-Tuple
structure can be employed with an
ORDBMS to yield a simple, flexible, and
scalable representation of the topology of
spatial models based on cellular partitions.
After analysis of the topological operations
to be used, it can be used for the manage-
ment of topology in a multi-representation
database, in particular for the integration
of the topology of models of different di-
mension and scale. We are currently extend-
ing our d-G-Map implementation into a
topological access tool for the ORDBMS-
based GIS PostGis (POSTGIS.ORG 2006),
and for our OODBMS-based spatio-tem-
poral database db3d, and plan to extend the
approach to a time-dependent topology
model.
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