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Summary: This paper addresses the automatic 3D
interpretation of facades from terrestrial image
sequences making three novel contributions:
First, we employ Implicit Shape Models (LEIBE
& ScHIELE 2004) coherently for the detection as
well as for the delineation of windows, learning
the appearance of windows and their outline from
training data. Second, window hypotheses are
validated by means of self-diagnosis based on the
assumption of a possibly strong similarity of in-
dividual windows. Third, we use model selection
to choose the most appropriate model for the con-
figuration of windows in terms of rows or col-
umns. These contributions are complemented by
plane sweeping for the 3D determination of the
windows or the rows / columns made up from
them. Results show the potential of the approach.

Zusammenfassung: Implicit Shape Models, Selbst-
diagnose und Modellauswahl fiir die 3D Interpre-
tation von Fassaden. Dieser Artikel zielt mit drei
neuen Beitrdgen auf die automatische Interpreta-
tion von Fassaden aus terrestrischen Bildsequen-
zen: Erstens werden Implicit Shape Models (LEIBE
& ScHIELE 2004) kohdrent sowohl fiir die Detek-
tion als auch fiir die Bestimmung der Umrisse von
Fenstern verwendet. Das Aussehen der Fenster
und ihre Umrisse werden aus Trainingsdaten ge-
lernt. Zweitens werden Fensterhypothesen mittels
Selbst-Diagnose auf Grundlage der Annahme
einer z.T. starken Ahnlichkeit individueller Fens-
ter validiert. Drittens wird Modellauswahl ge-
nutzt, um das am besten geeignete Modell fiir die
Konfiguration der Fenster in Form von Zeilen
oder Spalten auszuwihlen. Diese Beitrage werden
durch Plane Sweeping flir die 3D Bestimmung der
Fenster oder der aus ihnen gebildeten Zeilen oder
Spalten erginzt. Die Ergebnisse zeigen das Poten-
tial des Ansatzes.

1 Introduction

The inclusion of structured facades extends
the modelling of buildings towards highly
detailed visualizations suitable for applica-
tions ranging from architectural planning to
the production of movies. By interpreting
the parts constituting facades in terms of
their semantics it becomes possible to inter-
act with them, e.g., making it feasible to
open windows or doors.

The interpretation of facades from terres-
trial images and wide-baseline image se-
quences has been a focus of research since
the seminal work of Dick et al. (2004). They

interpret buildings in line with the trend in
computer vision towards statistical genera-
tive models. Particularly, they employ Re-
versible Jump Markov Chain Monte Carlo
— RIMCMC (GREEN 1995) allowing for the
addition and deletion of new parameters
and therefore also objects. The results are
convincing though restricted to a limited
number of objects as the models are complex
and generated manually. A more geometric
approach is taken by WERNER & ZISSERMAN
(2002). They make use of the regular struc-
ture of buildings, especially the existence of
orthogonal vanishing points. Geometric
regularities such as symmetries of dormer
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windows are used to obtain a high-quality
textured model. BECKER & HaALA (2007)
show that by combining laser and image
data with rectangular cell decomposition,
realistic 3D interpretations of facades can
be generated. MULLER et al. (2007) and VAN
GooL et al. (2007) present impressive results
for facade interpretation from single images
exploiting common repetitions of windows
and balconies by means of architectural
shape grammars. They particularly show
how depth layering can be performed auto-
matically if substantial perspective effects
exist in an image.

Our first contribution of this paper lies
in employing Implicit Shape Models — ISM
(LEIBE & ScHIELE 2004) coherently for the
appearance based detection as well as for
the delineation of windows. While we used
information of corners to delineate windows
only on dark facades and employed black
rectangles for bright facades in (MAYER &
REzNIK 2006), we now delineate the outline
of whole windows on any kind of facade via
ISM.

Our second contribution has been in-
spired by (Hinz & WIEDEMANN 2004). The
basic idea is to validate weak hypotheses
based on self-diagnosis of the generated hy-
potheses making use of the fact that win-
dows on a facade look often very similar.

The third contribution can be seen as an
inversion and at the same time extension of
(ALEGRE & DALLAERT 2004, BRENNER &
RipPERDA 2006, and RIPPERDA & BRENNER
2007). We invert, as we do not split the fa-
cade, but rather detect and delineate objects
and group the constituents into rows and
columns. We extend the above work as we
employ model selection based on Akaike’s
Information Criterion (AIC) to compare
different groupings. Basically, individual
windows always lead to the best likelihood
as they can adapt to the individual shapes
of windows. Only by taking into account the
lower number of parameters for rows, col-
umns, etc., they will prevail. A particular
contribution is to show how the likelihood
term has to be interpreted in terms of the
(minimum) size to be sampled to obtain
meaningful results. (Dick et al. 2004) have

also used model selection, but to switch be-
tween different interpretations for windows,
namely with and without arc, etc. In this
paper also first results for facades with dif-
ferent distances between windows for differ-
ent parts of the facade are presented.

We assume, that a wide-baseline image se-
quence is given, and employ given (approxi-
mate) calibration information via the five-
point algorithm (NISTER 2004), which makes
the reconstruction much more stable. 3D
Reconstruction leads to camera parameters
and 3D points. From the latter we compute
the facade planes via Random Sample Con-
sensus — RANSAC (FiscHLER & BOLLES
1981). We orient the planes using the vertical
vanishing points in the images, again em-
ploying RANSAC. All images looking at a
particular facade are projected on its plane
and combined using a consensus-based ap-
proach (MAYER 2007) getting rid of partial
occlusions. We use a manually defined
sampling distance of 1 cm to normalize the
further processing. Thus, for the remainder
of the article all facade plane images are as-
sumed to be vertically oriented and nor-
malized to a resolution of 1cm.

We first describe the appearance based de-
tection and delineation of windows on the
facade plane images based on ISM in Sec-
tion 2. Section 3 is devoted to self-diagnosis
for the validation of window hypotheses,
while Section 4 deals with model selection
for the decision between representations
based on individual or rows or columns of
windows. Plane sweeping leading to the de-
termination of the depth, i.e., the 3D shape
of windows, is described in Section 5. The
paper ends with conclusions.

2 Detection and Delineation of
Windows Based on Implicit Shape
Models

We employ Implicit Shape Models — ISM
(LEeIBE & ScHIELE 2004) for the detection of
windows and for the delineation of their
outline. For training we cut out image
patches containing windows, in our case 120
windows of modern type. We note that none
of the windows shown in our results is part
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a

Fig.1: Training —a —

i

Image patch with manually given outline of window (red rectangle), Férstner

[~

points at corners of window outline (red crosses) as well as their vectors to the center of the

window (yellow lines) and to their corresponding corner of the outline (blue short lines); b —

Image

patches around Foérstner points; ¢ — Detail of a) focusing on the relation of Férstner points to the
corner of the window; d — Elliptical areas around window corners (white) where Forstner points

are extracted.

of the training set and that we use the
patches as well as their horizontally mir-
rored versions, making the algorithm more
invariant to the viewing direction. The rec-
tangular outlines of the windows are man-
ually delineated (cf. red rectangle in Fig. 1a).
Only in elliptical areas around the corners
of the outline with radii 20 and 10 pixels /
cm for the major and the minor axis (cf.
Fig.1d) Forstner points (FORSTNER &
GULCcH 1987) are extracted. The image
patches around the Forstner points shown

ii

.

in Fig. 1b are the basis for the appearance
based detection of windows together with
their arrangement relative to the center of
the window computed from the manually
delineated outline marked as yellow lines in
Fig. 1a.

For the retrieval, i.e., for window detec-
tion, Forstner points are extracted with the
same parameters as for training, but in the
whole image (cf. Fig.2a). Patches around
the points with a size of 35 pixels are match-
ed via cross correlation of the images trans-

Fig. 2: Retrieval — a — Forstner points; b — Training patches with the patch just left above the “‘b”
being matched to the red cross at the upper left corner of the window pane in a; ¢ — Relation of
the center of the patch (red cross) to the window outline in the training data (left cross for position
— lengths of sides from training data); d — Hypothesis for parts of the window outline.
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Fig. 3: Distribution for window outline — after ac-
cumulation (left) and after smoothing (right).

formed to grayscale to all patches in the trai-
ning data. If the cross correlation coefficient
is above an empirically found threshold of
0.75, the match is accepted and the vector
relating the training patch to its center is
used to generate a hypothesis for the center
of the window in an initially empty accumu-
lation image. The hypotheses are integrated
via a Gaussian of the average size of the win-
dows used for training and local maxima of
the resulting function are hypotheses for
windows. The patches which led to the maxi-
ma are employed to delineate the corners of
the window outlines.

To precisely delineate the windows, we
employ the relation between the centers of
the training patches and the given outline
of the windows marked as blue lines in
Fig. 1a and c. E.g., the point marked in red
in the upper left corner of the dark window
pane in Fig.2a has been matched by cross
correlation to the training patch marked in
red just left above the ““b” of Fig. 2b. Fig. 2¢
shows how the center of the patch marked
by a thick red cross is related to the corner
of the outline of the window marked by a
small yellow cross. From the corner of the
outline the two neighboring sides of the rec-

0 U

0O

tangle from the training data are drawn (cf.
Fig. 2c and d). The result is a hypothesis for
parts of the window outline.

The hypotheses for window outlines, as,
e. g., Fig. 2d, are accumulated over all points
and all training patches that led to the maxi-
mum for the window. The result is a dis-
tribution for the window outline as in Fig. 3
left which is finally smoothed (cf. Fig.3
right) and normalized by setting the largest
value in the window to 1.

The parameters of the rectangles repre-
senting the windows are estimated from the
distributions for the window outlines inter-
preted as likelihood and priors for the win-
dow shapes by Markov Chain Monte Carlo
— MCMC (Neal 1993) Maximum A Post-
eriori (MAP) estimation. The employed
priors punish too small and too wide or too
high windows. The likelihood is the sum
over the distribution along the window out-
line (cf. red lines in Fig. 4b).

3 Self-Diagnosis for the Validation
of Window Hypotheses

The proposed algorithm works only well for
high quality images and simple facades. If
this is not the case, it might detect and de-
lineate false hypotheses, e. g., doors or other
rectangular objects. The algorithm also does
not deal well with partially occluded win-
dows.

The solution we have devised to cope with
the above shortcomings is to use good hy-
potheses in order to validate weaker hy-
potheses. The basic assumption is that at
least some windows on a facade are of the

ooano
ooao
Cc

Fig.4: a — Facade; b — Determination of the likelihood in the distribution for the window outlines
(red); ¢ — Minimal size for model selection according to sampling theorem (cf. Section 4).
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same type. The validation of hypotheses
works as follows: Image patches containing
good hypotheses for windows are cross-cor-
related with the image function around
weak hypotheses, determining the optimal
location as the maximum. For describing
the quality of the hypotheses we use a grade

1 corner: 1

—— s ——

2 corners: 2 1 1
R B T i S
3 corners: 3 2 1

— — g

—_—
4 corners: 5 4 4 B B
—od Losd 2

Fig.5: The grade system for hypotheses — high-
er grade means better evaluation. Please note
that for symmetric configurations only one in-
stance is given.

system empirically evaluating all cases with
1, 2, 3, and 4 recognized corners (cf. Fig. 5)
based on the number of corners as well as
their relation to the outline. The higher the
grade of a hypothesis, the better it is evalu-
ated. Based on the grade system we analyze
and validate all hypotheses. Results are
given in Figs. 6 and 7.

4 Model Selection: Individual
Windows, Rows, and Columns

In the preceding sections we have described
how to detect, delineate, and validate indi-
vidual windows such as in Fig. 8a. Yet, win-
dows are usually not arranged randomly,
but in rows, columns, or grids. Rows and
columns, in this paper defined to have the
same horizontal or vertical distance between
windows of the same size, can be built by
analyzing the horizontal or vertical arrange-
ment. Yet, it is often not clear if one should

Fig. 6: Validation of hypotheses — left: Before verification. Hypotheses with grade 5 as green, with
grade 4 as yellow, with grade 3 as cyan, and with grade 2 as blue rectangles; right: After verification:

green — accepted, red — rejected hypotheses.

Fig. 7: Validation of hypotheses —left: Before verification; right: After verification (for colors cf. Fig. 6).
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represent a facade by means of individual
windows or by rows or columns of windows.
E. g., Fig. 8 shows a configuration which can
be represented adequately by means of col-
umns, but not rows. Basically, in terms of
an optimum fit described in the form of the
likelihood always individual windows will
be preferred as they can optimally adapt to
the data. Thus, one needs a way to reward
regular arrangements of objects and one
way to do this is to take into account that
they can be described by smaller numbers
of parameters.

The above problem is thus regarded as a
problem of model selection. Numerous
means have been devised to balance the
complexity of a model, e.g., described by
the number of parameters or their accuracy,
on one hand and the fit to the data, i.e.,
the likelihood, on the other hand. Two well
known are Minimum Description Length —
MDL (RissaNeN 1978) and AIC — Akaike’s
information criterion (AKAIKE 1973). A very
good analysis of the relations of these two
means as well as their characteristics, their
strengths, and weaknesses can be found in
(SCHINDLER & SUTER 2006). For its simplic-
ity and as we found it to work well for our
application, we employ AIC, though recent
work on composition such as (GEMAN et al.
2002) prefers MDL. Particularly, we use

AIC = k—2nIn(L) 1)

with k the number of the parameters of the
model, n the number of observations, and
L the likelihood of the outline. The number

of parameters is four (width, height and cen-
ter coordinates) for every individual window
and six for a row or column (four par-
ameters for window shape plus — horizontal
or vertical — spacing and number of el-
ements). The basic idea is to determine the
posterior based on the normalized distribu-
tion image by means of MCMC as described
in Section 2 above. Fig.4b shows how the
distribution is sampled at one position with
the outline given in red. Every boundary
point gives one observation of the likelihood
which is multiplied leading to the multipli-
cation factor for the log-likelihood.

Yet, a couple of experiments made clear
that one cannot just sample the given dis-
tribution for windows. We found that one
has to reduce the determination of the like-
lihood to a minimal setup. From the samp-
ling theorem we derived that for a window
consisting of parallel lines the minimum size
is a length of just above three pixels. We ac-
cordingly resample the distribution image to
this minimum size (cf. Fig. 4c) for the com-
putation of the likelihood for AIC. (Note:
For the delineation the original resolution
is used to obtain a higher accuracy.)

Results for this procedure are given in
Fig.9. For all three facades consisting of
windows with the same size and a constant
horizontal or vertical spacing as well as
many other facades we tested our procedure
on we selected the correct model. If there is
an obvious structure on the facade, it is re-
flected in significantly different AIC values
as shown in Fig. 9.

C

Fig. 8: Model Selection — Representation of facade by a — individual windows; b — rows; ¢ — columns
of windows, the latter two consisting of windows with the same size and a constant horizontal or

vertical spacing.
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a—C: 265, R: 404, W: 359

b-C: 115, R: 65, W: 94

c—-C:76,R: 83, W: 87

Fig. 9: Results for model selection using AIC values — C: Columns, R: Rows, W: Individual Windows.

Selected model in bold.

Fig. 10: Results for model selection extending randomly chosen neighbored pairs of windows.

Up to this point we have restricted our-
selves to completely evenly spaced rows or
columns of windows. To deal with configur-
ations such as in Fig. 10, where the horizon-
tal distances between the windows partly
vary, we sample the rows or columns by ex-
tending randomly chosen neighbored pairs
by other neighboring windows via MCMC
until no further window is found anymore
which can be linked. Then the next pair is
selected, etc. Several start configurations are
chosen again randomly and finally the con-
figuration yielding the smallest AIC value
is selected. For Fig. 10 it consists of 54 in-
stead of 108 parameters.

5 3D Reconstruction via Plane
Sweeping and Results

The results from the above procedure are
the outlines of windows on the facade im-
ages possibly restricted to form horizontal
rows or vertical columns. As we use image
sequences as basis, we can determine the 3D
extent of the windows. To do so, we follow
(BAILLARD & ZISSERMAN 1999 and WERNER
& ZISSERMAN 2002) and employ plane
sweeping, in this case for planes parallel to
their facade plane in the direction of the lat-
ter’snormal. The determination of the depth
for individual windows is based on the sum
of the least-squares differences between the
projections of the individual images onto the
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Fig.11: Images one, three, five, and seven of sequence Ostbahnhof-1.

Fig.12: left: Result for sequence Ostbahnhof-1 (images cf. Fig.11) — Window outlines for three
facades with rows of windows as red rectangles, 3D window positions as green rectangles, and
camera positions as green pyramids; right: Detail: part of two walls.

Fig. 13: Result for sequence Bordeaux Square
with individual windows constructed from ele-
ven images — explanation cf. Fig. 12.

plane to their average image. This is com-
puted for a meaningful range of depth
values for windows and the result is the
depth value for the minimum of the sum.
For rows or columns we sum up the con-
tributions of all images of a row or column
at a particular depth.

Fig 14: Result for sequence Ostbahnhof-2 with
columns of windows constructed from ten ima-
ges — explanation cf. Figure 12.

Fig. 11 shows four images of a sequence
with seven images and Fig. 12 the result for
three manually coarsely marked facades.
Please note that the rows and columns pres-
ented in this section consist of windows with
the same shape and a constant distance in
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either horizontal or vertical direction and
we do the selection for the whole facade.
The 3D reconstruction was done mostly re-
liably and accurately and led to the windows
behind the facade marked by green rec-
tangles which can be seen in Fig. 12, right.
Further results are given in Fig. 13 and 14.

6 Conclusions

‘We have presented three novel contributions
for the interpretation of facades consisting
of individual windows, i. €., no glass facades,
from terrestrial image sequences, namely the
coherent use of Implicit Shape Models for
the delineation of windows, self-diagnosis to
validate hypotheses for windows, and model
selection based on Akaike’s information cri-
terion (AIC) for selecting between individ-
ual windows and rows and columns con-
structed from them. Combined with plane
sweeping we obtain 3D interpretations of fa-
cade planes including the windows.

Concerning future work we think into dif-
ferent directions. First, we need to do model
selection for individual rows and columns
in a more flexible way by using RIMCMC
and use a hierarchical model such as the
architectural shape grammars of MULLER et
al. (2007). Then, we want to create more de-
tailed models of the windows including mul-
lions and transoms, the appearance of both
possibly learned in an appearance based
hierarchy.

On a more global level we want to inte-
grate other objects such as doors on the
ground level but also architectural details
around windows possibly including their 3D
structure as well as balconies. For the latter
plane sweeping might be a solution for some
shapes of balconies. We consider Composi-
tion Systems (GEMAN et al. 2002) as an im-
portant theoretically sound basis for our
hierarchical modeling ranging from the win-
dow details to grids made up of windows
and other architectural objects. Finally, a
statistically sound link between dis-
criminative and generative modeling such as
in (Tu et al. 2005) could be advantageous.
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