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Summary: The ICM (iterated conditional modes)
algorithm of BESAG (1986) is derived for the Baye-
sian reconstruction of three-dimensional images
of the positron emission tomography. As prior
distribution a modified density function of HUBER
(1964) for a robust parameter estimation is used.
This gives a fast algorithm for the reconstruction
which smoothes the image while preserving the
edges. The results of the ICM algorithm are com-
pared with the ones of the Gibbs sampler, a fre-
quently applied Markov Chain Monte Carlo me-
thod. For an example with simulated data it turns
out that the ICM algorithm gives a MAP (ma-
ximum a posteriori) estimate.

Zusammenfassung: ICM Algorithmus fiir die Re-
konstruktion tomographischer Bilder mit dem
Bayes Verfahren. Der ICM (iterated conditional
modes) Algorithmus von BESAG (1986) wird fiir
die Rekonstruktion dreidimensionaler Bilder der
Positronen-Emissions-Tomographie nach dem
Bayes-Verfahren abgeleitet. Als Priori-Verteilung
wird eine modifizierte Dichte von HUBER (1964)
fiir die robuste Parameterschiitzung eingefiihrt.
Man erhélt fiir die Rekonstruktion einen schnel-
len Algorithmus, der das Bild gléttet und die Kan-
ten im Bild erhélt. Die Ergebnisse des ICM Al-
gorithmus werden mit denen des Gibbs-Verfah-
rens verglichen, einer hdufig angewandten Metho-
de der Monte-Carlo-Verfahren mit Markoff-Ket-
ten. Fiir ein Beispiel mit simulierten Daten wird
festgestellt, dass der ICM Algorithmus auf eine
MAP (maximum a posteriori) Schatzung fihrt.

1 Introduction

Positron emission tomography is applied to
study metabolic activities, like the distribu-
tion of a pharmaceutical in a part of a body.
The pharmaceutical is combined with a
radioactive isotope which produces a posit-
ron. The positron finds a nearby electron
and annihilates with it to form a pair of
photons. The two photons move in opposite
directions along a straight line. They collide
with a pair of detectors which are placed
around the body on several rings forming
a tube so that a coincidence line between
the two detectors is determined. From the
photon counts of pairs of detectors the
three-dimensional image of the positions of
the photon emitters is reconstructed, cf.

LeaHY & Q1(2000). The image is represented
by a three-dimensional array of voxels with
varying intensities proportional to the
number of photon emissions.

For a statistical analysis of the photon
counts it is generally assumed that the
photons are generated by a Poisson process.
The maximum likelihood estimation is then
solved by the EM (expectation maximation)
algorithm independently proposed by SHEPP
& VARDI (1982) AND LANGE & CARSON
(1984). This algorithm has two disadvan-
tages, it is slow to converge and the recon-
struction has high variance so that it needs
smoothing to eliminate the noise. The de-
fects can be overcome by a Bayesian recon-
struction. For a faster convergence a gamma
distributed prior may be introduced, cf.
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LANGE et al. (1987), WANG & GINDI (1997).
For the smoothing one should keep in mind
that the intensities of the voxels of the image
represent a random field for which the Mar-
kov property can be assumed because the
intensity of a voxel is mainly influenced by
the ones of the voxels of the neighbourhood,
cf. KocH & ScHMIDT (1994, p.299). The
prior information can then be expressed by
the Gibbs distribution which is defined such
that large density values of the posterior dis-
tribution follow for smooth images and
small ones for rough images so that a
smooth image is obtained from the prior in-
formation, see GEMAN & MCCLURE (1987).
However, the smoothing has to stop at the
edges, where sudden changes of the inten-
sities of the voxels occur.

Random fields of line elements have the-
refore been introduced to represent the
edges in two-dimensional applications, cf.
BuscH & KocH (1990), but it is difficult to
define priors for line elements. A promising
way of handling the edges has been obtained
by modeling the Gibbs distribution by the
density function of HUBER (1964) for the ro-
bust parameter estimation, cf. FESSLER et al.
(2000), Q1 et al. (1998). Voxels beyond edges
are considered outliers and are accordingly
downweighted. A similar effect results from
the use of the median root prior (ALENIUS
& RUOTSALAINEN (1997)) which gives good
spatial details as shown by BETTINARDI et
al. (2002). For a better edge preserving prop-
erty KocH (2005) modified Huber’s density
function such that pixels beyond edges of
two-dimensional images do not contribute
to the smoothing. The method was tested
for photographic images and showed an ex-
cellent edge preserving quality.

The same modification of the density
function of HUBER (1964) for a robust pa-
rameter estimation is used here for the re-
construction of three-dimensional images of
the positron emission tomography by deriv-
ing the ICM (iterated conditional modes) al-
gorithm, first sugggested for digital image
analysis by BEsaG (1986). The prior infor-
mation of this algorithmis controlled by two
parameters, a weight and a parameter for
intensity differences. Depending on the

weight the algorithm converges faster or
slower than the EM algorithm. It reduces
the noise of the imge by smoothing it while
preserving the edges. The technique is ap-
plied for a numerical example from data of
the small animal PET scanner ClearPET™
Neuro of the Forschungszentrum Jiilich
(Z1EMoONS et al. 2005). The results are com-
pared with the ones of the Gibbs sampler
which is a special Markov Chain Monte
Carlo method first suggesed by GEMAN &
GEMAN (1984) for the Bayesian restoration
of digital images. It turns out that the ICM
algorithm gives a MAP (maximum a pos-
teriori) estimate, therefore not an approxi-
mate but an optimal solution.

In the following section the ICM algo-
rithm is derived for the image reconstruction
of emission tomography. Section 3 deals
with the Gibbs sampler while Section 4 pres-
ents numerical examples. The paper finishes
with conclusions.

2 Image Reconstruction

Let Q be the set of voxels forming a three-
dimensional array with

Q={j=(mo),0<I<L, 0<m<M,
0<o0<O},u=(L+1D)M+1)(O0+1)(2.1)

and let f5;, with je {1,...,u} be the unknown
intensity of voxel j which is proportional to
the number of photon emissions of voxel ;.
The vector B with B = (f) is therefore the
vector of unknown parameters of the recon-
struction. Let y;, with ie{1,...,n} be the
number of photon emissions or the number
of coincidence lines measured by the pair i
of detectors so that y = (y,) gives the vector
of observations.

Let y; be the number of photons emitted
by voxel j and counted at detector pair i.
This number is nonobservable because of
the superposition of the photon streams.
The expected value y; of y; is connected to
the unknown intensity f; of voxel j by

V= E(yij) = pijﬁj

where p; gives the probability of detecting
an emission from voxel j at detector pair i.

(2.2)
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Itis determined by the geometry of the scan-
ner and is therefore known. By summing
over the voxels j which are cut by the co-
incidence line i the observation y, and its ex-
pectation y, follow from

yi:Zij and yi:E(yf):Zpijﬂj (2.3)

and the expectation y of the vector y of ob-
servations from

y=EQy =Pp

where P = (p;) denotes the so-called system
matrix with elements p;. The system matrix
P does not only contain the probabilities p;
but also a number of corrections, cf. LEAHY
& Q1 (2000), which need not be considered
here, since in the application we will use
simulated data.

The random number y; results from
counting photons so that it is assumed as
Poisson distributed, cf. KocH (1999, p. 87).
Since the y; are independent, the measure-
ment y; with expectation y, is also Poisson
distributed with density function

(2.4)

pripy =TT
Vi
_ ) SP;F; CZpb) o5

The measurements y, are independent, too,
the joint density function for y therefore fol-
lows from

>p.h) — 2.0
p(y|ﬁ) — 1_[ ( ./pllﬁj) exp( ]pllﬂ]) .

. ! (2.6)

This is the likelihood function for the
Bayesian reconstruction.

The intensity f8; of voxel j with je Q rep-
resents a Markoff random field as already
mentioned in the introduction. A special
Gibbs distribution defined for cliques with
two sites of the three-dimensional neigh-
bourhood N, of order p is therefore chosen
as prior distribution (Kocn 2005)

p(B) o exp{—ﬁ Yy wj—mz}. )

2 reQseN,

This is a normal distribution where oc
means proportionality. The constant ¢, acts
as a weight and determines the contribution
of the prior information. The index s defines
the indix of a voxel in half of the neighbour-
hood of voxel j, because one has to sum in
(2.7) over all cliques with two sites in the
set Q. This is accomplished by summing
over the cliques of half the neighbourhood
N, cf. KocH & ScuMIDT (1994, p. 277). For
the application in Section 4 a three-dimen-
sional neighbourhood of 32 voxels sur-
rounding voxel j has been chosen. The larger
the intensity difference in (2.7) between
voxel j and voxel j + s the smaller is the den-
sity value. The reconstruction of a rough im-
age is therefore less likely than the reconst-
ruction of a smooth one.

If voxel j and voxel j + s are seperated by
an edge, a sudden change in the intensity,
the voxel j + s should not contribute to the
smoothing of voxel j. The density function
of HUBER (1964) for a robust parameter es-
timation is therefore modified such that we
use in (2.7) for a given index s

p(B) ocexp (B, — B, )2 for |f,—p,, |<c
P(B)=0 for [B—pf ., |>c
(2.8)

where the constant c is set according to the
jumps in the intensities of the edges which
one wants to preserve. Substituting (2.8) in
(2.7) means that we set in (2.7) (Kocn 2005)

18— Bl <c
|ﬁj_ﬁj+x| >c.

Since the number of voxels j+ s changes
which contribute to the smoothing, we form
the mean of their contributions and obtain
with ¢ being the number of voxels j + s, for
which ¢ # 0 holds, instead of (2.7) together
with (2.9)

g #0 for

2.9
¢g=0 for 9

P(B) o« exp{— EDIDNC —ﬁ,-ﬂ)zq}.
refesen, (210)

The prior (2.10) together with the likeli-
hood function (2.6) gives with Bayes’ the-
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orem, cf. KocH (2020, p. 32), the posterior
density function for

P(Bly) exp{ Yy y (/f,./f,ﬂ)z/q}

2 reQseN,

H (Zpijﬁj)yi exp (— Zp(/ﬁj) . (2.11)

The conditional density function for 8 given
the unknown intensities df5; in the neigh-
bourhood N, of voxel j follows from (2.11)
with 7 being now the summation index, cf.
KocH & ScaHMIDT (1994, p.262),

1
p(Blop,y) = CeXp{—cﬂ Y (ﬂ;—ﬁfﬂ)z/q}

2 iseN,,

H(pr/ﬁ/)“ CXp(— anﬁl)' (212)

where C denotes the normalization constant
and where the sum has to be extended over
the whole neighbourhood N, of voxel j so
that the index s becomes positive and nega-
tive.

If we derive the MAP estimate for f; and
apply it iteratively for je 2, the ICM algo-
rithm of BEsaG (1986) results. Taking the
logarithm of (2.12)

np(B1og.3) ==L % B=.N

+seN,

g+ Y0 Ypp—Ypp)—InC (@213)

and the derivative with respect to f3,

dlnp(ﬁﬂaﬁ,a.V) _ —
T =—Cp iéNn Bi=Bi)l

DiiVi
q+ ( _Pi‘>
Zi: thitﬁt '

and setting the result equal to zero gives the
condition the MAP estimate for f; has to
fulfill given in a form explained below

(2.14)

_ 1 DiYi
pri/"‘CﬁziseNP(ﬂ/—ﬁjﬂ)/‘l T X0
(2.15)

It leads to the ICM algorithm for the kth
step of the iteration

Bl — A )
! Z:ipi/' + CB ZiseNp (ﬂ/{k) - ﬂ/(]:r)b)/q i
Pii)i
) (2.16)
Z,p[,ﬁ,(k)

The prior information of this algorithm is
weighted by ¢, with respect to the contribu-
tion of the observations y,. If ¢; is too large,
the iterations will not converge anymore be-
cause the intensities will continuously in-
crease unconstrained by the observations. If
¢y is very small or equal to zero, the EM
(expectation maximation) algorithm of
SHEPP & VARDI (1982) and LANGE & CARSON
(1984) is obtained, see also VARDI et al.
(1985). The second parameter which con-
trolls the prior information in the ICM al-
gorithm is according to (2.9) the constant ¢
which determines the intensity difference of
the edges one wants to preserve.

GREEN (1990) proposed the OSL (one step
late) approximation in order to solve the
Bayesian reconstruction also by the EM al-
gorithm. The name was chosen because the
derivative of the prior density function with
respect to the unknown intensity of voxel j
is evaluated at the current estimate of the
unknown parameter during the iterations.
For the prior density function (2.7) used
here the OSL algorithm gives

(k)
ﬂ(kﬂ) — ﬁ./' - - Z
! Zipij + ¢ ZseNn(ﬂj( ) — ﬂj(-l—)x)/q i
PiiVi
. (2.17)
thitﬁr(k)

By comparing it with the ICM algorithm
(2.16) one recognizes that the ICM algo-
rithm is presented in the shape of the OSL
algorithm. This was the reason that for the
condition of the MAP estimate the form
(2.15) had been chosen.

The ICM algorithm (2.16) differs from the
OSL algorithm (2.17) only by the fact that
for computing the prior information the
sum in (2.16) is extended over the whole
neighbourhood of voxel j, while in (2.17) the
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sum is taken over half of the neighbour-
hood. It is therefore obvious and test com-
putations have confirmed it that the ICM
algorithm converges faster than the OSL al-
gorithm so that the ICM algorithm has to
be preferred.

3 Gibbs Sampler

The Gibbs sampler, a special Markov Chain
Monte Carlo method, is also applied to
compute the reconstruction by a MAP es-
timate and in addition by a Bayes estimate.
Because it is much slower than the ICM al-
gorithm it is only used as a check to numeri-
cally find out whether the solution of the
ICM algorithm agrees with the MAP esti-
mate.

The Gibbs sampler generates random
samples B from a posterior density func-
tion p(B|y) by using the conditional density
functions

p(ﬂj'ﬁb c '9ﬂj—1’ﬁj+1a N
jel{l,. .. u} (3.1)

The Gibbs sampler begins with arbitrary
starting values

»Bny)  for

(0) (0)
1 e Py

Then, random values

ﬁf” from p(ﬁ1|ﬁ§0)>--'>ﬁ1§0)5y)

51) from p(ﬁz“ﬁ“: ﬁ§0)a sy L(IO)7y) (32)
ﬁg” from p(ﬁ3|ﬁ1“)> ﬁé“y 20)’ LR 150)5 .V)
Y from pBIAN, ...V, y)

are sequentially generated to complete the
first step of an iteration. After a burn-in
phase of for instance o iterations the Gibbs
sampler can be shown to converge to the
posterior density function p(f]|y) so that the
generated samples B with w > o are distri-
buted like p(B|y), cf. GELMAN et al. (2004,
p.287). The Bayes estimate § of  then fol-
lows as a mean, cf. KocH (2000, p. 206),

f= S B 63)

with W being the number of generated
samples beyond the burn-in phase. The
MAP estimate f,, of B is given by
By = argmaxp(B™|y). (3.4)
B

The conditional density functions to sample
from by the Gibbs sampler (3.2) are taken
because of simpler computing not from
(2.12) but from (2.13)

Z (ﬁ/ - ﬁjﬂ)z/

+seN,

C
P(Bl0B;.y) = exp{—f

q + Z (yilnzpizﬁt_ Zpitﬁt) - 1[1 C} . (35)

To find the MAP estimate from (3.4) the
density values for the generated samples
have been obtained for simpler computa-
tions from taking the logarithm of (2.11)
where the normalization constant need not
be computed.

A method to sample from (3.5) could not
be found. It is therefore assumed that the
unknown intensity f8; can be approximated
within an interval 1, by discrete values £
for ke{l,...,d} with the current value ﬁ;‘“)
of the Gibbs sampler lying in the middle of
the interval /. The random variable f; is
therefore considered a discrete random vari-
able with values 3, for which it is simple to
generate random values, cf. KocH (2000,
p. 185). However, this sampling method is
very slow since the number of discrete values
may not be small. Thus, in such an appli-
cation the Gibbs sampler is not a practical
algorithm.

4 Numerical Example

To apply the ICM algorithm (2.16) and to
compare the results with the Gibbs sampler
(3.2), a small example with generated data
is chosen because of the large amount of
computing time needed for the Gibbs sam-
pler. The starting point is a test image ob-
tained by the scanner Clear PET™ Neuro
of the Forschungszentrum Jiilich. The im-
age consists of the intensities of a three-di-
mensional array of voxels with 96 slices, 81
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rows and 81 columns. The image shows a
cylinder with holes open at the top parallel
to the axis . The mantle of the cylinder ex-
tends a bit beyond the bottom to which two
small cylinders are attached. The image has
been reconstructed by the EM algorithm
from about 8 000 000 coincidence lines. The
image shows excellent contrasts for the cyl-
inder and its holes exept for the bottom of
the cylinder where low intensities with low
contrasts prevail so that smoothing can be
applied. In this area a three-dimensional ar-
ray of voxels with 9 slices, 45 rows and 33
columns has been selected for the example.
To avoid boundary effects for the smoothing
only the intensities of an array of voxels with
5 slices, 41 rows and 29 columns within the
larger array are reconstructed. Thus, the
vector B contains 5945 unknown intensity
values. Fig. 1 shows the intensities expressed
by grey values of the test image for the slice
in the middle of the array of voxels for the
example. The circular ring of light grey
values indicates the mantle of the cylinder
and the light grey values to the right close
at the mantle show one of the small cylinders
attached to the bottom. The area of light
grey values to the left does not have a special
meaning.

Instead of searching the 8 000000 meas-
ured coincidence lines for the ones going
through the array of voxels for the example
the observations were generated. It was as-
sumed that the emissions of the photons of
the example result in 8000 coincidence lines
symmetrically distributed over the array of
voxels. The element p; of the system matrix P
in (2.4) was computed by the ratio of the
length of the coincidence line i within the voxel
Jj to the length of the coincidence line within
the array of voxels. The method of SibpON
(1985) was applied. The voxel volume was
set to 1 mm® and the radius of the scanner
was reduced to 34 mm according to the ratio
of the size of the image of the example to
the size of the test image. The system matrix
P thus obtained multiplied by the intensities
of the voxels of the test image restricted to
the example gives the generated data.

To reconstruct the intensities of the voxels
from the simulated data, the intensities of

the test image after introducing normally
distributed noise with a standard deviation
of 0.00005 are used as starting values for
the iterations. The intensities of the voxels
lie within the interval of [0.00004, 0.00825].
The EM algorithm without the term ¢; in
(2.16) was first applied to reconstruct the im-
age. The result is given in Fig.2 where the
intensities are expressed by grey values and
the same slice as in Fig.1 is shown. The
number of iterations was determined such
that 1000 additional iterations do not
change the image which was checked by a
visual inspection. The number of iterations
thus obtained was 2000 for the EM algo-
rithm. By comparing the results with Fig. 1,
where as mentioned above the intensities of
the test image are shown, one recognizes es-
pecially from the dark voxels that the EM
algorithm introduces variances.

The reconstructed intensities of Fig.2
vary within the interval [0.0001, 0.0043] with
only a few voxels in the lower left corner of
Fig. 2 surpassing the intensity 0.0015. To ob-
tain sufficient contrast for the image, the in-
tensities of these voxels are reduced to
0.0015. The intensities are then transformed
to grey values and shown in Fig. 2. This pro-
cedure has been applied to all Figures 1 to
6. The consequence is that the images appear
rougher than the images where the whole
range of intensities are depicted. On the
other hand it is clearly visible how the re-
construction algorithm builds the image.

By applying the ICM algorithm (2.16) it
turns out that the iterations do not converge
anymore for ¢; > 200. The prior informa-
tion is not constrained for these weights by
the observations so that the intensities con-
tinuously grow. The reconstruction by
(2.16) with a low weight of ¢; = 20 and an
intensity difference of ¢ = 0.00017 for the
edges to be preserved is shown in Fig.3
again for the same slice as in Fig.1 and
Fig.2. The comparison with Fig.2 reveals
that the image is smoother and the edges
forming the mantle of the cylinder are well
kept. Prior information in addition to the
observations need to be processed so that
2500 iterations are necessary. Inspecting the
results of 1000 more iterations reveals that
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Fig.1: Test Image of the Slice in the Middle of
the Array of Voxels for the Example.

they do not change the image. Only 1500
iterations are needed if the weight is in-
creased to ¢; = 100 with the indentical value
¢ =0.00017, see Fig.4. This results in a
stronger smoothing. One has to keep in
mind that the ICM algorithm (2.16) applies
a three-dimensional smoothing with a
neighbourhood of 32 voxels as explained in
Section 2. This is the reason that patterns
appear in Fig. 3 and Fig. 4, which would not
show up in a two-dimensional smoothing,
like the break in the ring of voxels with light
grey values near the upper left corner of
Fig. 4.

Decreasing the parameter for the intensity
difference to ¢ = 0.00008 together with the
low weight ¢, =20 gives after 2500 iter-
ations, as shown in Fig.5, a moderate
smoothing if one compares it with Fig.3.
Fig. 5 is less rough than Fig.2 and it is al-
most identical with the original test image
of Fig. 1. This is an important result because
the original image can with good approxi-

Fig.2: Image Reconstructed by the EM Algo-
rithm.

mation be recovered by the ICM algorithm
(2.16) which the EM algorithm cannot. In-
creasing the weight to c¢;=100 with
¢ =0.00008 gives after 1500 iterations
stronger smoothing, see Fig. 6, but less pro-
nounced than in Fig. 4.

The solution shown in Fig. 3 of the ICM
algorithm  (2.16) with ¢;=20 and
¢=0.00017 is investigated by the Gibbs
sampler (3.2). As starting values for the
Gibbs sampler the intensities of the solution
of the ICM algorithm are taken. Since it is
expected that these intensities are already
distributed according to (2.11), no burn-in
phase is assumed. The Gibbs sampler is ap-
plied twice, the first time with the lengths
of the intervals /; equal to 0.000 001 and the
second time equal to 0.000 002. In both cases
d = 21 discrete values equally spaced in the
intervals /; are taken and 1500 iterations are
computed. For sampling from (3.5) the nor-
malization constant C has to be known. Be-
cause of the discretization it cannot be ac-
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Fig.3: Image Smoothed with ¢;=20 and Fig.4: Image Smoothed with ¢, = 100 and
¢ = 0.00017. ¢ = 0.00017.

Fig.5: Image Smoothed with ¢;=20 and Fig.6: Image Smoothed with c;= 100 and
¢ = 0.00008. ¢ = 0.00008.
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curately determined. When applying the
ICM algorithm (2.16) with ¢; = 20 the fifth
significant digit in the sum of the denomi-
nator is affected. Thus, instead of subtract-
ing In C in (3.5) the first term of the right
hand side of (3.5) is multiplied by a factor
which is chosen such that the 5th significant
digit of the sum is affected. This is, of course,
only an approximation with the conse-
quence that the weight ¢; in (3.5) is slightly
changed as compared to (2.16). But it alters
the solution only a little.

In the first application of the Gibbs sam-
pler the maximum of p(B™|y) in (3.4) is
found after 14 iterations, in the second case
after 15 iterations. For the first case the
maximum difference between an intensity
value from the ICM algorithm and the MAP
estimate of the Gibbs sampler is equal to
0.000 0043 and the square root of the mean
squared differences equals 0.0000011. For
the second case the corresponding values are
0.000 0099 and 0.0000023. Thus, the results
of the ICM algorithm and the MAP estimate
of the Gibbs sampler practically agree. The
ICM algorihm therefore does not give an
approximate solution but a MAP estimate.

To confirm this result, the Bayes estimate
(3.3)is also computed by the Gibbs sampler.
For the first application the maximum dif-
ference between an intensity value obtained
by the ICM algorithm and the Gibbs sam-
pleris equal to 0.000 024 and the square root
of the mean squared differences equals
0.000007. For the second application the
corresponding values are 0.000052 and
0.000014. Theoretically the maximum dif-
ference could be half of the lengths of the
intervals /; times the number of iterations
which gives 0.00075 for the first case and
0.00150 for the second one. By comparing
these values with the maximum differences
given above one recognizes that the Bayes
estimate stays close to the MAP estimate
which confirms the MAP estimate.

5 Conclusions

Numerically it is shown that the ICM algo-
rithm derived here for the Bayesian recon-
struction of tomograhic images does not

give an approximate solution but an optimal
solution in form of a MAP estimate. Due
to the modified density of HUBER (1964) for
the robust parameter estimation the ICM
algorithm smoothes the image while
preserving the edges. The smoothing is con-
trolled by two parametrs which allows flexi-
bility as demonstrated by the examples. For
instance, using simulated observations the
original image can be recovered with an ex-
cellent approximation which the EM algo-
rithm cannot.
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